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Abstract

The phonon dispersion curves of Chromium (Cr) and Niobium (Nb) have
been calculated from computational approach (first principle using density
functional theory) with the exchange correlation functional and analytical
(IFCs technique using Born — von Karman model) with different numbers of
interacting nearest-neighbours (NN). The different branches of the phonon
band structure follow from the eigen values after diagonalizing the dynamical
matrix. The phonon frequencies in the first Brillouin zone were calculated
along the directions of high symmetry, ' >H, H—>P, P—>I and
I' — N. Obtain also are the thermodynamic properties from first principle
(QUANTUM ESPRESSO) and analytical. It is observed that the phonon
dispersion curve of Cr and Nb from IFCs calculation gave a fair agreement
with experiment just like the first principle calculations.
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1. INTRODUCTION

In solids, a vast number of physical properties hinge on the behaviour of their lattice-dynamics and it follows that the
force model, if given a good fit to the dispersion curves in every principal symmetry direction foretell brilliantly all other
properties of the lattice dynamics of the material [1]. The understanding of these properties in terms of phonons is thought-
out to be amongst the persuading piece validating the correctness of the current quantum picture of solids [2].

The fundamental theory of the vibrations of lattice was established in the thirties. The textbook reference in this field,
the work of Born and Huang [3] which lack the connections with the electronic properties but is rather involved with
initiating the general properties of the matrices of the dynamics—Iike their analytical properties and/or symmetry. A study
of the systematic connections of the electronic properties started from the seventies [4, 5]. The importance in the connection
associated with the properties of the lattice dynamics of a system and the electrons can never be overemphasized because,
in the exploitation of these connection makes it feasible in computing the properties of the lattice dynamics of specific
systems. The dynamics of lattice allows one to express the contributions of the internal strains in relation to the microscopic
quantities like optoacoustical couplings and effective ionic charges [6]. As well as the models of elastic-force, [7, 8]
obtained from the method of orthogonalized plane-wave, the method of pseudopotential. This was in different forms
improved upon by several authors [9, 10, 11, 12,13]. In the calculation of the properties of lattice dynamics, this has proved
an effective means for a lot of simple metals. The idea of quantum defect by Heine-Abarenkov [12, 14] was used to study
certain electronic properties and the dispersion curve of several transition metals by Animalu [15, 16], by formulating the
transition metal model potential (TMMP). Animalu discovered that in FCC metals the results from the experiment agrees
with theoretical results. This was different for BCC transition metals where the branch of transverse crosses over the
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longitudinal before the zone boundary. The first principle prediction of the dispersion curves of phonon of noble and
transition metals has been a tough problem which has not been totally resolved. DFPT [17] has often been used in
resolving problems [18, 19, 20, 21, 22] but has succeeded to some extent in different metals. The prediction of the phonon
curves of simple metals like aluminium is easy, and was amongst those studied first using first principle method [22]. Also,
in reasonable agreement with experimental results are Iridium, nickel and gold with exchange and correlation functional not
below one, while several metals have not achieved this feat. Copper a noble metal is a typical example, whose theoretical
phonon curves are with huge errors when compared to experiment [23, 24, 25, 20, 21]. Lately the investigation on the
interaction of electron-phonon and the pairing mechanism in the superconducting Ca-intercalated bilayer graphene
(CsCaCs) using the first principle anisotropic Eliashberg theory with Coulomb interactions was carried out [26]. The
inelastic helium atom scattering (HAS) and high-resolution electron energy loss spectroscopy (HREELS) was employed to
study the phonon dispersion of graphene grown on some single crystal metal surfaces [27]. The thermal properties of
molecular crystals were computed by the using first principle quantum-mechanical theoretical framework which merge
dispersion-corrected density-functional-theory (DFT-D), quasi-harmonic approximation, harmonic phonon dispersion, to
the lattice dynamics for thermodynamic functions and thermal expansion, and quasi-static approximation for anisotropic
thermos-elasticity [28]. The challenge here is to determine and improve on existing techniques employed to determine the
lattice dynamics of Cr and Nb using computational approach (first principle or ab-initio —- QUANTUM ESPRESSO) and
analytical approach (interatomic force constants — IFCs) and compare with experiment. Also calculated are their
thermodynamic properties.

