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Abstract 

In this paper, we consider a queue model to analyze the probability distributions of 

vehicles inter arrival and service times in traffic intersection using Poisson, Gamma 

and Binomial distributions. The model consists of derivation of the mean and 

variance of the inter-arrival and service times of vehicles arriving and departing at 

road traffic intersection. From the model analysis, the queue system consists of n-

vehicles with random arrival and departure at interval of time [t,T]. The probabilistic 

structure of the queuing model was described in terms of inter arrival and service 

time distributions. The model is synonymous with birth-and-death process, where no 

ambiguity arises in interpreting the corresponding inter-arrival and service times 

distribution assumptions provided. The model is applied to situations in which the 

input is a Poisson distribution and the service time for each vehicle is exponentially 

distributed. 
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1. Introduction 

Queuing theory is defined in [1] as the mathematical study of waiting lines in which queueing models are constructed so 

that queue lengths and waiting time can be predicted. As stated in [2], a queue is a waiting line made of customers requiring 

services from one or more facilities such as we experience in petrol stations, banks, toll gates, hospitals, super markets etc. 

Queues are formed when the demands for service exceeds its supply, and that waiting time depends on the number of 

customers in the queue system, the number of servers attending to the customers and the amount of service time for each 

customer [3]. 

Many authors have developed different queue models to address different situations involving queuing. For example, a 

queuing model on patient waiting in ante-natal care clinic to determine the number of doctors required so that the given 

percentage of pregnant women do not exceed a given waiting time and the number of expectant mothers in the queue do not 

exceed a given threshold is developed in [4], while a queuing model on toll gate with the aim of decongesting traffic on the 

high ways is developed in [5]. 

Long queues of vehicles are often found at various traffic light intersection in major cities in Nigeria. Such situations are 

caused by many factors which include the duration of traffic lights that do not match with the arrival of vehicles. In [6], 

traffic flows are divided into t two primary types: uninterrupted and interrupted traffic flows. Uninterrupted traffic flows are 

defined as all traffic flows regulated by vehicle to vehicle interaction and interactions between vehicles and the road way. 

Examples are vehicles travelling on a highway. Interrupted traffic flows are flows regulated by external means such as 

traffic light or traffic wardens. 

A basic framework for modeling traffic flows with queuing theory is developed in [7] and was explained in detail and 

applied to several single stage queuing models in [8]. In [9] a queuing model where traffic is modelled on intersections with 

or without traffic lights, including the estimation of the maximum queue length is discussed. In [10], it was argued that 

roads have capacity for a finite number of cars. 

Queuing models for predicting the stationary number of vehicles in a road link using generating functions is studied in [11] 

and was used to obtain the performance measures in a network of queues of varying degrees 
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2. Model Assumptions and Mathematical Notations 

The assumptions associated with the model formation are as follow: 

a) The queue system consists of n-vehicles arriving per time t. 

b) Vehicles arrival is randomly distributed. 

c) A vehicle is assumed to join each line with equal probability regardless of the queue length. 

d) Vehicles are attended to on first come, first serve basis. 

e) It is also assumed that the lengths of the intervals between arrivals are independently and identically distributed. 

Mathematical Notations 

1. 𝜆 = Average number of vehicles arriving per unit time (i.e arrival rate per unit time). 

2. 
1

𝜆
=mean time between intervals 

3. ℎ = The length of the interval [𝑇, 𝑇 + ℎ] 
 (where T and 𝑇 + ℎ are intervals starting and ending points respectively) 

4. 𝑓(𝑡) =density function for the time interval t between any two successive arrivals or departure. 

5. 𝜇 = Average number of vehicles being served per unit time (i.e departure rate per unit time) 

6. 
1

𝜇
=mean time between departure 

3. Model Description and Formulation 

Random arrivals of vehicles into the queue system implies that the probability of an interval occurring in any small interval 

of time (T, 𝑇 + 𝑡) depends only on the length of the interval h and not on the interval’s starting point T or on the specific 

history of arrivals prior to T. 

Probability Distributions of Inter-arrival Times 

The assumption that the lengths of the intervals between arrivals are independently and identically distributed, describes a 

continuous density function in which the input (vehicles’ arrivals) is termed ‘a renewal process’. 

