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1. INTRODUCTION

The canonical Heun equation is a second order differential equation in the complex domain given
by

z z—1 z—a

2 —
W (y 0 ¢ )d—¢ @wz-da ., _ (1.1)

dz? dz +z(z—1)(z—a)

with regular singularities at z = 0,1, a, irregular singularity at co and where, a,,v,6,€ are
complex numbers that obey the constraint equationy +d + e = a +  + 1.

The confluent forms of the Heun equation (1.1) arise when two or more of the regular singularities
z =0,1,a merge to form an irregular singularity (o). The Doubly-confluent Heun Equation
(DCHE) is given by
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AR A
d22+ Z+Zz+

dz 72

d*y (V 5 )dl/) “Z_q¢=o, (1.2)

Equation (1.2) has irregular singularities at z = 0 and z = oo each of rank 1. The properties and
connecting formulas of solutions of equation (3.1) have been discussed in [3, 8, 11, 6, 13].

The novelty in this work shall be well understood in Remark 3.1 which is a clear departure from
the conventional spin dependent models. In what follows, Section 2 shall state in clear terms the
mathematical formalism required for the work. Section 3 consists the main result as well as very
vital deductions stated as remarks and Section 4 contains the conclusions drawn.

2. MATHEMATICAL FORMALISM

Let us consider a linear space of polynomials of degree not more than n, given by P, ., =
(1,z,2%,...z") where n is a non-negative integer. It is known (see [9], § 2.1, p.10) that a linear

differential operator of the kth order, H,(z, %), is called quasi-exactly solvable, if it preserves the

linear space of polynomials ?,,, , that is, Hy (z, %) : Ppi1 — Ppiq. In otherwords, a k" order
differential operator given by

, Hyyp = Ay,
where, H), = Zﬁo a;(z) ;7]]. Is said to be quasi-exactly solvable if it can be written as quadratic

combination of the generators of certain elements of the universal enveloping algebra of si(2, C)
of the form

He= ) cadast ) cala 2.1
a,b=0,+ a=0,t

where the number of free parameters c,;, # 0 is given by par(H,) = (k + 1)%. When the number
of free parameters par(Hy) = W then Hy, is said to be exactly solvable using H.L. Krall’s
classification ([5]). The generators of the lie algebra sl(2, C) have the form

d .. d . d
]+:=ZZE—2]Z, Jo=z—j, Jo= (2.2)

which obey the commutator relation

UO!]+] =]+1 U—']+] = 2]0' U—'JO] =]— ' (23)
The technique of computing (2.1) is what we call algebraization. The next preliminary result
which can be found in the works of ([12], §4, p.2912) and ([4]) gives explicit information on

algebraization. [ [12], §4, p.2912] The standard quadratic expression for the Hamiltonian —H, of
degree 2 as polynomials in terms of J, J, and J_ is given by

—Hyy = [C++(]+)2 + croll+Jo + JoJ+] + CooUo)Z + e JiJ-+]-J4]
+eo-[JoJ- +J-Jol + co_(J-)? + ciJy + cofo + c_]- + c.]. (2.4)
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(see [4]). Equation (2.4) in expanded form is given by

4 3 2 dzl/}
—HyY = [cy12% + 2¢402° + (coo + 2¢4_)Z° + 2¢o_z + C“]@
d
+[(2j — D[2¢4 423 + 3c402% + (2¢4— + Co)z + o] + €422 + coz + c_] d—f

+[2)(2j — Degpz? + 2j(2) — Deyoz + cooj? — 2jcy— — j[2¢42 + co] + c.].
(2.5)
Here, j = g is the spin number, where n € Z. In what follows, we present the main result which
investigates whether the DCHE satisfies the Krall’s criterion for quasi-exact solvability. The
technique of canonical polynomial is used to compute the eigenfunctions and eigenvalues are
obtained. The hidden symmetry is obtained via the Lie structure metric and a new quasi-exact
solvable potential is obtained using gauge transformation.

In the next section, the main results of this paper are presented.