2.0 THEORETICAL FORMALISM

2.1 ANALYTICAL (IFCs) PROCEDURE

The Born-von Karman theory was applied by assigning a force-constant matrix to each of the nearest neighbours of the
atom considered, constructing the dynamical matrix from the individual force-constant matrices, and then solving the
dynamical matrix for the phonon energies and the associated phonon polarizations.

INTERATOMIC FORCE CONSTANTS (IFCs)

The frequencies of the phonon of any material are typically somewhat a smooth function of the wave vector. Thus, for
complete phonon dispersion an appropriate interpolation technique is needed. By Fourier analysis, the smoother the phonon
dispersions considering the real space IFCs, the shorter the range of the real space:

CorR)- X" C @) @

Thus, real space IFCs, i.e. the force constants between atoms of a system in a real space is easy and achievable using a set
of matrix force constants computed and presented in a table on an even grid of points within a reciprocal space. The fast
Fourier transform (FFT) technique [29] is the most effective way of computing numerically all these Fourier transforms.
After obtaining the force constants between atoms of a system in real-space, then the dynamical matrices in reciprocal
space (and, hence, vibrational) frequencies can be obtained at any wave vector (not necessarily contained in the original
grid) by FFT. The shorter the range of real space force constants, the coarser will be the reciprocal space grid needed for
such Fourier interpolation.

CONSTRUCTION OF THE DYNAMICAL MATRIX
The phonon frequencies are given by the solution of the secular determinant

D, (@)-ma’1|=0 (2)
Where M is the mass of the ion, @ is the phonon frequency, D; (q) is the dynamical matrix elements and | is a 3x3
unit matrix. The elements of the dynamical matrix are a matrix as shown below
0.(@ 0,(@) D.@) ;
D, -| D,(@) D, (@) D, ©
U} yX vy yz
D,(d) D,(d) D.(d)
Once the force constant matrices have been determined the elements of the dynamical matrix are evaluated. This gives for
the diagonal matrix elements of the first nearest to sixth nearest neighbours dynamical matrix as:

Transactions of the Nigerian Association of Mathematical Physics Volume 18, (January - December, 2022), 21-36

22



Lattice Dynamics of... Okocha, Otobo and Alebu Trans. Of NAMP

8a, +2a, + 4, +8ay + 45, +8a, +16 5, +8a + 205 + 45, +8a; +16 5,

+8aa+8,BE+879+8a9+16ﬂ9+8a10—8alcos[ag ]cos( gyjcos(ag ]
—2a,c0s(aq, ) -2, cos(aqy)— 23,c0s(aq, ) 4a, cos(aqx)cos(aq )
— 4a, cos(a, )cos(ag, )- 44, cos(aq, )cos(ad, ) - 8, cos[ zq‘ jcos[ gy ]cos[a;z )
aq 0, aq, 3aq,
-8, cos oS cos| —* -84, cos| c0s oS
poo{ ol o e ol o 33

~8a; cos(aqx)cos(aq Jeos(ag, ) 2a cos(2aq, ) 25, cos(2aq )- 23, cos(2aq,)

3a 3
-8a, cos(a jcos[ 2y jcos(sa—fz)—ﬁm cos[3zq*jcos[ aqyjcos[%]

-85, cos[3 ]cos( ]cos[ a; j 4z, cos(2aq, )cos(aqy )- 4a, cos(2aq, cos(ag,)

—4y,c0s(2aq z)cos(aq )- 475003(2aq Jeos(ag, )- 45, cos(aqx)cos(Zaqy) (4)
~ 48, cos(aq, )cos(2aq, )~ 8a, cos(2aq, )cos(ag, Jcos(aq, )~ 83, cos(ag, )cos(2aq, )Jcos(ag, )

