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ABSTRACT 

 

In this paper, we present a new algebraization of the double 

confluent Heun equation (DCHE) by writing its operator as the 

linear combination of quadratic elements in the universal 

enveloping algebra of 𝑠𝑙(2, ℂ). We also obtain a new quasi-

exactly solvable potential using a gauge transformation. It was 

observed that DCHE is only quasi-exactly solvable and 

therefore admits only polynomial solutions. 

Math Subject Class 2020: Primary: 34B40, Secondary: 33C45, 

30F30. 

 

 

 

 

1. INTRODUCTION  

The canonical Heun equation is a second order differential equation in the complex domain given 

by   

d2𝜓

d𝑧2
+ (
𝛾

𝑧
+

𝛿

𝑧 − 1
+

𝜀

𝑧 − 𝑎
)
d𝜓

d𝑧
+

𝛼𝛽𝑧 − 𝑞

𝑧(𝑧 − 1)(𝑧 − 𝑎)
𝜓 = 0,                          (1.1) 

  

 with regular singularities at 𝑧 = 0,1, 𝑎, irregular singularity at ∞ and where, 𝛼, 𝛽, 𝛾, 𝛿, 𝜖 are 

complex numbers that obey the constraint equation 𝛾 + 𝛿 + 𝜀 = 𝛼 + 𝛽 + 1.  

The confluent forms of the Heun equation (1.1) arise when two or more of the regular singularities 

𝑧 = 0,1, 𝑎 merge to form an irregular singularity (∞). The Doubly-confluent Heun Equation 

(DCHE) is given by  
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d2𝜓

d𝑧2
+ (
𝛾

𝑧
+
𝛿

𝑧2
+ 1)

d𝜓

d𝑧
+
𝛼𝑧 − 𝑞

𝑧2
𝜓 = 0.                                                         (1.2) 

  

 Equation (1.2) has irregular singularities at 𝑧 = 0 and 𝑧 = ∞ each of rank 1. The properties and 

connecting formulas of solutions of equation (3.1) have been discussed in [3, 8, 11, 6, 13].  

The novelty in this work shall be well understood in Remark 3.1 which is a clear departure from 

the conventional spin dependent models. In what follows, Section 2 shall state in clear terms the 

mathematical formalism required for the work. Section 3 consists the main result as well as very 

vital deductions stated as remarks and Section 4 contains the conclusions drawn. 

2.        MATHEMATICAL FORMALISM 

Let us consider a linear space of polynomials of degree not more than 𝑛, given by 𝒫𝑛+1 =
〈1, 𝑧, 𝑧2, … 𝑧𝑛〉 where 𝑛 is a non-negative integer. It is known (see  [9], § 2.1, p.10) that a linear 

differential operator of the 𝑘th order, 𝐻𝑘(𝑧,
d

d𝑧
), is called quasi-exactly solvable, if it preserves the 

linear space of polynomials 𝒫𝑛+1, that is, 𝐻𝑘 (𝑧,
d

d𝑧
) :  𝒫𝑛+1⟶𝒫𝑛+1. In otherwords, a 𝑘𝑡ℎ order 

differential operator given by  

 𝐻𝑘𝜓 = 𝜆𝜓, 

where, 𝐻𝑘 = ∑
𝑘
𝑗=0 𝑎𝑗(𝑧)

d𝑗

d𝑧𝑗
 is said to be quasi-exactly solvable if it can be written as quadratic 

combination of the generators of certain elements of the universal enveloping algebra of 𝑠𝑙(2, ℂ) 
of the form  

  

𝐻𝑘 = ∑

𝑎,𝑏=0,±

𝑐𝑎𝑏  𝐽𝑎𝐽𝑏 + ∑

𝑎=0,±

𝑐𝑎𝐽𝑎,                                                                   (2.1) 

  

 where the number of free parameters 𝑐𝑎𝑏 ≠ 0 is given by 𝑝𝑎𝑟(𝐻𝑘) = (𝑘 + 1)
2. When the number 

of free parameters 𝑝𝑎𝑟(𝐻𝑘) =
(𝑘+1)(𝑘+2)

2
 then 𝐻𝑘 is said to be exactly solvable using H.L. Krall’s 

classification ([5]). The generators of the lie algebra 𝑠𝑙(2, ℂ) have the form  

 

𝐽+: = 𝑧
2 d

d𝑧
− 2𝑗𝑧,        𝐽0: = 𝑧

d

d𝑧
− 𝑗,        𝐽−: =

d

d𝑧
                                       (2.2) 