3. MAIN RESULTS

In this section, we discuss the Lie algebraization of the DCHE, the generation of new QES
potentials via gauge transformation and corresponding eigenfunctions and eigenvalues. The
Doubly-confluent Heun Equation (DCHE) is given by

Y =0. 3.1)
Equation (3.1) has irregular singularities at z = 0 and z = o each of rank 1. Let equation (3.1)
be re-written in another form by multiplying through equation (3.1) with z? to get
2 2lp+(2+ +8) 4 ¥ =0 3.2
S z°+yz 1 T laz qQ)¥ = 0. (3.2)

3.1 Lie Algebraization

By using the connections between equations (2.4) and (2.5), the coefficients of the differential
expressions in (2.5) and (3.2) are compared to obtain

1
C++=O C+0=0 C+_=§ C+=1
Co+ =0 ¢cpo=0 ¢coo=0 ¢cg=y—n+1
1
_ = — _:0 __:O _ =
C_y > C_o c c

Therefore, the structure metrics {c,;} of the DCHE is given by
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1
C++ Cyo Cy- 0 0 2
c c Co- 0 0 O
g=ley=\o" 0 o |=|1 (33)
- 0 0
2
The matrix in (3.3) reveals the hidden symmetry of the Lie algebraic DCHE.
The norm of g = {c,} IS given as
Il g I=det[cap]ap=+0 = 0. (3.4)
ere, « = —n and the Casimir eigenvalue c, = — g (n —y — 2) — q. Next, with these coefficients,

we write the DCHE in equation (3.2) in terms the quadratic polynomial of operators (2.2) as

1 1
H=3ld 45 i+ =n+Dlo+).+6] —z(a—y=D—q. (35

Equation (3.5) is an element in the center of U(G). We observe here, that the free parameters for
the DCHE H, are six (6) in number which confirms the differential equation (3.1) as an QES
differential equation. The presence of the term in positive grading /. also confirms this fact.

Remark 3.1: The Hermitian operator in (3.5) exhibits several structural features that distinguish
it from standard spin Hamiltonians commonly encountered in the literature, such as the

Heisenberg, XXZ, or simple Zeeman models. The bilinear combination %]Jr]_ + %]_]Jr which is

proportional to ]2 — JZ, is fully consistent with conventional su(2)-invariant constructions and
represents the familiar quadratic spin interaction. In contrast, the presence of linear ladder-operator
terms J, and &/_ is non-standard. Such terms explicitly break conservation of the spin projection
Jo and do not appear in equilibrium spin models unless external driving, source terms, or algebraic
deformations are introduced. The asymmetry between the coefficients of J, and j_ further
emphasizes the departure from isotropic or time-reversal-symmetric settings typical of elementary
models. The linear J, contribution, with coefficient (y — n + 1) , also differs from a conventional
Zeeman term. Its explicit dependence on the representation label n, together with the parameter
¥, suggests that this term is not associated with a physical magnetic field but instead encodes
representation-dependent or algebraic information. A similar interpretation applies to the additive

constant — % (n—y — 1) — g, whose dependence on n and y is unusual in basic spin Hamiltonians

and is characteristic of spectrum-shifting terms in exactly or quasi-exactly solvable constructions.
Taken together, these features indicate that H is best understood not as a conventional spin-
interaction Hamiltonian, but as an algebraically engineered operator, potentially arising in driven,
deformed, or quasi-exactly solvable models where representation-dependent terms and explicit
ladder-operatorsources play a central role.

Now, the equation (3.5) can now be written using the expansion of the generators of universal
enveloping algebra of sl(2, C) in the form
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d? d
Hgf,flp(z);z 22@—(ZZ—(V—z(n—1))Z+6)£—nz—g(n—y—1)—q Y(z)
= 0. (3.6)

Equation (3.6) is the result of substituting the sI(2) generators into the algebraic form of the
Hamiltonian. Having considered the algebraization of the double confluent Heun equation, we
now consider the evaluation of its ground state solution, its new eigenfunction and its new quasi-
exactly solvable potential.