-8, cos(aqx)cos(aq Jeos(2aq, )- 8¢z, cos[Sazq jcos[ 3a2qy ]cos[sazq‘j

8o, +200 + 48 +8a, + 48, +8a, +163, + 8. + 2o + 4,35—89{,—155

+8a, +88, +8y, +8a, +16 8, + 8a10—8a1c051£'c051 |c051m€r )

J

—2aficoslqg_1__| 2, coslag, )28, coslag_)— 40{,:cos(ag ]coslag |

—da cos[ag__ Jeoslag, ) — 48, cos(ag, Jcoslag. ) - 8c co % 'cos# —I T

(3ag,) (ag,) J[ag)) (ag,) 2 ) Baq_.

-8 L] — —= -8 —== = ==

B cosﬂl‘ 3 jcoi 3 Jcosi\ ) B cosﬂl‘ > jcosi > Jcoﬂl‘ )
—8a, cos(ag, ]cos[ag \Icos[aq J=2e, cos(2ag_ )-25, cos{j!ag \I—E,BS cos(2ag_)

— 8. COE{‘S c051 —|c051 3@(; | -85, c051 (ag, 'c051 |c051 3aq |

(3ag

-84 cosi i £3 c051 4, Ico# aq

> —4af5 cosl2ag, Jeos(ag. )4 ¢ cos{ag, Jcos2ag, )
—47 COS[MQ, ]Cos(_aq )- y 73 COS[an, Jeos(ag, )- 45, cos(2ag, Jcoslag, )
- 48, codlag, Jeos(2ag, )-8 cos(ag, Jeod2ag, ‘Icos[ag )-85, cos(2ag, Jeos(ag, Jeos(ag. )

-84 cos[agx]cosl'qq_‘zlcos[_]?ag J—8a, c051 —_—== co# —I E{Mg |

(5)

8oy + 20 + 4, +8ay + 4, + Ba,+ 16 f, +80s + 2as + 45 + 8, + 163

+8ay +8f,+ 8, +8a, +164, +8ay, —s.szcoi 2 cosi ajjc Jaﬂ

—20;.‘{:0{_&!@} Zﬁ._coi_aqx) 2ﬁ.‘co§__a%.) 4az3co{_aq:}coi_ag_]

—4agco§__aﬁ._ko{aq‘.)—4185co{a@}coi__aﬁ.__i—ggz‘cos: ﬂ :col aj‘ ]cos! 32?
J\2)

—Sﬂ4cos— cosl aﬂ] _q —Sﬁcoiaq‘ lco JMQ‘L |ag.
2 )1 2)02) j L2 )

=4a)=+; —Sa'jcos{a@}coiaﬁico{ag}—Zaxcos{zag} 2&co§2agi 2,&cos{2a@}
43%‘

cos‘ ajj 4

D
)

(ag,) a@\ of 3% 30@

—Sﬂcog c01 3 Jc

—8ex co

{
-84 cos 3ag, | 'cosl

2)
—475c05{agc]c0i__2aq_‘.__| 475c05{2agc}c0iaq_‘_}—4ﬁ cos{2agc}c0{_ag_}
—4ﬂgcod:2aq\ Jeod ag.) -8z codag }cos{aq‘ Jeod 2ag.)-88:cod2ag)c os{ag.:}c odag)
agﬂ 1I3a¢ﬁ | 43(1@\
2
~ ’ : (©)
And the off diagonal matrix elements of the first nearest to sixth nearest neighbour dynamical matrix as:

%ic gTq I—405cod ag Jeod 2ag,) - 4%C0daﬁ lcos{zag}
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, D, =D, and D, =D, . The elementscz,, 3, ,... are the

nearest neighbour parameters in a least-squares fit to the data. The force constants were also of great value as a simple
mathematical description of the phonon spectrum [30] used this property in their method of calculating the phonon

distribution function.
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2.2 COMPUTATIONAL PROCEDURE