 

 which obey the commutator relation  

 

 [𝐽0, 𝐽+] = 𝐽+,      [𝐽−, 𝐽+] = 2𝐽0,      [𝐽−, 𝐽0] = 𝐽−    .                                       (2.3) 

 

The technique of computing (2.1) is what we call algebraization. The next preliminary result 

which can be found in the works of ([12], §4, p.2912) and ([4]) gives explicit information on 

algebraization. [ [12], §4, p.2912] The standard quadratic expression for the Hamiltonian −𝐻2 of 

degree 2 as polynomials in terms of 𝐽+, 𝐽0 and 𝐽− is given by  

 

 −𝐻2𝜓 = [𝑐++(𝐽+)
2 + 𝑐+0[𝐽+𝐽0 + 𝐽0𝐽+] + 𝑐00(𝐽0)

2 + 𝑐+−[𝐽+𝐽− + 𝐽−𝐽+] 
 +𝑐0−[𝐽0𝐽− + 𝐽−𝐽0] + 𝑐−−(𝐽−)

2 + 𝑐+𝐽+ + 𝑐0𝐽0 + 𝑐−𝐽− + 𝑐∗]𝜓. (2.4) 
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 (see [4]). Equation (2.4) in expanded form is given by  

  

−𝐻2𝜓 = [𝑐++𝑧
4 + 2𝑐+0𝑧

3 + (𝑐00 + 2𝑐+−)𝑧
2 + 2𝑐0−𝑧 + 𝑐−−]

d2𝜓

d𝑧2
 

+[(2𝑗 − 1)[2𝑐++𝑧
3 + 3𝑐+0𝑧

2 + (2𝑐+− + 𝑐00)𝑧 + 𝑐0−] + 𝑐+𝑧
2 + 𝑐0𝑧 + 𝑐−]

d𝜓

d𝑧
 

  

+[2𝑗(2𝑗 − 1)𝑐++𝑧
2 + 2𝑗(2𝑗 − 1)𝑐+0𝑧 + 𝑐00𝑗

2 − 2𝑗𝑐+− − 𝑗[2𝑐+𝑧 + 𝑐0] + 𝑐∗]𝜓. 
                                                                                                                                                 (2.5) 

 Here, 𝑗 =
𝑛

2
, is the spin number,  where 𝑛 ∈ ℤ.  In what follows, we present the main result which 

investigates whether the DCHE satisfies the Krall’s criterion for quasi-exact solvability. The 

technique of canonical polynomial is used to compute the eigenfunctions and eigenvalues are 

obtained.  The hidden symmetry is obtained via the Lie structure metric and a new quasi-exact 

solvable potential is obtained using gauge transformation. 

 

In the next section, the main results of this paper are presented. 

 

3.       MAIN RESULTS 

          In this section, we discuss the Lie algebraization of the DCHE, the generation of new QES 

potentials via gauge transformation and corresponding eigenfunctions and eigenvalues. The 

Doubly-confluent Heun Equation (DCHE) is given by  

  

d2𝜓

d𝑧2
+ (
𝛾

𝑧
+
𝛿

𝑧2
+ 1)

d𝜓

d𝑧
+
𝛼𝑧 − 𝑞

𝑧2
𝜓 = 0.                                                                   (3.1) 

  

 Equation (3.1) has irregular singularities at 𝑧 = 0 and 𝑧 = ∞ each of rank 1. Let equation (3.1) 

be re-written in another form by multiplying through equation (3.1) with 𝑧2 to get 

  

𝑧2
d2Ψ

d𝑧2
+ (𝑧2 + 𝛾𝑧 + 𝛿)

dΨ

d𝑧
+ (𝛼𝑧 − 𝑞)Ψ = 0.                                                       (3.2) 

  

3.1 Lie Algebraization 

 

By using the connections between equations (2.4) and (2.5), the coefficients of the differential 

expressions in (2.5) and (3.2) are compared to obtain  

  

𝑐++ = 0 𝑐+0 = 0 𝑐+− =
1

2
𝑐+ = 1

𝑐0+ = 0 𝑐00 = 0 𝑐0− = 0 𝑐0 = 𝛾 − 𝑛 + 1

𝑐−+ =
1

2
𝑐−0 = 0 𝑐−− = 0 𝑐− = 𝛿

 

Therefore, the structure metrics {𝑐𝑎𝑏} of the DCHE is given by  
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𝑔 = {𝑐𝑎𝑏} = (

𝑐++ 𝑐+0 𝑐+−
𝑐0+ 𝑐00 𝑐0−
𝑐−+ 𝑐−0 𝑐−−

) =

(

 
 
 
0 0

1

2
0 0 0
1

2
0 0

)

 
 
 
.                                         (3.3) 

The matrix in (3.3) reveals the hidden symmetry of the Lie algebraic DCHE.  