Let    arrivalsuccessivevehiclestwoanybetweentervaltimetheforfunctiondensitytf 'int Where 𝑡 > 0, 

and also define 
1

𝜆
=mean time between arrivals 

So that 𝜆 = arrival rate per unit of time. 

We can determine 𝜆 from f(t) by taking the mathematical expectation of t, so that 

∫ 𝑡𝑓(𝑡) 𝑑𝑡
∞

0
=

1

𝜆
 (mean time between arrivals)       (1) 

The assumption of completely random arrival of vehicles corresponds to postulating 

  ottetf   ,  negative exponential distribution     (2) 

(𝑤ℎ𝑒𝑟𝑒 ℓ = 2.71828, 𝑚𝑒𝑎𝑛
1

𝜆
, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

1

𝜆2
) 

Then the probability that no arrival occurs in the interval (0, T) is the same as the probability that the first arrival occurs 

after T, hence 

  


 
0

TdtTtP           (3) 

Thus, conditional probability that no arrival occurs in the interval (0, 𝑇 + ℎ) given that no arrival occurs in the interval (0, 

T) is, by definition 
𝑃[𝑡≥𝑇+ℎ]

𝑃[𝑡≥𝑇]
=

ℓ−𝜆(𝑇+ℎ)

ℓ−𝜆𝑇 = 𝑃[𝑡 ≥ ℎ]         (4) 

which depends only on h. According to equation (4), the probability of no arrival in the interval (𝑇, 𝑇 + ℎ) is the same 

regardless of whether there is no arrival in (0, T) or whether an arrival occurs at T and thereby “renews” the arrival process. 

Suppose there are 𝑛vehicles’ arrivals in the interval (0, T) then if the interval times are exponentially distributed, the 𝑛 

arrival times are independently and uniformly distributed over the interval (0, T). 

A complementary insight into the assumption of exponential inter arrival times is gained by expressing ℓ−𝜆ℎ in its Taylor 

series expansion as: 

   

























!3!2
1

hlength  of

intervalany 

in arrival no
32

hh
hp h 

       (5) 
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For a very small, but positive, value of h, the term 1 − 𝜆ℎ in (5) is relatively large as compared to the remaining terms in 

the summation. Therefore, this value can be used to approximate the probability in (5) when h is very small. We use the 

symbol (=̇) to denote such an approximation. So we have, for very small h > 0 

𝑃 [

𝑛𝑜 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑛
𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ℎ

] =̇ 1 − 𝜆ℎ    (ℎ 𝑠𝑚𝑎𝑙𝑙)      (6) 

A verbally inexact, but nevertheless helpful, way to explain the mathematical manipulation below is to state that at most 

only one arrival occurs for a time interval ℎ ≥ 0 sufficiently small. Since the approximate probability of no arrival 

occurring in the interval of length h is given by (6), the corresponding approximate probability of one arrival occurring is 

𝑃 [

𝑠𝑖𝑛𝑔𝑙𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑖𝑛 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ℎ
] =̇ 𝜆ℎ          (ℎ 𝑠𝑚𝑎𝑙𝑙)…     (7) 

A more precise way of expressing the reasoning would be to display the exact probability of a single arrival, in a manner 

similar to (5), and then show that for very small h, the term 𝜆ℎ is relatively large as compared to the remaining terms. We 

interpret the symbol (=̇) as meaning that a quantity of relatively negligible magnitude is being ignored in the 

approximation. Given that the density function for inter arrival times \is exponential in equation (2), an immediate 

consequence is that the density function of the total arrival time y for any n consecutive arrivals is 

𝑔(𝑦) =
𝜆(𝜆𝑦)𝑛−1ℓ−𝜆𝑦

(𝑛−1)!
, 𝑦 ≥ 0   (𝑔𝑎𝑚𝑚𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)   (8) 

Where n is a positive integer in equation (8) and y is the sum of n independent values drawn from the same exponential 

density in equation (2). Then 

𝑃 [
𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑓𝑜𝑟
𝑎𝑛𝑦 𝑛 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒

𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 ≤ 𝑇

] = ∫ 𝑔(𝑦) 𝑑𝑦
𝑇

0
= 1 − ∑

(𝜆𝑇)𝑗ℓ−𝜆𝑇

𝑗!

