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Abstract 

Generalized equation for computing entropy of metals was derived based on theory of 

free electron approximation using the knowledge of thermodynamic potentials. 

Poisson ratio representing the negative ratio of transverse and longitudinal strains is 

taking into consideration during computation. There is agreement between computed 

and theoretically obtained experimental value. The experimental results used in this 

work is theoretically obtained by substituting directly the experimental value of fermi 

energy (6) into the model used for computation using the mathematical relation 

between the fermi energy and electron density parameter. Entropy of metals depend 

on electronic concentration, average electron distance and statistical structure factor. 

As temperature increases entropy of metals increases due to increase in kinetic 

energy between interacting electron. Also, increase in entropy as temperature and 

strain rises is due to atomic disorder and displacement of atoms from their regular 

atomic site. Entropy of Potassium is the highest during deformation while Tungsten 

has the lowest entropy during deformation as a result of variation in their atomic 

tensile strength. 
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1.0  Introduction 

Structure of solid is determined by balance of attractive and repulsive forces acting between its atoms [1]. Cohesion of 

solids results essentially from attractive electrostatic interaction between negative charge of valence electrons and positive 

charge of atomic nuclei [2]. Developments in the field of quantum theory of solids opened vast opportunities for better 

understanding and utilization of various materials [1]. Many fundamental properties of metals, e.g. electrical and thermal 

conductivities, magnetic and optical properties, etc. depend on their electronic structure [3]. Many physical properties of 

metals are understood in terms of electron theory of metals. The development of electron theory of metals forms the basis 

for classification of metals [4]. When free electron theory is applied to metals, it explains forces of cohesion and repulsion, 

binding of energy levels, behaviour of conductors and insulators and their magnetic properties [5]. In free electron theory, 

valence electrons of the constituent atoms become conduction electrons and move about freely throughout the volume of 

metal [1]. Deformation exists in solid when stress is applied. For small deformation, all solids behave in elastic manner. 

This linearity in elastic response is a direct consequence of limiting harmonic form for interatomic potential for small strain. 

For higher strains, Hooke’s law may break down because the potential is no longer harmonic due to likely structural defects 

(e.g. dislocations) which facilitates plastic (i.e. permanent) deformation under an applied stress [2]. In metal, valence 

electrons are free to move in different directions, this valence electrons are called free electrons and are constrained only by 

metal surface [5]. The behaviour of free electrons moving in metals is considered to be similar to that of atoms or molecules 

in a perfect gas. Free electrons are referred to as free electron gas and movement of electrons obeys classical laws of kinetic 

theory [1]. Traditionally, Physicists treat electrons in crystals as a delocalized wave extending throughout the solid [6]. The 

allowed wave-like solutions of quantum-mechanical Schrodinger equation for electrons moving in an appropriate potential 

is labelled according to wavevectors of waves resulting in a concise description of allowed electron states as bands of 

allowed energies in reciprocal space in exact analogy with dispersion curves of phonons in crystals. This reciprocal-space 
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description gives a very powerful approach which allows electronic properties to be calculated relatively straightforwardly 

by employing simplifying features of symmetry [2]. Entropy provides a computational method of encoding the intuitive 

notion of which processes are impossible even though they do not violate the fundamental law of conservation of energy 

[7]. Entropy is one of the most important concepts in physics, information theory and a measure of thermal energy of 

system per unit temperature [8]. Entropy provides a reliable insight into direction of spontaneous change for many everyday 

phenomena [9]. Entropy relates macroscopic and microscopic aspects of nature and determines the behaviour 

of macroscopic system [10]. Application of thermodynamics to study of crystals offers a powerful quantitative tool for 

investigating important properties of solid [6]. Clausius introduced the concept of entropy as a precise way of 

expressing the second law of thermodynamics to provide a quantitative measure for direction of spontaneous change. 

Clausius form of second law states that, the most probable process that may occur in an isolated system are those whose 

entropy either increase or remain constant [11]. That is, S = k ln Ω where S is entropy, Ω represent the maximum number of 

microscopic ways in which the macroscopic state corresponding to entropy S can be realized and k is Boltzmann constant. 

