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 Abstract 
 

In this study, the solutions of the Schrödinger equation are obtained with a class of 

inversely quadratic plus Hulthén potential models using the Nikiforov-Uvarov method 

with an approximation to the centrifugal term. We obtained the energy eigenvalue 

equation and normalized wave function. The energy equation was used to compute the 

numerical bound state for selected diatomic molecules (N2, O2, NO, and CO) for 

different rotational and vibrational quantum numbers utilizing their corresponding 

spectroscopic data. Our findings demonstrate that the energy eigenvalues are highly 

sensitive to the potential and diatomic molecule characteristics, with no divergence 

between the l -wave and s  -wave, implying that the approximation scheme is well suited 

for these set of potentials. We also found eight special cases of this potential, and the 

results are consistent with previous reports in the literature. 

 

Keywords: Schrödinger equation; Nikiforov-Uvarov method; class of inversely quadratic plus Hulthén 

potential; Diatomic molecules  

 

Introduction 

The dynamics and interactions of non-relativistic spinless particles and quantum–mechanical processes can be studied by 

the use of the time-independent Schrödinger wave equation [1-4]. The analytical solutions to this equation with physical 

potentials presume a significant part in our knowledge of the fundamental basis of a quantum system; because the 

eigenvalues and eigenfunctions related to quantum problems contain vital information concerning the quantum system [5, 

6]. Nevertheless, the bound state solutions of the Schrödinger equation of a number of these potentials are feasible for a few 

cases, for example, Coulomb potential [7], Woods-Saxon [8], Hulthén [9], Manning-Rosen [10], and others. Additionally, 

when the arbitrary angular momentum quantum number l  is available, one can solve the Schrödinger equation 

approximately by utilizing a reasonable approximation scheme [11]. Some of such approximations include the 

approximation scheme proposed by Greene and Aldrich [11], the improved approximation scheme by Jia et al. [12], the 

approximation scheme by Hill [13], the Pekeris approximation [14], the approximation scheme by Yazarloo et al. [15], and 

upgraded approximation scheme in Ref.[16]. 

Over the years, different quantum mechanical procedures have been utilized comprehensively aiming to get the exact and 

approximate solutions to the Schrödinger equation [17-39]. Inversely quadratic Hellmann potential (IQHP)  was instituted 

from Hellmann potential [40], which has been widely utilized by numerous authors to get the energy of the bound state in 

atomic, nuclear, and particle physics [41,42]. From that point forward, it has been used by numerous authors to acquire the 

energy-bound state in different areas of physics [43-46]. Another intriguing potential with regards to this investigation is 

inversely quadratic potential (IQP). The IQP has been used by Oyewumi and Bangudu [47] in a mix with an isotropic 

harmonic oscillator in N-dimension space. Since that time, several papers in blend with this potential have shown up in the 

literature [48-50]. 

The Hulthén potential [51] is fundamental in exploring the interaction existing between two particles. It is applied in areas 

of physics such as nuclear and molecular physics, atomic physics, condensed matter physics, and chemical physics [52, 53].  
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The aim of this study is to obtain the approximate bound state analytical solutions to the Schrödinger equation with the 

class of inversely quadratic plus Hulthén potential (CIQHP). The potential is obtained by the superposition of IQHP plus 

IQP (collectively known as the class of inversely quadratic potential) plus Hulthén potential. This potential has its 

application where its components are useful. The essence of combining at least two potential models is to have a more 

extensive scope of utilizations [54, 55]. The class of inversely quadratic plus Hulthén potential is of the form: 
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The shape of this potential as a function of the screening parameter is given in Fig. 1. The paper is organized as follows: In 

Sect. 2, we solve the Schrödinger equation with the CIQHP to obtain the energy eigenvalues and normalized 

eigenfunctions. In Sect. 3, the derived energy equation will be used to obtain the numerical computation of energy 

eigenvalues at different states of the selected diatomic molecules. In Sect. 4, we present the results of various plots and the 

discussion. Conclusions are given in Sect. 5.  