In the density functional theory (DFT)employed for Cr, the electron was treated using scalar relativistic ultra-soft ab - initio
pseudopotential, within the applied self-consistent method. The computations are employed within the DFT using
QUANTUM ESPRESSO code (opEn Source Package for Research in Electronic Structure, Simulation, and Optimization)
[31, 32] for the exchange and correlation energy. The pseudo-wave functions expansion is carried out in plane waves with
Kinetic Energy Cut-off Potential (ecutwfc) starting from (10 to 70) Ry at an interval of 5Ry. The converged value of the
ecutwfc was found to be 60Ry for the three functionals used. Also, the K-points values are integrated over the BZ in the

reciprocal space with uniform K-point meshes of 8x8x8 points for both GGA (PBE) and GGA (PAW) and 9x9x9
points for PW91. The self-consistency calculation was assumed to have converged when the difference in energy between

subsequent iteration was 1.0x107°Ry.

2.3 CALCULATION OF THE THERMODYNAMIC PROPERTIES OF BCC METALS

Thermodynamic functions of solids are determined by their vibrational degrees of freedom of their lattice [33]. Thus, for
the calculation of these thermodynamic functions requires a complete knowledge of the vibrational spectrum, with adequate
accuracy [34]. The phonon contributions to the thermodynamic properties which include Helmholtz free energy AF, the
internal energy AE, the constant-volume specific heat C,, and the entropy S are computed for these bcc metals studied in
this work within the temperature range of 0 — 800K with the following expressions:

For the Helmholtz free energy

2sinh| ' (e, )Aw, + 2sinh ho, 9(w,)Aw,
2K,T 2K, T (10)
AF =3nNK,T In
. ho,
+...+2sinh (o, )Aw,
2 B
For the internal energy we have
ho ho
coth Aw, + wcoth A
5 w (ZKBT\Jg(wl) T 0 (ZKBTJg(wZ) 2 (11)
AE =3nN EIn
+ o+ wCoth 2 9(@, Ao,
2K, T
For the constant-volume specific heat we have
2
o | sen?| 1 9(@, Ao,
2K, T 2K, T
2 (12)
C, =3nNkg1+ "0, 1 csehe| S92 9(w,)Aw, +...
2K, T 2K, T
2
o e sen| L1 9(w, Ao,
2K, T 2K, T
Finally, for the entropy we have
hao, Teoth "o _ o[ 2sinh 1 9(w)deo,
2K 2K, T 2K, T (13)
S =3nNk, { In[Zsmh T Hg(a))dco2
+{ "o oth ! —In[Zsinh hao, Hg(a))da)n
2K T 2KBT 2K, T
Note: coth = . csch=—1
tanh sinh

Where K is the Boltzmann’s constant, 7 is reduced Planck’s constant
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3.0 RESULTS AND DISCUSSION