A lot of experimental and theoretical model have been developed and used to studied some properties of metals. Tekuchev, 

et. al. [12], studied the entropies of iron, cobalt, rhodium, and platinum based on acoustic data using Debye theory and 

rigid-sphere model at different boiling point. A formula for melting entropy of metals is validated. There is good agreement 

between the results obtained and other literature data. Fang et. al. [13] developed a thermodynamic entropy model of 

cutting fluid based on thermodynamic theory. The internal mechanism of entropy generation in cutting fluid was 

demonstrated using external entropy flow and internal entropy generation. The dynamic entropy equilibrium equation of 

metal cutting system which provide an effective way of selecting cutting fluid is obtained. Muhammad, et. al. [14], 

demonstrated the interaction of rich variety of deformation mechanisms in high-entropy alloys with dislocation slip, 

stacking faults and twinning before transitioning to inhomogeneous deformation by serrations using in situ neutron 

diffraction. Result obtained shows that high-entropy alloys exhibit exceptional mechanical properties at cryogenic 

temperature due to activation of twinning in addition to dislocation slip. Coexistence of multiple deformation pathways 

shows how deformation mechanisms synergize during plastic deformation. Low stacking fault energy plus stable face-

centred cubic structure at ultralow temperatures enabled by high-entropy alloying played a pivotal role in bridging 

dislocation slip and serration. Insights from in-situ experiments point to the role of entropy in the design of structural 

materials with superior properties. In this report, a theoretical model for computing entropy of metals is developed based on 

theory of free electron approximation using the knowledge of thermodynamic potential and used to study how entropy of 

metals varies with electron density parameter, temperature and linear deformation/strain. Adesakin, et. al. [15], developed a 

theoretical model for computing magnetic moment of metals based on free electron theory. Factors connecting compression 

to elongation during strain in metals is involved in the computation. Result obtained agree quite well with experimental 

value which shows that free electron theory is useful for theoretical prediction of some properties of metals. Magnetic 

moment of metals depends on spin and orbital configuration. Magnetic field influence magnetic moment of metals due to 

rotation of magnetic dipole and that magnetic field in metals is weakened by induced magnetization. Magnetic moment of 

metals subjected to deformation decreases as strain increases. Magnetic moment of all metals computed is negative, this is 

due to spin intrinsic properties and negative electric charge possess by electrons in metal. In this report, entropy of metals 

was examined based on the theory of free electron approximation using the knowledge of thermodynamic potentials. The 

metals were selected from different groups and periods. Thakor et.al. [16] investigated the internal energy, entropy and 

Helmholtz free energy of liquid alkali metals using pseudopotential perturbation scheme based on Gibbs-Bogoliubov 

variational technique. A local pseudopotential was used to describe the electron-ion interaction in the liquid alkali metals. 

They introduced the exchange and correlation effects, by employing the local field correction function proposed by Taylor. 

The results of the computed values for internal energy, entropy and Helmholtz free energy for the liquid alkali metals are in 

excellent agreement with the experimental data. Baria and Jani [17] used their recently proposed model potential to 

calculate enthalpy, entropy and Helmholtz free energy of liquid transition and rare earth metals with the variational 

approach. They determined the parameter of the potential with the standard zero pressure condition along with well-

established Sarkar et al screening function for exchange and correlation effect. They strongly emphasize that the parameter 

of the potential is independent of any fitting procedure either with any experimental data or with any theoretical values of 

any physical properties. They employed the structure factor derived by Percus-Yevick solution for hard sphere fluids, 

which is characterized by hard sphere diameter. A good agreement between theoretical investigations and experimental 

findings has confirmed the ability of the model potential to the liquid d and f – shell metals. Michael and Michael [18] 

based on the information required to specify a liquid structure equals, which in suitable units, its thermodynamic entropy. 

Hence, they employed an expansion of the entropy in terms of multi-particle correlation functions which can be interpreted 

as a hierarchy of information measures. They utilized the first principles molecular dynamics simulations, to simulate the 

structure of liquid aluminum and obtained its density, pair and triplet correlation functions, allowing them to approximate 

the experimentally measured entropy and relate the excess entropy to the information content of the correlation functions. 
 

Journal of the Nigerian Association of Mathematical Physics Volume 64, (April. – Sept., 2022 Issue), 13–18 



15 
 

Entropy of Metals…         Adesakin, Edema, Afe, Adekoya, Fasiku, Adegoke and Akanbi        J. of NAMP 

 
They were able to discuss the accuracy and convergence of the method and found out that the entropy of liquid aluminum is 

described rather accurately using the first two terms in an expansion of the entropy in multiparticle correlation. 