 
 Fig. 1 Variation of the potential ( )V r against internuclear distance r for the N2, O2, NO and CO diatomic molecules 
 

2. Approximate solution of Schrödinger equation with the class of inversely quadratic plus Hulthén potential 

In this study, we adopt the Nikiforov-Uvarov method which is based on solving the second-order differential equation of 

the hypergeometric type. The details can be found in Ref. [17]. The Schrödinger equation of a quantum physical system is 

characterized by a given potential  V r  reads [56] 
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where  n r  is the eigenfunctions, 
nE  is the energy eigenvalues of the quantum system, n  represents the set of all 

possible solutions, which determines a particular state of the quantum system,   is the reduced mass of the system,  is 

the reduced Planck's constant and r is the radial distance from the origin. Substituting Eq. (1) into Eq. (2) gives 
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Equation (3) cannot be solved exactly with the proposed potential. So we introduce the Greene-Aldrich approximation 

scheme [57] to deal with the centrifugal barrier. This approximation scheme is a good approximation to the centrifugal term 

which is valid for 1,  and it becomes 
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Applying the approximation scheme in Eq. (5), one can obtain                  
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By using the change of variable from r x  , our new coordinate becomes  

.rx e                                                                                                                                                               (6)                                                                                                                                                      

We substitute Eq. (6) into Eq. (5) and after some simplifications, we have: 
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Comparing Eq. (7) and Eq. (1) of Ref. [17], we obtain the relevant polynomials as: 
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Inserting the polynomials given by Eq. (9) into Eq. (11) of Ref. [17], gives the polynomial: 
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According to the NU method, the quadratic form under the square root sign of Eq. (10) must be solved by setting the 

discriminant of this quadratic equation equal to zero:
2 4 0b ac    . This discriminant gives a new quadratic equation, 

which can be solved for the constant 𝑘 to get the two roots. Here, we take the negative root given as:  
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                                                                                                                    (12) 

Substituting Eq. (12) into Eq. (10),  x has the most suitable expression given as 
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using Eq. (9) and Eq. (13). Therefore, we obtain    / and  x x  as follows:  
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where  /  x is the first derivative of  x . Referring to Eq. (10) and Eq. (13) of Ref. [17], the following expressions for 

 n  and  are as follows: 
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where n is the number of nodes in the radial wavefunctions nl .When comparing Eqs. (16) and (17) with the help of Eq. (8), 

we obtain bound state energy eigenvalues of Schrödinger equation with class of inversely quadratic plus Hulthén potential as: 
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We can obtain the other part of the wave function  x  and weight function  x  by inserting the values of

   ,  x x  , and  x  given in Eqs. (9), (13) and (14), respectively, into Eq. (3) of foundations the theory of special 

functions and Eq.(3) of the basic properties of polynomials of hypergeometric  type of Ref. [17] as follows: 

    3 2 13

1

21 ,x x x
  


 

   
                                                                                                                                    (19) 

 

Journal of the Nigerian Association of Mathematical Physics Volume 64, (April. – Sept., 2022 Issue), 1 –12 



4 
 

Bound State Solution to…                    Inyang, Williams, Ibanga, Ntibi and Akintola                J. of NAMP 
 

    3 2 13
22

1 .x x x
  


 

                                                                                                                                     (20) 

By substituting Eqs.  (9) and (20), into Eq. (2) of the basic properties of polynomials of hypergeometric type of Ref. [17], the 

Rodrigues relation is written as 
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where 
nB is the Jacobi polynomial. Hence, the wave function becomes 
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where nlN is the normalization constant. Using the normalization condition, we obtain the normalization constant as follows: 
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Comparing Eq. (25) with the standard integral of the form of Eq. (37) of [58],  
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 Hence, we write the normalization constant as 
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Therefore, the complete eigenfunction can be express as: 
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3. Discussion 

In Table 1, we numerically reported the energy eigenvalues for the class of inversely quadratic plus Hulthén potential by 

varying the principal quantum number n  at a fixed orbital angular momentum quantum number l  with the potential strength (

0 1 2 31,V 1, 1,V 0.025V V      0 1 2 32,V 3, 3,V 0.05V V      ) for 0.025  . For a fixed value of 

angular momentum quantum 𝑙, the energy spectrum increases as the principal quantum number 𝑛 increases for this range of 

potential strength as the screening parameter is not varied. In Table 2, we numerically show the energy eigenvalues of this 

potential at a fixed n by varying l for various screening parameters, 0.05,0.075,  and 0.1  . As the screening parameter and 

angular momentum quantum 𝑙 increases for a fixed value of principal quantum number 𝑛, the energy spectrum increases. In 

Table 3, we numerically present energy eigenvalues of Hulthén potential at 2p, 3p, 3d, 4p. As the screening parameter 

increases, the energy eigenvalues increases with increase in the quantum numbers. We compared our result for the Hulthén 

potential with the results from three other methods. 