3.1 DISCUSSION OF RESULTS

Figure 1, shows the phonon dispersion curve of Chromium (Cr) from IFCs calculated by with sixth nearest neighbours
force constant fit to Born — von Karman model matched with data from experiment. The data from experiment is presented
in blue, green and red circles, with the red solid line calculations from IFCs. In Figure 2, the experimental data is shown as
blue, green and red circles, the black solid curve shows the dispersion calculated using the GGA (PBE), the red solid curve
shows the dispersion calculated using PW91 functional and the blue solid curve the dispersion calculated using the GGA
(PAW). IFCs calculations of the phonon dispersions of Chromium showed that the 1-6™ nearest neighbours dispersions
calculated with (MAE 0.0367THz), percentage error (MARE 0.46%), whereas, the density functional theory (DFT) using
GGA (PBE), PW91 and GGA (PAW) gave a larger MAE, percentage error (MARE) as (MAE 0.3475THz, MARE 4.39%),
(MAE 2.0904THz, MARE 26.41%) and (MAE 0.1038THz, MARE 1.31%) respectively. Figure 3, shows the phonon
dispersion curve of Niobium (Nb) from IFCs calculated by with tenth nearest neighbours force constant fit to Born — von
Karman model matched with data from experiment. The data from experiment is presented in blue, green and red circles,
with the red solid line calculations from IFCs. In Figure 4, the experimental data is shown as blue, green and red circles, the
black solid curve shows the dispersion calculated using the GGA (PBE), the red solid curve shows the dispersion calculated
using LDA functional and the blue solid curve the dispersion calculated using the PW91. IFCs calculations of the phonon
dispersions of Niobium (Nb) showed that the 1-10™ nearest neighbours dispersions calculated with (MAE 0.2713THz),
percentage error (MARE 5.07%), whereas, the density functional theory (DFT) using GGA (PBE), PW91 and LDA gave a
larger MAE, percentage error (MARE) as (MAE 1.0427THz, MARE 19.50%), (MAE 0.5047THz, MARE 9.44%) and
(MAE 2.0103THz, MARE 37.59%) respectively as shown in Tables2a and 2b. The interatomic force constant (IFCs) fit to
Born — von Karman model gave better results than the first principle (QUANTUM ESPRESSO) calculations. In the first
principle calculations using DFT, the PW91 functional gave a better result compared to GGA (PBE) with the LDA worst of
the functional. Also, the GGA (PBE) gave a better error to the lattice constant of 0.37% slightly above experiment while
PW91 and LDA overestimated and underestimated by 0.85% and 1.56% respectively. Details of the extension of the force
constants will be discussed in details somewhere else.

3.2 Thermodynamic properties

Figs. 5 and 9, shows an increase in the internal energy as temperature increases and also at OK it is above zero. Figs. 6 and
10, shows a decrease in the free energy with increase in temperature whereas in Figs. 7 and 11, shows an increase in the
entropy with an increase in temperature. In Figs. 8 and 12, the heat capacity on the other hand shows a rapid increase with

temperature and approaches the Dulong-Petit limit at high temperature and at low temperature the graph obeys the T % and
at very low temperature the graph obeys the linear law as can be found in literature.
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Fig 1: Chromium dispersion curves. The Red curves correspond to sixth nearest neighbours fit (IFCs). The experimental
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Fig 6: The Helmholtz free energies AF of Chromium. Analytical (IFCs) calculated values in the pink line; First principle
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Fig 9: The internal energies AE of Niobium. Analytical (IFCs) calculated values in the pink line; First principle
(QUANTUM ESPRESSO) calculated values in blue line
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Fig 10: The Helmholtz free energies AF of Niobium. Analytical (IFCs) calculated values in the pink ling; First principle
(QUANTUM ESPRESSO) calculated values in blue line
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ESPRESSO) calculated values in blue line

a 25 —

2

E

E4

S ®r QHA ——

- analytical

o 15}

£

2

g8 10f

5]

o

>

2

s °f

a

1]

e 0 " i L i i i i
0 100 200 300 400 500 400 700 800

Ty
Fig 12: The CV for Niobium. Analytical (IFCs) in the pink line dispersion; First principle (QUANTUM ESPRESSO)
calculated values in blue line

Table 1: (a) Frequencies and calculated percentage errors at some high symmetry points for Chromium (Cs). (b) Calculated
MAE and MARE for Chromium.

(@)

ar FREQUENCY(THz)

(a.u) H, Hy r, Py N, Np, Nr,
GGA(PBE) 5.38 7.7202 7.7202 9.0062 9.0062 10.5606 5.2732 8.5501
PW91 5.38 9.7764 9.7764 10.9045 10.9045 11.0575 7.6052 10.0127
GGA(PAW) 5.42 7.1547 7.1547 8.7172 8.7172 10.0388 4.6895 8.2052
IFCs - 7.7027 7.7027 8.6125 8.6125 9.7341 5.8594 7.4370
Expt. 2 5.499 7.6919 7.7529 8.1541 8.3983 9.6279 6.1221 7.6570