3.2 Gauge Transformation
Now, from the differential equation (3.6), the coefficient functions p(z), q(z) and r(z) are given
as

p(z) =z% qz)=—(z2-(y—-2(n—-1)z+96), r(z) =-nz —%(n —y—-1)-

q. (3.7)
The energy eigenvalue attached to (3.6) is

[1]

n
dch = _E(n_y_ 1)
—-q. (3.8)

The presence of the term in positive grading makes Hgf,f a quasi-exactly solvable operator. Thus,
the approach adopted in this case allows the operator Hgf,f to act on the space of monomials
z%,(j =0,1,2,...,n) (see [7, 9]).

In what follows, the gauge transformation of the DCHE is carried out to obtain an equivalent form,

namely a Schrédinger equation (§ — E((;Z;l)tp = 0 where § is given by the transformation

2
S=u@ ™" Higy pu(2) = — 35+ UW),
such that the QES potential is

1222 —16z(2z—y +2n—2) + 4[z> — (y — (2n — 2))z + §)]?

o —(n+1)z-EM.

Uw) =

Quasi-exactly solvable (QES) potentials (which in this instance is U(w)) are significant in physics
as they enable certain parts of the energy spectrum and eigenstates to be determined exactly in
otherwise non-integrable systems. They provide reliable analytical models for quantum systems
where perturbation theory is ineffective and serve as benchmarks for numerical and variational
methods. QES potentials expose hidden algebraic structures and partial symmetries, illustrating
that symmetry can act on a subspace of the Hilbert space. Many QES models are relevant to
practical scenarios, such as anharmonic oscillators and double wells, with exactly known low-
lying states influencing observable properties. Additionally, the parameter dependence in QES
systems allows for the exploration of spectral transitions and instability mechanisms, effectively
linking mathematical theory with physical relevance.

Here, the energy eigenvalue of the Schrodinger operator S is
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1
where w is given by

w= fzu"ldu = log,z
and the gauge function for DCHE is

u(z) = exp (3 f 24 du) = 77 H Ve (=2 é). (3.8)

2 p(u) 2 z
and its eigenfunction is in terms of polynomial functions in the polynomial space 2, .

Remark 3.2 The gauge function u(z) in (3.8) is derived from functions p(z) and q(z) defined in
(3.7), which come from the algebralaized form (3.6), not the original DCHE (3.2).

3.3 Polynomial Solutions and Eigen states of Lie Algebraic DCHE

Theorem 3.3 Consider the DCHE, HS>. The eigenfunction ¥ that satisfies the equation
HIEw = 0 is given by

)
V() = P2 Dexp (=2 -=),

Where P, (z) = Y., axz® and a, satisfies the recurrence relation

A _[k[(k =D +2(n = 1) —y] + Eqeplax + kbay—,
e ™ (n+ k) ’

Proof. Let us assume that the eigenfunction of the operator chb;f be given by

n
Y(z) = u(z2) Z azk.
In what follows, the Jacobi tridiagonal matrix of trI;(e:(I)_ie algebraic operator
HIES 7k = {zz & (22— -2n—-1)z+ 5)i —nz+ zdch)} zk
dz? dz
= —(n+ k)2 + [k(k — 1) — (y — 2(n — 1))k + Egep]2z" + k6zK1 9

Restricted to P,,,; = (z%,k = 0, ..., n) is obtained. Here, by equation (3.9) the matrix entries are
given by

tiker = —(M+k); tep =k[(k—1)+2(n—1) —y] +E4cn;  tik-1 = k6.
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It is now necessary to look at the nature of Jacobi tridiagonal matrices, their corresponding
eigenvalues as well as eigenfunctions for each case.