𝑛−1
𝑗=0    (9)  

which can be verified by repeatedly applying integration by parts. 

 postulating that the probability distribution of the number vehicles’ arrivals n in any interval length T is Poisson: 

𝑃 [

𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑖𝑛
𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑇

] =
(𝜆𝑇)𝑛ℓ−𝜆𝑇

𝑛!
 𝑓𝑜𝑟 𝑛 = 0, 1, 2, …       (Poisson distribution)  (10) 

With 

T)Length  of interval(Poisson  T  ]T[nVar  and T ][  TnE   (11) 

 From (9) and (10), it follows that 





















 n   T intervalany 

in arrivals ofnumber 

   arrivals econsecutiv

n any for  interval total
P

T
P    (12) 

In the following section, we present the probability distributions of service times. 

Probability Distributions of Vehicles’ Service Times 

For a specified server (warden), assume that successive service times are independently and identically distributed, and 

described by a continuous density function. Let  

𝑔(𝑡) ≡density function for the length of time t to serve any vehicle, where 𝑡 ≥ 0 (13) 

and also let 

𝑚𝑒𝑎𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 = ∫ 𝑡𝑔(𝑡)
∞

0
 𝑑𝑡 ≡

1

𝜇
     (14) 

So that 

𝜇 = service rate per unit of time that the server is busy    (15) 

Frequently, the service time distribution is assumed to be exponential, hence 

𝑔(𝑡) = 𝜇ℓ−𝜇𝑡 ,      𝑡 ≥ 0        (16) 

Accordingly, given assumption (4), if a vehicle is being served at Time t and we observe the system at Time 𝑡 + ℎ, then 

P[service is not completed in interval of length h] = ℓ−𝜇ℎ    (17) 

Consequently, for h > 0 very small, 

P[service is not completed in interval of length h] =̇ 1 − 𝜇ℎ(h small)   (18) 

And 

P[service is completed in interval of length h] =̇ 𝜇ℎ(h small)    (19) 

Assume that there is a single server having an exponential time density in equation (16), and let 
 

Journal of the Nigerian Association of Mathematical Physics Volume 64, (April. – Sept., 2022 Issue), 105–110 



108 
 

A Queue Model to…                                          Ogumeyo and Emunefe                                  J. of NAMP 

 

 

𝑃𝑛(𝑇) =probability that n customers are in the system at Time T   (20) 

As in the preceding section, we calculate approximate probabilities by ignoring relatively small quantities. And in the same 

approximate vein, we say that at most only one departure occurs during a very small interval of time h > 0. Hence, where 

there are n vehicles at Time T + h, we consider only the possibilities that at Time T either there were n vehicles and none 

have departed, or there were n + 1 vehicles and one departed during the very small interval of length h. Consequently, for 

1 ≤ 𝑛 < 𝑀, 

𝑃𝑛(𝑇 + ℎ) =̇ (1 − 𝜇ℎ)𝑃𝑛(𝑇) + (𝜇ℎ)𝑃𝑛+1(𝑇)     (21) 

The first term on the right is the approximate probability that no service occurred in the interval of length h and that n 

vehicles were in the system at Time T, and similarly for second term on the right of (21). Rearranging terms yields 
𝑃𝑛(𝑇+ℎ)−𝑃𝑛(𝑇)

ℎ
=̇ − 𝜇𝑃𝑛(𝑇) + 𝜇𝑃𝑛+1(𝑇)     (22) 

So that letting ℎ → 0, 

MTPTP
dT

dPn
nn   n     1for  )()(  1       (23) 

The reason equation (23) holds exactly, instead of approximately, is that all the terms of relatively small magnitude that 

were ignored in (22) actually disappear in the process of letting h approach 0 in the limit. 

By a similar line of reasoning, you can determine that 

M. n for   )(  TP
dT

dP
M

M        (24) 

The unique solution to the system of linear differential equations (23) and (24) is 

𝑃𝑛(𝑇) =
(𝜇𝑇)𝑀−𝑛ℓ−𝜇𝑇

(𝑀−𝑛)!
         𝑓𝑜𝑟 𝑛 = 1, 2, … , 𝑀     (25) 





M

n

no TPTP
1

)(1)(  for n = 0      (26) 

The distribution in (25) and (26) is sometimes called a truncated Poisson. 