 The norm of 𝑔 = {𝑐𝑎𝑏} is given as  

  

∥ 𝑔 ∥= det[𝑐𝑎𝑏]𝑎,𝑏=±,0 = 0.                                                                                        (3.4) 
  

 ere, 𝛼 = −𝑛 and the Casimir eigenvalue 𝑐∗ = −
𝑛

2
(𝑛 − 𝛾 − 2) − 𝑞. Next, with these coefficients, 

we write the DCHE in equation (3.2) in terms the quadratic polynomial of operators (2.2) as  

  

𝐻 =
1

2
𝐽+𝐽− +

1

2
𝐽−𝐽+ + (𝛾 − 𝑛 + 1)𝐽0 + 𝐽+ + 𝛿𝐽− −

𝑛

2
(𝑛 − 𝛾 − 2) − 𝑞.         (3.5) 

  

Equation (3.5) is an element in the center of 𝑈(𝒢). We observe here, that the free parameters for 

the DCHE 𝐻2 are six (6) in number which confirms the differential equation (3.1) as an QES 

differential equation. The presence of the term in positive grading 𝐽+ also confirms this fact.  

 

Remark 3.1: The Hermitian operator in (3.5) exhibits several structural features that distinguish 

it from standard spin Hamiltonians commonly encountered in the literature, such as the 

Heisenberg, 𝑋𝑋𝑍, or simple Zeeman models. The bilinear combination  
1

2
𝐽+𝐽− +

1

2
𝐽−𝐽+ which is 

proportional to  J2 − 𝐽0
2, is fully consistent with conventional 𝑠𝑢(2)-invariant constructions and 

represents the familiar quadratic spin interaction. In contrast, the presence of linear ladder-operator 

terms 𝐽+  and 𝛿𝐽−  is non-standard. Such terms explicitly break conservation of the spin projection 

𝐽0 and do not appear in equilibrium spin models unless external driving, source terms, or algebraic 

deformations are introduced. The asymmetry between the coefficients of  𝐽+ and 𝐽− further 

emphasizes the departure from isotropic or time-reversal-symmetric settings typical of elementary 

models. The linear 𝐽0  contribution, with coefficient (γ − n + 1) , also differs from a conventional 

Zeeman term. Its explicit dependence on the representation label 𝑛, together with the parameter  

𝛾, suggests that this term is not associated with a physical magnetic field but instead encodes 

representation-dependent or algebraic information. A similar interpretation applies to the additive 

constant −
𝑛

2
(𝑛 − 𝛾 − 1) − 𝑞, whose dependence on 𝑛 and 𝛾 is unusual in basic spin Hamiltonians 

and is characteristic of spectrum-shifting terms in exactly or quasi-exactly solvable constructions. 

Taken together, these features indicate that 𝐻 is best understood not as a conventional spin-

interaction Hamiltonian, but as an algebraically engineered operator, potentially arising in driven, 

deformed, or quasi-exactly solvable models where representation-dependent terms and explicit 

ladder-operatorsources play a central role. 

Now, the equation (3.5) can now be written using the expansion of the generators of universal 

enveloping algebra of 𝑠𝑙(2, ℂ) in the form  
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𝐻𝑑𝑐ℎ
𝑄𝐸𝑆Ψ(𝑧):= [𝑧2

d2

d𝑧2
− (𝑧2 − (𝛾 − 2(𝑛 − 1))𝑧 + 𝛿)

d

d𝑧
− 𝑛𝑧 −

𝑛

2
(𝑛 − 𝛾 − 1) − 𝑞]Ψ(𝑧)

= 0.                                                                                                                                 (3.6) 
  

Equation (3.6) is the result of substituting the sl(2) generators into the algebraic form of the 

Hamiltonian.  Having considered the algebraization of the double confluent Heun equation, we 

now consider the evaluation of its ground state solution, its new eigenfunction and its new quasi-

exactly solvable potential.  