 

 2.0 Theory and Calculation  

The lattice heat capacity for free electron is expressed as  
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where the frequency distribution function for linear monatomic lattice with a cut-off frequency 𝜔𝑚𝑎𝑥  is  
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The entropy of the free electron gas is obtained using the relation 

(
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From the relation in equation (4) the entropy of free electron gas is  
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1
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Hence, equation (5) becomes 
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Substituting the electronic heat capacity in equation (2) into equation (7), the entropy of the free electron gas become 
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Solving equation (8), entropy of free electron gas is obtained as 

𝑆 =
𝜋2

2
N𝐾𝐵 (

𝑇

𝑇𝐹
)         (9) 

Where N is the number of electrons, 𝑘𝐵 is Boltzmann constant, T is temperature and  𝑇𝐹  is Fermi temperature obtained as  

𝑇𝐹 =
ℏ

2𝑚𝑒𝑘𝐵
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2

3                                                                                                                           (10) 

where n is the average electron density, ℏ is normalized Planck’s constant and 𝑚𝑒 is electron mass.  

Putting equation (10) into equation (9), entropy of free electron gas becomes, 

𝑆 =
𝜋2

2
N𝐾𝐵 (

2𝑚𝑒𝑘𝐵𝑇

ℏ𝑇𝐹(3𝜋2𝑛)
2
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In this report, entropy of metals was computed and studied using equation (11). How linear strain affect entropy of metals is 

investigated. The metals were selected from different groups and periods based on the Poisson’s ratio which is the physical 

constant required for the computation. The Poisson’s ratio determines the ratio of transversal compression to elongation in 

the direction of applied deformation, uniaxial strain that express the extent to which the metal is deformed.  

 

3.0 Results and Discussion 

Figure 1 shows variation of entropy with electron density parameter for metals from different groups and periods. In figure 

1, there is good agreement between computed and theoretically obtained experimental value for entropy of metals, this 

shows that free electron approximation theory is useful in theoretical predictions of entropy of metals as it takes into 

consideration some of the parameters that is required in computing entropy of metals. Figure 1 revealed that entropy of 

metals increases as electron density parameter increases. Metals whose entropy were computed concentrated more in the 

region of high-density limit than low density limit. These suggest that entropy of metals depend on electronic 

concentration. The trend display by metals in figure 1 also revealed that entropy of metals depends on statistical structure 

factor. Figure 2 shows variation of entropy at different temperature with electron density parameter for metals from 

different group and period. The trend demonstrated by metals in figure 2 revealed that entropy of metals increases as 

temperature increases, this could be due to an increase in kinetic energy between interacting electron which causes a high 

rate of electron disorderliness in metals and their-by forces the entropy of metals to increase as temperature increases. In 

figure 2 most of the metals whose entropy were computed and studied have more of their electron concentrated in region of  
 

Journal of the Nigerian Association of Mathematical Physics Volume 64, (April. – Sept., 2022 Issue), 13–18 



16 
 

Entropy of Metals…         Adesakin, Edema, Afe, Adekoya, Fasiku, Adegoke and Akanbi        J. of NAMP 

 
high-density limit than low-density limit. These seems to suggest that at any temperature, entropy of metal depend on ratio 

of valence electrons to number of their atoms. Figure 3 shows variation of entropy with strain for metals from different 

groups and periods. Figure 3 revealed that entropy of metals increases as deformation/strain increases with metals in the 

region of high-density limit having low entropy while metals in the region of low density limit have higher entropy. The 

increase in entropy as strain rises can be due to reduction in electron internal vibrational energy which forces the electron 

disorder rate to increase and then give rise to high entropy as strain increases. Potassium has highest entropy among all 

metals subjected to different deformation due to its low tensile strength as it cannot be stretched to some degree without 

breaking while Tungsten has lowest entropy among all metals subjected to different deformation due to its high tensile 

strength as it can be stretched to some degree without breaking. Another factor responsible for entropy increase as strain 

increase in figure 3 could be due to an increase in temperature between interacting electrons in metals. An increase in 

temperature gives electron in metals more kinetic energy as fast moving electrons causes more disorder than those moving 

slowly.   
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Figure 1: Variation of Entropy with Electron Density Parameter for some Metals 
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Figure 2: Variation of Entropy at Different Temperature with Electron Density Parameter for some Metals 
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Figure 3: Variation of Entropy with Strain for some Metals 
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Table 1: Entropy of unstrained Metals.  