If the Mth vehicle is the last to be served, then the total time y that the vehicle spends in the queue, including the vehicle’s 

own service time, has the density given by the sum of M exponentially distributed variables. 

ℎ(𝑦) =
𝜇(𝜇𝑦)𝑀−1ℓ−𝜇𝑦

(𝑀−1)!
, 𝑦 ≥ 0        (gamma distribution)    (27) 

With 

𝐸[𝑦] =
𝑀

  𝜇
     𝑉𝑎𝑟[𝑦] =

𝑀

𝜇2         (gamma)      (28) 

Consider a very small interval of time h > 0. Then because the servers are independent, you can apply binomial probability 

calculations, using the approximate expression in (18), to obtain, for a small time interval h 

P[none of n vehicles departs] =̇ (1 − 𝑛𝜇ℎ)𝑛 =̇  1 − 𝑛𝜇ℎ    (29) 

P[one of n vehicles depart] =̇  𝑛𝜇ℎ       (30) 

Once again, the justification for (30) is that when interval h > 0 is very small, we can restrict attention to the events of no 

and one departure; the possibilities of more departures have relatively negligible probability. Consequently, when there are 

n vehicles in the queue system at Time T + h, we consider only the possibilities that at Time T there were n vehicles and 

none have departed, or there were n + 1 vehicles and one departed-giving, for 0 ≤ 𝑛 < 𝑀, 

𝑃𝑛(𝑇 + ℎ) =̇ (1 − ℎ𝜇𝑛)𝑃𝑛(𝑇) + (𝑛 + 1)𝜇ℎ𝑃𝑛+1(𝑇)     (31) 

Bringing 𝑃𝑛(𝑇) to the left hand side of (31), dividing by h, and letting ℎ → 0 yields 

M n     0for   (T) 1 P1) (n   (T)Pn  
dT

dP
nn

n       (32) 

Similar reasoning gives 

 M n for   )(  TPM
dT

dPM
M       (33) 

As can be verified by substitution, the complete solution to (32) and (33) is 
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𝑃𝑛(𝑇) = (
𝑀
𝑛

) (ℓ−𝜇𝑇)𝑛(1 − ℓ−𝜇𝑇)𝑀−𝑛           𝑓𝑜𝑟 𝑛 = 0, 1, 2, … , 𝑀  (34) 

With binomial distribution, 

) -  - (1  ]-M  T[nVar       ][ Te

T

e 
  T

eMTnE     (35) 

 

4. Discussion  

In equation (1) to (13), we considered the inter – arrival time distribution using the assumption that the lengths of the 

intervals between arrivals are independently and identically distributed, describes a continuous density function in which 

the input (vehicles’ arrivals) is termed ‘a renewal process’. This allows us to calculate approximate probabilities by 

ignoring relatively small quantities of time. In the same approximate vein, we say that at most only one departure occurs 

during a very small interval of time h > 0. Hence, where there are n vehicles at Time T + h, we consider only the 

possibilities that at Time T either there were n vehicles and none have departed, or there were n + 1 vehicles and one 

departed during the very small interval of length which accounted for the results for the probability distribution of service 

times in equations (14) to (22). 

We notice that (23) holds exactly, instead of approximately, because all the terms of relatively small magnitude that were 

ignored in (22) actually disappear in the process of letting h approach 0 in the limit. Also, the justification for (30) and the 

equations that followed is that when interval h > 0 is very small, we can restrict attention to the events of no and one 

departure; the possibilities of more departures being relatively negligible. 

 

5. Conclusion 

In the queue theory literature, the three key words are input process, service distribution and the number of servers. M is an 

abbreviation for Markovian which is associated with random arrival or departure of customers in a queue system. (𝑀 ≡ 

exponentially distributed interval or service time). The queue model discussed in this paper centred on derivation of mean 

and variance of probability distributions of inter arrivals and service times using Poisson distribution with a single server 

(MM/1). Traffic congestion is bound to occur when the flow rate arrival of vehicles is higher than the workspace capacity at 

a given time. In this paper, we have extended the queue models in [10] and [11] by deriving the mean and variance of 

probability distributions of inter-arrival and service times using Poisson and Gamma distribution with a simple server 

(MM/1). 
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