 

3.2 Gauge Transformation 

Now, from the differential equation (3.6), the coefficient functions 𝑝(𝑧), 𝑞(𝑧) and 𝑟(𝑧) are given 

as 

  

𝑝(𝑧) = 𝑧2,    𝑞(𝑧) = −(𝑧2 − (𝛾 − 2(𝑛 − 1))𝑧 + 𝛿),    𝑟(𝑧) = −𝑛𝑧 −
𝑛

2
(𝑛 − 𝛾 − 1) −

𝑞.        (3.7)  
The energy eigenvalue attached to (3.6) is  

  

Ξ𝑑𝑐ℎ = −
𝑛

2
(𝑛 − 𝛾 − 1)

− 𝑞.                                                                                                                   (3.8) 
  

 The presence of the term in positive grading makes 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 a quasi-exactly solvable operator. Thus, 

the approach adopted in this case allows the operator 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 to act on the space of monomials 

𝑧2𝑗 , (𝑗 = 0,1,2, … , 𝑛) (see [7, 9]). 

In what follows, the gauge transformation of the DCHE is carried out to obtain an equivalent form, 

namely a Schrödinger equation (𝒮 − 𝐸𝑑𝑐ℎ
(𝑛)
)Ψ = 0 where 𝒮 is given by the transformation  

  

𝒮 = 𝜇(𝑧)−1 ⋅ 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆 ⋅ 𝜇(𝑧) =  −

d2

d𝑤2
+ 𝑈(𝑤), 

such that the QES potential is  

  

𝑈(𝑤) =
12𝑧2 − 16𝑧(2𝑧 − 𝛾 + 2𝑛 − 2) + 4[𝑧2 − (𝛾 − (2𝑛 − 2))𝑧 + 𝛿)]2

16𝑧2
− (𝑛 + 1)𝑧 − 𝐸𝑑𝑐ℎ

(𝑛)
. 

  

 

Quasi-exactly solvable (QES) potentials (which in this instance is 𝑈(𝑤)) are significant in physics 

as they enable certain parts of the energy spectrum and eigenstates to be determined exactly in 

otherwise non-integrable systems. They provide reliable analytical models for quantum systems 

where perturbation theory is ineffective and serve as benchmarks for numerical and variational 

methods. QES potentials expose hidden algebraic structures and partial symmetries, illustrating 

that symmetry can act on a subspace of the Hilbert space. Many QES models are relevant to 

practical scenarios, such as anharmonic oscillators and double wells, with exactly known low-

lying states influencing observable properties. Additionally, the parameter dependence in QES 

systems allows for the exploration of spectral transitions and instability mechanisms, effectively 

linking mathematical theory with physical relevance. 

 Here, the energy eigenvalue of the Schrödinger operator 𝒮 is  
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𝐸𝑑𝑐ℎ
(𝑛)
=
1

2
[𝛾 − 2𝑛 + 3] + Ξ𝑑𝑐ℎ . 

where 𝑤 is given by  

  

𝑤 = ∫𝑧 𝑢−1d𝑢 = log𝑒𝑧 

and the gauge function for DCHE is  

  

𝜇(𝑧) = exp(
1

2
∫𝑧 

𝑞(𝑢)

𝑝(𝑢)
d𝑢) = 𝑧𝛾−2(𝑛−1)exp (−

𝑧

2
−
𝛿

𝑧
).                         (3.8) 

  

 and its eigenfunction is in terms of polynomial functions in the polynomial space 𝒫𝑛+1.  
 

Remark 3.2 The gauge function 𝜇(𝑧) in (3.8) is derived from functions 𝑝(𝑧) and 𝑞(𝑧) defined in 

(3.7), which come from the algebralaized form (3.6), not the original DCHE (3.2). 

 

3.3 Polynomial Solutions and Eigen states of Lie Algebraic DCHE 

 

Theorem 3.3 Consider the DCHE, 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆. The eigenfunction 𝛹 that satisfies the equation 

𝐻𝑑𝑐ℎ
𝑄𝐸𝑆𝛹 = 0 is given by  

  

Ψ(𝑧) = 𝒫𝑛(𝑧)𝑧
𝛾−2(𝑛−1)exp (−

𝑧

2
−
𝛿

𝑧
), 

Where 𝒫𝑛(𝑧) = ∑
𝑛
𝑘=0 𝑎𝑘𝑧

𝑘 and 𝑎𝑘 satisfies the recurrence relation  

 

𝑎𝑘+1 = −
[𝑘[(𝑘 − 1) + 2(𝑛 − 1) − 𝛾] + Ξ𝑑𝑐ℎ]𝑎𝑘 + 𝑘𝛿𝑎𝑘−1

(𝑛 + 𝑘)
,    𝑘 = 0,… , 𝑛 − 1. 