% Error

GGA(PBE) -2.16 0.37 0.42 10.45 7.24 9.69 13.87 11.66
PW91 -2.16 27.10 26.10 33.73 29.84 14.85 24.23 30.77
GGA(PAW) -1.44 6.98 7.72 6.91 3.80 4.27 23.40 7.16
IFCs - 0.14 0.65 5.73 2.55 1.10 4.29 2.87
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(b)

TOTAL AVERAGE  +(work — expt.)(THz) MAE (THz)  MARE (%)
GGA(PBE) 57.8367 8.2624 2.4325 0.3475 4.39
PWO1 70.0372 10.0053 14.6330 2.0904 26.41
GGA(PAW) 54.6773 7.8110 0.7269 0.1038 131
IFCs 55.6609 7.9516 0.2567 0.0367 0.46
Expt. 2 55.4042 7.9149 - - -

2[33] (Experiment)
Table 2: (a) Frequencies and calculated percentage errors at some high symmetry points for Niobium (Nb), (b) Calculated
MAE and MARE for Niobium.

(a)
ar FREQUENY (THz)
(a.u) H, Hp P, Py N, Ny, N,
GGA(PBE) 6.26 3.7351 3.7351 3.6545 3.6545 3.9142 -1.1877 2.8657
PW91 6.29 6.0028 6.0028 5.9395 5.9395 5.9346 2.9607 5.3798
LDA 6.14 8.6642 8.6642 6.6461 6.6461 7.5247 4,7297 6.1721
IFCs - 6.4847 6.4847 5.0251 5.0251 5.6258 3.9595 5.0774
Expt. P 6.237 6.4105 6.3623 4.9436 5.0837 - - 3.9409
% Error
GGA(PBE) 0.37 41.29 41.29 28.11 28.11 - - 27.28
PW91 0.85 5.65 5.65 14.66 14.66 - - 36.76
LDA -1.56 36.18 36.18 30.73 30.73 - - 56.62
IFCs - 1.92 1.92 1.15 1.15 - - 28.83
(b)
TOTAL AVERAGE +(wok — expt.)(THz) MAE (THz)  MARE (%)
GGA(PBE) 21.5274 3.5290 5.2136 1.0427 19.50
PwWo1 29.2644 5.8529 25234 0.5047 9.44
LDA 36.7927 7.3585 10.0517 2.0103 37.59
IFCs 28.0970 5.6194 1.3560 0.2712 5.07
Expt. b 26.7410 5.3482 - - -

®[34] (Experiment)
Table 3: First - Sixth and First - Tenth nearest neighbours general force models for Chromium and Niobium respectively.

Position of Force constant Sixth nearest neighbours ~ Tenth nearest neighbours Nearest
neighbour (dyn/cm) fit fit neighbours

a (111) a, 14350 14140 First

a (111) B, 6930 8840 First
%(2,0,0) a, 37700 14160 Second
% (2,0,0) 5 -770 -3640 Second
2(220) a, 1380 2270 Third
2(2,210) B -500 -6380 Third
%(22,0) Vs 1490 760 Third
2oy a, -1910 3610 Fourth
2(3,1,1) B, 110 -750 Fourth
> (811) Va -370 1260 Fourth
>(811) 34 750 -950 Fourth
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Table 4: Force-constant matrices @(0, I) corresponding to the first nearest to tenth nearest neighbours of
the atom at the origin

Atomic Pair ¢(O, |) Atomic Pair ¢(0’ |) Atomic Pair ¢(0’ |)
01 2(112) a B A) | o0-22(-111) o -f B 0-3 2(L-11) o - B
a 1A/ o B a -1-8 a -B a -|=-f a B
E(_l’_l’_l) B B oo E(l,_l,_l) A B o« E(_l’l’_l) A B o
0_4%(_1’_1'1) [0!1 4 _ﬁlJ 0_5%(2’010) a, 0 0 0—6%(0,2,0) B 0 0
-1 B a - -1 0 , O a -1 0 , O