Table 1: Values for QES DCHE Tridiagonal Matrix Entries Ty j+1, Tk Tr -1, K =
0,1,2,3

k| Trrsr Tk, Tk k-1

0 |Tgp=—n To,0 = Edch Tg-1 =0
1 |5p=—(n+1) 711 =2 —1) -y + Euen Ty0=26
2 |13=—(n+2) T2 =2[2n—1—-y]+ Eyen T,1 = 26
3 |134=—(n+3) 733 = 3[2n —y] + Egcn 73, = 36

In this case, Hgf;f possesses the invariant subspace P; spanned by the basis {1}, thus, the function
Po(2) = a,. The matrix equation corresponding to a, is given in terms of 1 X 1 matrix [a,] as
[To][ao] = 0 This enables one to compute the accessory parameter g. Thus, since ay # 0

n
Eacno = 0q = _E(n —-y—-1.
By the gauge transformation in equation (3.8), we get the ground state eigenfunction

z 6

Wo(2) = 1(2)Po(7) = aou(z) = apz? 2" Dexp (-2 - =),

In this case, Hgf,f possesses the invariant subspace P, spanned by the basis {1, z}, thus,
the function P, (z) = ay + a,z. The matrix equation corresponding a is given by the 2 x 2
matrix equation given by

Too Toa1\ /%o Each —M o
Tydy = Too Tia <a1> = <6 2(n—1) =y + Egen <a1> = 0. (3.10)

Here the eigenvalue is obtained by setting det(T,) = 0. Thus, applying Eq. (3.7),

g =—>(n—y—2)(n—1) F;/2(n— 1) —y]* — 4ns.
By solving equation (3.10), one gets

[Eqcn + 6lag
Bgecn ¥2n—1)—y—n

a1 = — = 7’[1(10. (311)

Thus, the eigenfunction for this case is

z 6
W1 (2) = (1 +mz)aez’ > Vexp (—E - E)

where
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[Eacn + 6]ag
Bgent2(n—1)—y—n

m=-

In this case, Hgf,f possesses the invariant subspace P; spanned by the basis {1, z, z2},

thus, the function P,(z) = a, + a,z + a,z?2. The matrix equation corresponding a, is given by
the 3 x 3 matrix equation given by

Too To1 Toz2 Qo
T3A3 = Tl,O Tl,l Tl,z a1
T20 T21 T22 a,

Each —n 0 %o
=|4 2n—1)—y+Z4n —(n+1) (Ch) = 0. (3.12)
0 26 Z(Tl —-1- ]/) + E‘dCh az

The energy 2,5, is obtained by solving det(T5) = 0 in equation (3.12). The resulting equation is
a cubic equation

B3t [22n—y) —3]83,, + [4n? —(4n—3)y +y2 +né + 2]E4p + n(2n—y — 1)
= 0.(3.13)

By standard formula for solving cubic polynomials (cf: Abramowitz and Stegun (1972), S 3.8.2,
P.17) E3.4 + byE3 . + b1Egen + by = 0 has the roots

b
=1 2
:.fic)h =(s; +s.)— 3

b,

3

=(2)

1 V3
Eden = —E(s+ +5s_)— +17(s+ —S_),

1 V3
~(3 2 .
zc(zc)h=_§(5++5—)_§+l7(5+_5—)-
where
11
sy =[r+ (> +r>)7]3
11,
t=§b1—§b2
1 1,
rzg(b1b2_bo)_ﬁbz
and

b, =2(2n—-y) -3,
by =4n?> — (4n—-3)y +y? + né + 2,

by =n(Zn—-y-1).
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Hence, the eigenfunction of DCHE for this case is

zZ 0
W,(2) = (1 + 11z + n2z*)agexp (‘E - E)'
where
_ Edch
N1 n

T] _ n6 + [Z(Tl — 1) 4 + 26 + Edch]Edch
27 n2(n—y -1 —(n+ 1)+ Egen]

In this case, the operator Hgf,f has a finite-dimensional invariant subspace 2,1, which
is spanned by the basis {z*|k = 0,1,2, ..., n}. By the finite polynomial
n

Po(2) = Zk—o apz"

it is possible to obtain the tridiagonal Jacobi matrix equation
Th+14n+1 =0, (3.14)

where T, ., and A,,,, are explicitly is given by

TTL+1 -
Edch -n 0 0 0
6 2n—1)—y+Z4n —(n+1) 0 : \
0 26 2(n—1—-y)+E4n —(m+2)
0 0 36 3[2n—vy] + Egen
: 0 0 46 0
0 : Tn-1n-1 Tn-1n
0 0 Tn,n—l Tn,n
and
Qo
a;
a;
Apy1 =
an-1
a’Tl
It is known (see [2], Example 3.2, p.25) that
Dys1 = det(Tnsr) =0, (3.15)
where
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Dpyqr = Tn,nDn + Tn,n—lfn—l,nDn—l (316)

with initial conditions
D_1 = 0, DO = 1, D1 = Edch- (317)