 

  

Proof. Let us assume that the eigenfunction of the operator 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 be given by  

  

Ψ(𝑧) = 𝜇(𝑧)∑

𝑛

𝑘=0

𝑎𝑘𝑧
𝑘. 

In what follows, the Jacobi tridiagonal matrix of the Lie algebraic operator  

  

𝐻𝑑𝑐ℎ
𝑄𝐸𝑆
𝑧𝑘 = {𝑧2

d2

d𝑧2
− (𝑧2 − (𝛾 − 2(𝑛 − 1))𝑧 + 𝛿)

d

d𝑧
− 𝑛𝑧 + Ξ𝑑𝑐ℎ)} 𝑧

𝑘 

  

= −(𝑛 + 𝑘)𝑧𝑘+1 + [𝑘(𝑘 − 1) − (𝛾 − 2(𝑛 − 1))𝑘 + Ξ𝑑𝑐ℎ]𝑧
𝑘 + 𝑘𝛿𝑧𝑘−1 

  (3.9) 

 Restricted to 𝒫𝑛+1 = 〈𝑧
𝑘 , 𝑘 = 0,… , 𝑛〉 is obtained. Here, by equation (3.9) the matrix entries are 

given by  

  

𝑡𝑘,𝑘+1 = −(𝑛 + 𝑘);    𝑡𝑘,𝑘 = 𝑘[(𝑘 − 1) + 2(𝑛 − 1) − 𝛾] + Ξ𝑑𝑐ℎ;     𝑡𝑘,𝑘−1 = 𝑘𝛿. 
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It is now necessary to look at the nature of Jacobi tridiagonal matrices, their corresponding 

eigenvalues as well as eigenfunctions for each case.   

 

Table  1: Values for QES DCHE Tridiagonal Matrix Entries 𝝉𝒌,𝒌+𝟏, 𝝉𝒌,𝒌, 𝝉𝒌,𝒌−𝟏, 𝒌 =
𝟎, 𝟏, 𝟐, 𝟑 

  

  𝑘   𝜏𝑘,𝑘+1   𝜏𝑘,𝑘 𝜏𝑘,𝑘−1  

 0   𝜏0,1 = −𝑛   𝜏0,0 = Ξ𝑑𝑐ℎ   𝜏0,−1 = 0  

 1  𝜏1,2 = −(𝑛 + 1)   𝜏1,1 = 2(𝑛 − 1) − 𝛾 + Ξ𝑑𝑐ℎ  𝜏1,0 = 𝛿 

 2  𝜏2,3 = −(𝑛 + 2)  𝜏2,2 = 2[2𝑛 − 1 − 𝛾] + Ξ𝑑𝑐ℎ  𝜏2,1 = 2𝛿 

 3    𝜏3,4 = −(𝑛 + 3) 𝜏3,3 = 3[2𝑛 − 𝛾] + Ξ𝑑𝑐ℎ  𝜏3,2 = 3𝛿 

  

 In this case, 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 possesses the invariant subspace 𝒫1 spanned by the basis {1}, thus, the function 

𝒫0(𝑧) = 𝑎0. The matrix equation corresponding to 𝑎0 is given in terms of 1 × 1 matrix [𝑎0] as 

[𝑇0][𝑎0] = 0 This enables one to compute the accessory parameter 𝑞. Thus, since 𝑎0 ≠ 0  

  

Ξ𝑑𝑐ℎ𝑎0 = 0𝑞 = −
𝑛

2
(𝑛 − 𝛾 − 1). 

By the gauge transformation in equation (3.8), we get the ground state eigenfunction  

  

Ψ0(𝑧) = 𝜇(𝑧)𝒫0(𝑧) = 𝑎0𝜇(𝑧) = 𝑎0𝑧
𝛾−2(𝑛−1)exp (−

𝑧

2
−
𝛿

𝑧
). 

 

   

  In this case, 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 possesses the invariant subspace 𝒫2 spanned by the basis {1, 𝑧}, thus, 

the function 𝒫1(𝑧) = 𝑎0 + 𝑎1𝑧. The matrix equation corresponding 𝑎0 is given by the 2 × 2 

matrix equation given by  

  

𝑇2𝐴2 = (

𝜏0,0 𝜏0,1
𝜏1,0 𝜏1,1)(

𝑎0
𝑎1) = (

Ξ𝑑𝑐ℎ −𝑛
𝛿 2(𝑛 − 1) − 𝛾 + Ξ𝑑𝑐ℎ)(

𝑎0
𝑎1) = 0.              (3.10) 

  

Here the eigenvalue is obtained by setting det(𝑇2) = 0. Thus, applying Eq. (3.7),  

 

 𝑞± = −
1

2
(𝑛 − 𝛾 − 2)(𝑛 − 1) ∓

1

2
√[2(𝑛 − 1) − 𝛾]2 − 4𝑛𝛿. 