2(11-1) S w) | 2(-200) 0, 2(0,-2,0) 0 T
o [0 (e Y [
a N ’ a —| 73 5 0 2(2,-2, —| =73 3 0
2(00,-2) 00 ) | 2(-2-20) v :(2-20) S
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0-102(0,2,2) p 0 0 0-11 p 00 0-12 2(2,0,2) a 0
Q(O ) _2) - A 73 %(0’_2’2) - a; —7s g(_ 20 _2) - By O
2a 0 7 o %(0'2,—2) 0 -7 a 2 w 72 0 a
0-32(-202) | (@ O -x)|o-14 2(311) a Vi 0-15 a -7 -7
2(20-2) | | ° A 00| a3y | | A el e R
2y -7 0 a 2 C Ve 6 B Q(B—l—l) Vs O B
2 ) 1
0-16 %(3,1,—1) A Ve TV 0-17 Ay Vs Vs 0-18 %(1,3,1) By 7a G,
3(_3_11) - 7e B -6, %(3’_1’1) “l-7 B -4 g(_1_3 _1) =1 Vs QA Vs
2 T 7 —0, B % (— 3’1’—1) Vi —6, B 2 . o Vi B
0-19 B —vs -6, 0-20 B re -6, 0-21 By —r. 6
%(1’_3’_1) | TV @y Va %(1’3’_1) | 7 Ay =7 %(1'_3’1) TV Qo TV,
% (— 1,3,1) -0, 7 B % (— 1’ —3’1) -0, 7, B % (— 1|3’—1) S Vs B
0-22 é(:'.,:'.,3) Bi 05 V4 0-23 B 0y —Va 0-24 By =6i =7
i(_f—l _3) [ « P 7/4} %(],1,—3) =| 9 B =7 %(_1’1’3) 1= B s
2 C Vo Vi @y %(—1,—1,3) Vs Ve Oy %(1,—1,—3) Vs Vs Oy
0-25 g(:|.,—:|.,3) By =6s 7 0-26 as s Ps 0-27 a5 =B —ps
g(_zl,l,_3) ==, B 74} %(2’2'2) {ﬂs as ﬂ5} %(_ 2’2’2) { B o B }
? e =7 )| a(-2,-2-2) B Bs as 2(2,-2,-2) b B
0-28 a5 —fs P 0-29 as B P 0-30 a; 0 0
%(2’_2’2) - _ﬂs s ﬂs} % 2'2’_2) [ ﬂs s ﬂs} %(4’0’0) -0 :Be 0
%(_ 212’_2) B P a %(— 2’—2,2) P P %(— 4,0'0) 0 0 4
o= 2(0,4,0) f 0 0 032 p 0 0 0-33 2(133) @ 7 7
g(o —4 0) - a 0 %(0’0’4) - Bs 0 g(_l -3 _3) -\ B &
23 0 0 4 %(0,0,—4) 0 0 o 2 C rn 6 B
0-34 g(—:l.,3,3) o =V —r 0-35 o Y T 0-36 A
2(12_3 _3) [ rno B & } %(1'3’_3) -l B =5 %(1'_3’3) -7 B -6
A -7 6 f %(_1’_3,3) -7 =6 B %(—1’3’—3) rno—6
0-37 Q(3,].,3) B & 0-38 B -r -6 0-39 B -r 5
é(_;—l —3) [77 % }/7J %(3’_1’_3) -\ %G 77 %(3’_1’3) B S B S A €
2 ’ o 1 Py % (— 3’1’3) -6 1 B % (— 3,1’—3) o -rn 5
0-40 %(3,1,—3) B =8 0-41 %(3,3,1) B 6 1 0-42 B =6 -1
Q(_B -1 3) Y S A 4 Q(_ 3-3 _1) =16 B orn %(3'_3'_1) —-1=6 B n
2 C -6 -1 B 2 C Vi 7 O %(—3’3,1) V7 O
_a3 2(33-1 B 6 -1 0-44 B =6 1 0-45 a 6 0
0 343(—2; -3 1)) - & B -r %(3’_3’1) [57 B, 77} %(4’2'0) [55 Py OJ
2v -7 1 2(-33-1) no~rno& 2(-4,-2,0) 0 0 7
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0-46 a -6, 0 0-47 a 0 6, 0-48 a, 0 -6,
2(4-20) | |5 45 o 2(4,0,2) [0 4 o0 2(4,0,-2) -0 % O
2(-4,2,0) 0 0 n)| 2(-40-2) 5 0 4 2(~4,02) -5 0 B
4w 2(0,2,4 7 0 0 0-50 % 0 0 0-51 %o 0 0
i §4(90 2_(2 _4)) -0 ﬂa 58 % (0’2’_4) -0 ﬂs - 68 % (0’4’2) -0 Qg 58
2\ T4 0 & o %(0’_2,4) 0 -6 o %(O,—4,—2) % Py