In Tables 4, we numerically presented eigenvalues for four diatomic molecules using the energy equation given in Eq. (18). 

This was done by inputting the model parameters for each molecule presented in Table 4. These diatomic molecules were 

selected because of their important in chemistry and chemical physics. Furthermore, we have additionally utilized the 

accompanying transformations: 2931.4940281 am  Mu = eV c  and 1973.29 eVAc


  Oyewumi et al. [59]. The results show 

that the bound state energy spectra of these diatomic molecules increases as various quantum numbers n  and l  increases.   
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In Figs. 2 (a) and (b), we plotted the energy eigenvalues of a class of inversely quadratic plus Hulthén potential in the ground 

0n   and the second excited 2n  states, respectively, for different  , 0,1,2,3,4l l  as a function of Coulomb potential 

parameter. From the plot, the energy eigenvalue decreases, i.e., more attractive with an increase in orbital quantum number 𝑙. 
In Figs. 3 (a) and (b), we plotted energy eigenvalues of a class of inversely quadratic plus Hulthén potential as a function of 

inversely quadratic Yukawa potential strength 
1V  in the ground 0n   and the second excited 2n  states, respectively, for 

various l . The plot shows that the energy eigenvalues increase as 
1V increase in both the ground and second excited states. In 

Figs. 4 (a) and (b), we graphically show the variation of the class of inversely quadratic plus Hulthén potential in the ground 

0n   and the second excited 2n  states, respectively, for various l  as a function of the potential strength of inversely 

quadratic potential
2V . We observed that the particle is more bounded in the ground state as the potential strength

2V increases 

compared to the second excited state since the energy eigenvalues become less attractive in some states for 2,3 and 4,l 

respectively. In Figs. 5 (a) and (b), we plotted the energy spectra of the class of inversely quadratic plus Hulthén potential as 

a function of 
0V  in the ground 0n   and the second excited 2n  states of 

2N molecule for various l . The plot shows that 

the energy eigenvalues decrease as 
0V increases in both the ground and second excited states showing that 

2N molecules are 

more attractive in the ground 0n  state compared to the second excited 2n  state. In Fig. 6 (a) and (b), we plotted energy 

spectra as a function of 3V for various  of the selected diatomic molecules in the ground and second excited states. Fig. 7(a) 

and (b) show a variation of energy spectra with 3V for various  of the selected diatomic molecules in the ground and second 

excited state. It is observed that the energy eigenvalues decrease as 3V is increased various  and . 

 

Table 1 Bound states energy eigenvalues  eV  for the class of inversely quadratic plus Hulthén potential with 2 1  , 0.025   
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Table 2 Bound states energy eigenvalues  eV  for the of class of inversely quadratic plus Hulthén potential with  1 

0 1 2 32,V 3, 3,V 0.05V V       

n  l  0.05   0.075   0.1   

0 0    

0 1    

0 2    

0 3    

0 4    
1 0    

1 1    

1 2    

1 3    

1 4    

2 0    

2 1    

2 2    

2 3    

2 4    

3 0    

3 1    

3 2    

3 3    

3 4    

4 0    

4 1    

4 2    

4 3    

4 4    

 

Table 3 Bound states energy eigenvalues  eV  of the Hulthén potential as a function of the screening Parameters   for 2p, 3p, 3d, and 4p states and for 1Z   in 

atomic units   1 .e     

State   
Present (NU) AIM [60] EQR [61] SUSY [62] 

2p 0.025  -0.1128125 -0.1128125 -0.1127605 

 0.050  -0.1012500 -0.1012500 -0.1010425 

 0.075  -0.0903125 -0.0903125 -0.0898478 

 0.10  -0.0800000 -0.0800000 -0.0791794 

 0.15  -0.0612500 -0.0612500 -0.0594415 

3p 0.025  -0.0437590 -0.0437590 -0.0437068 

 0.050 -0.03336810000 -0.0333681 -0.0333681 -0.0331632 

 0.075 -0.02438370000 -0.0243837 -0.0243837 -0.0239331 

 0.10 -0.01680560000 -0.0168056 -0.0168056 -0.0160326 
 0.15 -0.00586810000 -0.0058681 -0.0058681 -0.0043599 