 

By solving equation (3.10), one gets  

 

𝑎1 = −
[Ξ𝑑𝑐ℎ + 𝛿]𝑎0

Ξ𝑑𝑐ℎ + 2(𝑛 − 1) − 𝛾 − 𝑛
= 𝜂1𝑎0.   (3.11) 

 

 

Thus, the eigenfunction for this case is  

  

Ψ1(𝑧) = (1 + 𝜂1𝑧)𝑎0𝑧
𝛾−2(𝑛−1)exp (−

𝑧

2
−
𝛿

𝑧
) 

where  
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𝜂1 = −
[Ξ𝑑𝑐ℎ + 𝛿]𝑎0

Ξ𝑑𝑐ℎ + 2(𝑛 − 1) − 𝛾 − 𝑛
. 

 

 In this case, 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 possesses the invariant subspace 𝒫3 spanned by the basis {1, 𝑧, 𝑧2}, 

thus, the function 𝒫2(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2. The matrix equation corresponding 𝑎0 is given by 

the 3 × 3 matrix equation given by  

 

                  𝑇3𝐴3 = (

𝜏0,0 𝜏0,1 𝜏0,2
𝜏1,0 𝜏1,1 𝜏1,2
𝜏2,0 𝜏2,1 𝜏2,2

)(

𝑎0
𝑎1
𝑎2
) 

 

 = (

Ξ𝑑𝑐ℎ −𝑛 0
𝛿 2(𝑛 − 1) − 𝛾 + Ξ𝑑𝑐ℎ −(𝑛 + 1)
0 2𝛿 2(𝑛 − 1 − 𝛾) + Ξ𝑑𝑐ℎ

)(

𝑎0
𝑎1
𝑎2
) = 0. (3.12) 

 

 The energy Ξ𝑑𝑐ℎ is obtained by solving det(𝑇3) = 0 in equation (3.12). The resulting equation is 

a cubic equation  

 

Ξ𝑑𝑐ℎ
3 + [2(2𝑛 − 𝛾) − 3]Ξ𝑑𝑐ℎ

2 + [4𝑛2 − (4𝑛 − 3)𝛾 + 𝛾2 + 𝑛𝛿 + 2]Ξ𝑑𝑐ℎ + 𝑛(2𝑛 − 𝛾 − 1)
= 0. (3.13) 

  

By standard formula for solving cubic polynomials (cf: Abramowitz and Stegun (1972), S 3.8.2, 

p.17) Ξ𝑑𝑐ℎ
3 + 𝑏2Ξ𝑑𝑐ℎ

2 + 𝑏1Ξ𝑑𝑐ℎ + 𝑏0 = 0 has the roots  

  

                                                              Ξ𝑑𝑐ℎ
(1)

= (𝑠+ + 𝑠−) −
𝑏2
3
, 

  

Ξ𝑑𝑐ℎ
(2)

= −
1

2
(𝑠+ + 𝑠−) −

𝑏2
3
+ 𝑖
√3

2
(𝑠+ − 𝑠−), 

  

Ξ𝑑𝑐ℎ
(3)

= −
1

2
(𝑠+ + 𝑠−) −

𝑏2
3
+ 𝑖
√3

2
(𝑠+ − 𝑠−). 

 where  

  

                                                                             𝑠± = [𝑟 ± (𝑡
3 + 𝑟2)

1
2]
1
3 

  

                                         

                                                                              𝑡 =
1

3
𝑏1 −

1

9
𝑏2
2 

                               

𝑟 =
1

6
(𝑏1𝑏2 − 𝑏0) −

1

27
𝑏2
3 

 and  

                              𝑏2 = 2(2𝑛 − 𝛾) − 3, 
 

                                  𝑏1 = 4𝑛
2 − (4𝑛 − 3)𝛾 + 𝛾2 + 𝑛𝛿 + 2, 

                               

                                                      𝑏0 = 𝑛(2𝑛 − 𝛾 − 1). 
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 Hence, the eigenfunction of DCHE for this case is  

  

Ψ2(𝑧) = (1 + 𝜂1𝑧 + 𝜂2𝑧
2)𝑎0exp (−

𝑧

2
−
𝛿

𝑧
), 

where  

                                                              𝜂1 =
Ξ𝑑𝑐ℎ
𝑛

 

 

𝜂2 =
𝑛𝛿 + [2(𝑛 − 1) − 𝛾 + 2𝛿 + Ξ𝑑𝑐ℎ]Ξ𝑑𝑐ℎ
𝑛[2(𝑛 − 𝛾 − 1) − (𝑛 + 1) + Ξ𝑑𝑐ℎ]

. 