052 0 0 0-53 B S O 0-54 By =6 0
%(O’_4’2) - 7:) ag 0 %(2’4'0) | % a O %(2'_4’0) “|=% a O
£(04-2) 0 -6 A | a(-2-40) 0 0 7 2 (-2,40) 0 0 7
0-55 g(2,0’4) B 0 & 0-56 B 0 -6 0-57 Gy V9 7o
S gty | (5 e] | s | [nA
2% = & 0 a 2(-2,0,4) —% 0 o 2(-4,-2,-2) o G fy

0-58 Gy Vs —7s 0-60 B v 6 0-61 By 7 6
%(_ 4’2'2) “1=7% B G %(2’4’_2) | Ve G TV %(2’4’2) |V G 7
%(4,—2,—2) % % 5 %(— 2,—4,2) =% ~7 P %(— 21—4,—2) S 7 B

062 b —7a -0, 0-63 B 7 -6, 0-64 B =7 6
%(2’_4’2) | TV % Vs %(2’4’_2) | Ve G TV %(2'_4’2) |7V %% T
2(-2,4,-2) =& o A)| 2(-2-42) & =1y P 3(-2,4,-2) & -1 b
0-65 g(2’2’4) By 05 7 0-66 By =6 —7e 0-67 B % Vs
é(_22_2 _4) =10 By 7 %(_ 2’2’4) “1=% By 7 %(2’2’_4) =1 %% Py Ve
2 C Vo Vs O %(2,—2’—4) Vs Vs O %(—2,—2,4) Vs TV G

068 By =6 7 0-69 a, P B 0-70 g —Po —Bo
%(2’_2’4) -1=8% By %(3’3’3) B0 @ B %(_ 3’3’3) Bo P
% (— 2, 2,—4) Vo —Vs G % (— 3’—31—3) Bo Bo oo % (3’—31—3) P Po
0-71 i(3,—3,3) gy =B B 0-72 Qg B — B
é(_233_3) “1=Po @ B %(3’3’_3) Bo a0 —PBo
2 ’, Bo —Po o %(—3’—3,3) P —Po

4.0 CONCLUSION

The dispersion curves and thermodynamic properties of Cr and Nb were calculated successfully using two techniques; the
interatomic force constants (IFCs) technique employing the Born — von Kéarméan model and the first principle technique
based on DFT implemented by QUANTUM ESPRESSO. The phonon dispersions were computed along the principal
symmetry directions of the BZ. The results obtained from both techniques were matched with data from experiment. We
conclude that the phonon dispersion curve of Cr and Nb from IFCs calculation shows a close agreement with experiment
just like that from the first principle calculations. In the first principle calculations for Cr using DFT, the GGA (PAW)
functional gave a better result compared to GGA (PBE) with the PW91 worst of the functionals and for Nb the PW91
functional shows a close result to experiment, when compared to computational. GGA (PBE) giving better results to LDA

functional.
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