Metals Electron Density 

Parameter rs(a.u) 

Exp. Entropy (Hartree) Computed Entropy (Hartree) 

K 4.96 19024.4 19780.6 

Cu 2.67 5762.05 5731.90 

Ag 3.02 7358.49 7333.14 

Be 1.87 2852.19 2811.64 

Mg 2.65 5656.49 5646.35 

Cr 1.86 - 2781.64 

Fe 2.12 3633.24 3613.66 

Ni 2.07 - 3445.22 

Zn 2.31 3666.50 4290.42 

Cd 2.59 5404.81 5393.56 

Al 2.07 3467.48 3445.22 

Bi 2.25 4073.67 4070.43 

Ti 1.92 - 2964.00 

Y 2.61 - 5477.18 

Sn 2.22 4020.62 3962.61 

Pb 2.30 4304.39 4253.35 

Mo 1.61 - 2084.14 

W 1.62 - 2110.11 

Au 2.39 7318.52 4592.74 

Pt 2.00 - 3216.15 

Ta 2.84 - 6530.79 

 

Table 2: Entropy of Deformed Metals  

                                                           Strain 

Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

K 4.96 7105.62 7599.34          8077.06             8540.63          8991.60          9431.20          9860.47                 10280.3          10691.5          

Cu 2.67 2059.02          2202.09 2340.53         2474.86          2605.53         2732.91          2857.31         2978.96          3098.13         

Ag 3.02 2635.90         2817.25          31.4450         3259.01         3333.39          3496.36         3655.51         3811.17          3963.60         

Be 1.87 1010.00              1080.18          1148.08         1213.98          1278.08          1340.57                  1401.58          1461.26          1519.71          

Mg 2.65 2028.29          2169.22          2305.59                  2437.92          2566.65          2692.12         2814.67          2934.51          3051.89          

Cr 1.86 999.229          1068.65       1135.84          1201.02          1264.44         1326.27         1386.63          1445.67         1503.49                 

Fe 2.12 1298.11          1388.30          1475.58          1560.26          1642.66          1722.89          1801.38          1878.08          1953.20          

Ni 2.07 1237.60          1323.53          1406.80         1487.54          1566.09    1642.64          1717.42          1790.54          1862.15          

Zn 2.31 1541.22          1648.30         1751.92        1852.47         1950.28         2045.64       2138.74  2229.81         2319.00         

Cd 2.59 1937.49        2072.11          2202.36          2328.77         2451.73          2571.59          2688.64          2803.13          2915.26          

Al 2.07 1237.60          1323.59          1406.80      1487.54          1566.09         1642.64         1717.42         1790.54         1862.15          

Bi 2.25 1462.19          1563.79          1662.09          1757.49         1850.29         1939.59          2029.08        2115.42          2200.09         

Ti 1.92 1064.73          1138.76         1210.30          1279.76          1347.34          1413.20      1477.53         1540.47          1602.07          

Y 2.61 1967.52          2104.23     2236.51       2364.87        2489.75          2611.46          2730.33       2846.58         2960.44          

Sn 2.22 1423.46          1522.37 1618.07          1710.94                1801.27          1889.34          1975.33                2059.45       2141.81   

Pb 2.30 1527.90 1634.06          1736.78         1836.47               1933.44          2027.96            2120.26          2210.54         2298.96        

Mo 1.61 748.668         800.688         851.022       899.872          947.383          993.700     1038.93                1083.16          1126.50         

W 1.62 757.996                 810.669          861.628          911.084 959.191          1006.08       1051.87         1096.66          1140.53          

Au 2.39 1649.80          1764.45         1875.36    1983.01          2087.71                 2189.78          2289.44          2386.93      2482.41          

Pt 2.00 1155.31          1235.58          1313.25         1388.63          1461.95          1533.42          1603.22         1671.49   1738.35          

Ta 2.84 2329.56                  2483.27          2648.05         2800.04          2947.88          3092.01          3232.75          3370.40          3505.20          
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4.0 Conclusion 

In summary, this report clearly explains entropy of metals as a function of electron density parameter and linearly applied 

strain/deformation. Entropy of metals are computed and studied based on the theory of free electron approximation using 

the knowledge of thermodynamic potentials. Result obtained agree quite well with theoretically obtained experimental 

value which shows the validity of the model used in this report. Entropy of metals depend on electronic concentration and 

statistical structure factor. Entropy of metals increase as temperature and deformation increases.  
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