 

  

 In this case, the operator 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 has a finite-dimensional invariant subspace 𝒫𝑛+1, which 

is spanned by the basis {𝑧𝑘|𝑘 = 0,1,2, … , 𝑛}. By the finite polynomial 

𝒫𝑛(𝑧) =∑
𝑛

𝑘=0
𝑎𝑘𝑧

𝑘 

 

it is possible to obtain the tridiagonal Jacobi matrix equation  

 𝑇𝑛+1𝐴𝑛+1 = 0, (3.14) 

 

 where 𝑇𝑛+1 and 𝐴𝑛+1 are explicitly is given by 

 

 𝑇𝑛+1 =

(

 
 
 
 
 

Ξ𝑑𝑐ℎ −𝑛 0 0 … 0
𝛿 2(𝑛 − 1) − 𝛾 + Ξ𝑑𝑐ℎ −(𝑛 + 1) 0 … ⋮

0 2𝛿 2(𝑛 − 1 − 𝛾) + Ξ𝑑𝑐ℎ −(𝑛 + 2) …

0 0 3𝛿 3[2𝑛 − 𝛾] + Ξ𝑑𝑐ℎ ⋱
⋮ 0 0 4𝛿 ⋱ 0
0 … ⋮ ⋱ 𝜏𝑛−1,𝑛−1 𝜏𝑛−1,𝑛
0 … 0 𝜏𝑛,𝑛−1 𝜏𝑛,𝑛 )

 
 
 
 
 

 

  

and  

 𝐴𝑛+1 =

(

 
 
 
 
 
 

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−1
𝑎𝑛

)

 
 
 
 
 
 

 

  

 It is known (see [2], Example 3.2, p.25) that  

 

 𝐷𝑛+1 = det(𝑇𝑛+1) = 0, (3.15) 

 

 where  
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 𝐷𝑛+1 = 𝜏𝑛,𝑛𝐷𝑛 + 𝜏𝑛,𝑛−1𝜏𝑛−1,𝑛𝐷𝑛−1 (3.16) 

 

 with initial conditions  

 𝐷−1 = 0,        𝐷0 = 1,      𝐷1 = Ξ𝑑𝑐ℎ. (3.17) 

 

 The associated characteristic equation to  (3.15) is given by  

 𝜆2 − (3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ)𝜆 + 𝑛(2𝑛 − 1)𝛿 = 0 (3.18) 

 

 and in most physical applications (3.18) has two real distinct roots  

 

𝜆 =
(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ) ± √(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ)2 − 4𝑛(2𝑛 − 1)𝛿

2
 

 

since the discriminant (3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ)
2 − 4𝑛(2𝑛 − 1)𝛿 > 0. Hence, the general solution is  

               𝐷𝑛+1 = 𝑘1 [
(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ) + √(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ)2 − 4𝑛(2𝑛 − 1)𝛿  

2
]

𝑛+1

 

  

+𝑘2 [
(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ) − √(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ)2 − 4𝑛(2𝑛 − 1)𝛿

2
]

𝑛+1

. 

 

  

 We note here that Ξ𝑑𝑐ℎ = Ξ𝑑𝑐ℎ
(𝑛)

= −
𝑛

2
(𝑛 − 𝛾 − 1) − 𝑞 so that 

Ξ𝑑𝑐ℎ
(−1)

= −
𝛾 + 2

2
− 𝑞; Ξ𝑑𝑐ℎ

(0)
= −𝑞; Ξ𝑑𝑐ℎ

(1)
=
𝛾

2
− 𝑞; Ξ𝑑𝑐ℎ

(2)
= 𝛾 − 𝑞 − 1. 