The associated characteristic equation to (3.15) is given by
AP—0Bn—y—-3+4+Z;)A+n2n—-1)56=0 (3.18)

and in most physical applications (3.18) has two real distinct roots

_Bn—y—3+8un) £JBn—y —3+E4n)* —4n2n—1)§

A
2

since the discriminant (3n —y — 3 + E4.,)% — 4n(2n — 1)§ > 0. Hence, the general solution is
+1
(3n—¥ =3 + Eaen) + /(BN — ¥ — 3 + Eqen)? — 4n(2n — 1)6 r
2

Dpy1 =k [

+k,

+1
(Bn—y =3 +Eaen) — /BN — ¥ — 3 + Egen)? — 4n(2n — 1)5]"
- .

— ':(n) —

We note here that Zq., = Egp, = =2 (n —y — 1) — g 50 that
Sy Yt2 o o _Y L@

Sdch T ) _q;:‘dch__q;"‘dch_z GEgen =V —q— 1
By using the initial conditions in equation (3.16), one gets

=(0)

E q
ky = dch = (3.19)
FEO _(y+3) qty+3
and
+3
k, = a9 _ 7Y (3.20)

_q+y+3_q+y+3'

By re-substituting equations (3.19) and (3.20) into (3.18) one gets
1
B q Bn—y—3+E45) +/Bn—y —3+E4)?2—4n(2n — 1)6]n+

D... =
g +y+3 2

y+3
()
q+y+3

By applying equation (3.19) to equation (3.14) one solves for the accessory parameter g in (n +
1) —times, in this case to get g. The eigenfunction of DCHE in the general case in terms of
polynomial P,(z) = X%_, a,z" is thus given as

+1
(3n—¥ =3 + Egen) — /(BN — ¥ — 3 + Egen)? — 4n(2n — 1)5]“
- .
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10)
Y(z) = P,(2)z" 2 Vexp <_§ - E)

where a,, is satisfies the recurrence relation
—(n+k)ag, +k[(k—1D)+2(n—1) —y]+ E4n]ax + kéag_; =0

and hence
[k[(k—1)+2(n—1) —y] + Egenlar + kday_
Apyr = — o deh "k 1 kef{012..,n).
Now let

Vg S0k (Egen) = k[(k—1)+2(n—1) —y] + Egcn-
Thus, we obtain the coefficients

0 = _ Eacnlo _ —U—Oa
1 n n 0 ~ _
0 = [22n—1) —y + EqcnlEacn + nd _ ( UpUs 10) )a
2 n(n+1) 0 nn+1) n+1/°
UgU1U2 ov, 26v,
3 = (_ + + >a0
nn+1)(n+2) (n+1)(n+2) nn+?2)

The pattern of nested products and summations grows with each step. In general, a; can be
expressed as a;, = Cra, Where Cy is a coefficient that depends on n, §, and the values of v; for

j < k. Therefore,
Un_1 (n—1)4
n = (_ Znn— 1417 C”‘Z) %o
where C,,_; and C,,_, are the complex coefficients found from the previous iterative steps.

CONCLUSION

In this work, we have presented a new algebraization of the DCHE by writing it as the linear
combination of quadratic elements in the universal enveloping algebra of si(2, C). The presence
of the term in positive grading in the double confluent Heun Hamiltonian is an indication that Hgf,f
is only quasi-exactly solvable. Eigenfunctions and eigenvalues of DCHE have been obtained using
canonical monomials that generate block triangular matrix. The novelty in this work is clearly
stated in Remark 3.1 above.

In further research we shall study the Lie algebraization of other related linear and nonlinear
Fuchsian equations and physical models that have practical implications on science and

technology.
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