3d 0.025 -0.04360440000 -0.0437587 -0.0437587 -0.0436030 

 0.050 -0.03275080000 -0.0333681 -0.0333681 -0.0327532 

 0.075 -0.02299480000 -0.0243837 -0.0243837 -0.0230306 
 0.10 -0.01433640000 -0.0162600 -0.0162600 -0.0144832 

 0.15 -0.00031240000 -0.0058681 -0.0058681 -0.0132820 

4p 0.025 -0.01994860000 -0.0200000 -0.0200000 -0.0199480 
 0.050 -0.01104420000 -0.0112500 -0.0112500 -0.0110430 

 0.075 -0.00453700000 -0.0050000 -0.0050000 -0.0045385 

 0.10 -0.00042690000 -0.0012500 -0.0012500 -0.0004434 

 

 

 

 

 

 Journal of the Nigerian Association of Mathematical Physics Volume 64, (April. – Sept., 2022 Issue), 1 –12 



7 
 

Bound State Solution to…                    Inyang, Williams, Ibanga, Ntibi and Akintola                J. of NAMP 
 

 

Table 4 Spectroscopic parameters of the molecules used in this work [59] 

 

Molecule 
1

0

A


 
 
 

 
 μ amu   μ eV  

2N   2.69860 7.0033500000 0.6523578701 

2O  1.295515 7.9974575040 0.74495839042 

NO   2.75340 7.4684410000 0.69568081900 

CO  2.29940 6.8605860000 0.63905948876 

 

Table 5 Energy spectra  in eV of class of inversely quadratic plus Hulthen potential for

0

0 1 2 31,  1, 0.025 and 1973.29 AV V V V c eV       for
2 2N O , NO an, d CO diatomic molecules 

n  l  2N  
2O  

NO  CO  

0 0     

0 1     

0 2     

0 3     

0 4     

0 5     

1 0     

1 1     

1 2     

1 3     

1 4     

1 5     

2 0     

2 1     

2 2     

2 3     

2 4     

2 5     

3 0     

3 1     

3 2     

3 3     

3 4     

3 5     

4 0     

4 1     

4 2     

4 3     

4 4     

4 5     
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Fig. 2 (a) Variation of the ground state energy spectra for various l  as a function of 
0V . (b) The plot of the second excited state 

energy spectra for different l  as a function of
0V . We choose 0 1 2 32, 1, 20, 0.10V V V V      and 0.025  for the 

ground and second excited states 

 

  

Fig. 3 (a) Variation of the ground state energy spectra for various l  as a function of 1V .  (b) The plot of the second excited state 

energy spectra for different l  as a function of 1V . We choose 
0 1 2 32, 1, 1, 0.10V V V V      and 0.025  for the ground and 

second excited states. 

 

 
 

 Fig. 4 (a) Variation of the ground state energy spectra for various l  as a function 2V .  (b). The plot of the second excited state 

energy spectra for different l  as a function of 2V . We choose 
0 1 2 32, 1, 2, 0.10V V V V      and 0.025  for the ground and 

second excited states. 
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Fig. 5 (a) Variation of the ground state energy spectra of 
2N  for various l  as a function of 

0V . (b) The plot of the second excited 

state energy spectra of 2N  for different l  as a function of 0V .We choose 0 1 2 32, 1, 2, 0.10V V V V      and 0.025 

for the ground and second excited states 

 
 

Fig. 6 (a) Energy eigenvalues variation with 3V for various  of the selected diatomic molecules in the ground state (b) The plot of the 

second excited state energy spectra for various  of the selected diatomic molecules a function of 3V .  

 

  

Fig. 7(a) Energy eigenvalues variation with 3V for various  of the selected diatomic molecules in the ground state (b) The plot of the 

second excited state energy spectra for various  of the selected diatomic molecules a function of 3V . 