By using the initial conditions in equation (3.16), one gets  

  

𝑘1 =
Ξ𝑑𝑐ℎ
(0)

Ξ𝑑𝑐ℎ
(0)
− (𝛾 + 3)

=
𝑞

𝑞 + 𝛾 + 3
                                                                  (3.19) 

  

 and  

  

𝑘2 = 1 −
𝑞

𝑞 + 𝛾 + 3
=

𝛾 + 3

𝑞 + 𝛾 + 3
.                                                                (3.20) 

  

 By re-substituting equations (3.19) and (3.20) into (3.18) one gets  

𝐷𝑛+1 =
𝑞

𝑞 + 𝛾 + 3
[
(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ) + √(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ)

2 − 4𝑛(2𝑛 − 1)𝛿

2
]

𝑛+1

 

  

+(
𝛾 + 3

𝑞 + 𝛾 + 3
) [
(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ) − √(3𝑛 − 𝛾 − 3 + Ξ𝑑𝑐ℎ)2 − 4𝑛(2𝑛 − 1)𝛿

2
]

𝑛+1

. 

 

 By applying equation (3.19) to equation (3.14) one solves for the accessory parameter 𝑞 in (𝑛 +
1) −times, in this case to get 𝑞. The eigenfunction of DCHE in the general case in terms of 

polynomial 𝒫𝑛(𝑧) = ∑
𝑛
𝑘=0 𝑎𝑘𝑧

𝑘 is thus given as  
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Ψ(𝑧) = 𝒫𝑛(𝑧)𝑧
𝛾−2(𝑛−1)exp (−

𝑧

2
−
𝛿

𝑧
). 

where 𝑎𝑘 is satisfies the recurrence relation  

 −(𝑛 + 𝑘)𝑎𝑘+1 + [𝑘[(𝑘 − 1) + 2(𝑛 − 1) − 𝛾] + Ξ𝑑𝑐ℎ]𝑎𝑘 + 𝑘𝛿𝑎𝑘−1 = 0 

and hence  

𝑎𝑘+1 = −
[𝑘[(𝑘 − 1) + 2(𝑛 − 1) − 𝛾] + Ξ𝑑𝑐ℎ]𝑎𝑘 + 𝑘𝛿𝑎𝑘−1

(𝑛 + 𝑘)
,    𝑘 ∈ {0,1,2, … , 𝑛}. 

Now let  

  

𝜐𝑘 ≡ 𝜐𝑘(Ξ𝑑𝑐ℎ) = 𝑘[(𝑘 − 1) + 2(𝑛 − 1) − 𝛾] + Ξ𝑑𝑐ℎ. 
Thus, we obtain the coefficients  

                    𝑎1 = −
Ξ𝑑𝑐ℎ𝑎0
𝑛

= −
𝜐0
𝑛
𝑎0 

                    𝑎2 = −
[2(2𝑛 − 1) − 𝛾 + Ξ𝑑𝑐ℎ]Ξ𝑑𝑐ℎ + 𝑛𝛿

𝑛(𝑛 + 1)
𝑎0 = (

𝜐0𝜐1
𝑛(𝑛 + 1)

−
𝛿

𝑛 + 1
)𝑎0 

                    𝑎3 = (−
𝜐0𝜐1𝜐2

𝑛(𝑛 + 1)(𝑛 + 2)
+

𝛿𝜐2
(𝑛 + 1)(𝑛 + 2)

+
2𝛿𝜐0

𝑛(𝑛 + 2)
) 𝑎0… 

 

 The pattern of nested products and summations grows with each step. In general, 𝑎𝑘 can be 

expressed as 𝑎𝑘 = 𝐶𝑘𝑎0 where 𝐶𝑘 is a coefficient that depends on 𝑛, 𝛿, and the values of 𝜐𝑗 for 

𝑗 < 𝑘. Therefore,  

𝑎𝑛 = (−
𝜐𝑛−1
2𝑛 − 1

𝐶𝑛−1 −
(𝑛 − 1)𝛿

2𝑛 − 1
𝐶𝑛−2) 𝑎0 

where 𝐶𝑛−1 and 𝐶𝑛−2 are the complex coefficients found from the previous iterative steps.  

 

CONCLUSION 

In this work, we have presented a new algebraization of the DCHE by writing it as the linear 

combination of quadratic elements in the universal enveloping algebra of 𝑠𝑙(2, ℂ). The presence 

of the term in positive grading in the double confluent Heun Hamiltonian is an indication that 𝐻𝑑𝑐ℎ
𝑄𝐸𝑆

 

is only quasi-exactly solvable. Eigenfunctions and eigenvalues of DCHE have been obtained using 

canonical monomials that generate block triangular matrix. The novelty in this work is clearly 

stated in Remark 3.1 above.  

In further research we shall study the Lie algebraization of other related linear and nonlinear 

Fuchsian equations and physical models that have practical implications on science and 

technology. 
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