Special cases 

1. When we set 0 1 2 0V V V    in Eq. (21), we obtain the energy eigenvalues for the Hulthén potential, 
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     

 

2
2 3

2 2 2 2 2 2

2
1 11

.
2 8 1

nl

V
n l l ll l

E
n l


  

 

 
     

    
  

 

                 (28) 

Equation (40) is in agreement with Eq. (32) of [63]; Eq. (24) of [64]; Eq. (28) of [65]; Eq. (37) of [66] and Eq. (20) of [44]. 

2. If we set 0 1 3 0V V V    in Eq. (21), we obtain the energy eigenvalues for the inversely quadratic potential, 

 
   

 

2
2

2 2

2 22 2 2 2
2

2

2

2

2 41 1
1 1

2 41
.

2 8 21 1
1

2 4

nl

V V
n l l l l

l l
E V

V
n l l

 

 


  

  
         

       
     
 
 

          (29) 

3. If we set 0 2 3 0V V V    in Eq. (21), we obtain the energy eigenvalues for the inversely quadratic Yukawa potential, 

 
   

 

2
2

1 1

2 22 2 2 2

1

2

2 21 1
1 1

2 41
.

2 8 21 1
1

2 4

nl

V V
n l l l l

l l
E

V
n l l

 

 

  

  
         

       
     
 
 

          (30) 

Equation (30) agrees with Eq. (33) of [44]. 

4. If we set 0 1 2 3 0V V V V       in Eq. (21), we obtain the energy eigenvalues for Coulomb potential,   

 

2 4

22
.

2 1
np

Z e
E

n l




 

         (31) 

Where 2

0V Ze is the nuclear charge. Equation (31) agrees with Eq. (39) of [18]; Eq. (16) of [67] and Eq. (24) of [68]. 

5. If we set 
2 3 0V V   in Eq. (21), we obtain the energy eigenvalues for inversely quadratic Hellmann potential, 

 
   

 

2
2

01 1

2 2 22 2 2 2

0

1

2

22 21 1
1 1

2 41
.

2 8 21 1
1

2 4

nl

VV V
n l l l l

l l
E V

V
n l l

 

 


  

  
          

        
     
 
 

 (32) 

Equation (30) agrees with Eq. (34) of [44] and Eq. (29) of [68]. 

6. If we set 2 0V   in Eq. (21), we obtain the energy eigenvalues for inversely quadratic Hellmann plus inversely quadratic Yukawa 

potential, 

 
   

 

2
2

01 1

2 2 22 2 2 2

0

1

2

22 21 1
1 1

2 41
.

2 8 21 1
1

2 4

nl

VV V
n l l l l

l l
E V

V
n l l

 

 


  

  
          

        
     
 
 

          (33) 

Equation (33) agrees with Eq. (29) of [44] and Eq. (22) of [68]. 

 

7. If we set 3 0V   in Eq. (21), we obtain the energy eigenvalues for inversely quadratic Hellmann potential plus inversely quadratic 

potential, 

 

 

 

 

2
2

1 2

2 2

0 1 2
2 2 2 2 2 2 2

2

2 0

1 2

2 2

2 21 1
1

2 4

2 2 4
11

.
2 8 2 21 1

1
2 4

nl

V V
n l l

V V V
l ll l

E V V
V V

n l l

 

  
   

   

  
       
  
 
       

   
 
      
 
 
 
  

          (34) 

8. If we set 0 1 0V V   in Eq. (21), we obtain the energy eigenvalues for inversely quadratic potential plus inversely quadratic 

Yukawa potential, 
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 
   

 

2
2

2 2

2 22 2 2 2
2

2

2

2

2 41 1
1 1

2 41
.

2 8 21 1
1

2 4

nl

V V
n l l l l

l l
E V

V
n l l

 

 


  

  
         

       
     
 
 

         (35) 

Conclusion 

The bound state solutions to the Schrödinger equation with the newly proposed potential of a class of inversely quadratic plus Hulthén 

potential have been studied within the Greene-Aldrich approximation scheme. The eigenvalues and the normalized eigenfunctions are 

obtained using the NU method. We then apply the solution for four diatomic molecules by imputing the experimental values of each 

molecular parameter. The results show that the bound state energy spectra of these diatomic molecules increases as various quantum numbers n  

and l  increase. There is a variation of the ground state energies compared to those of the second excited states (see Figs. 2– 7). 
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