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Abstract 

In this article, basis functions of Spread and Bernstein polynomials are linearly 

combined with unknown coefficients. These linear combinations are applied in 

formulating approximate solution for fractional differential equations. Residual 

equation derived from the fractional differential equation is collocated at equally 

spaced interval of the boundary where the problem exists. Systems of equation 

derived from this approach is solved and values of coefficients are obtained. 

Numerical solution of the problem is arrived at by substituting values of the 

coefficients into constructed linear combinations. To illustrate the effectiveness of 

these two polynomials, comparison between the two over a varying degree n of the 

approximants is carried out. This is done alongside the analytical solution of each 

problem. The discrepancies obtained speak in favour of the proposed methods.  
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1.0  Introduction 
In the past few decades, a very cogent attention has been given to the development of non-integer order differential equations. This is as a 

result of growing realization of the importance and diverse use of this equation in mathematical models of problems in physics, regular 

variation in biophysics, thermodynamics, blood flow phenomena, viscoelasticity, electrical circuits, aerodynamics, astrophysics, biology, 

control theory, economics and a host of interdisciplary applications [1, 2]. For solutions to this form of differential equation, a good 

number of researchers have devised methods that yielded exact solutions, these include [3, 4, 5]. However, the limitation of exact 

solution methods in practical applications  and nonavailability of closed form solutions for some real life problems call for numerical 

techniques which apart from their versatility, they can easily be captured into computational tools as built-in functions. On a current note, 

research into numerical methods of solving this equation has enjoyed a great deal of attention, methods that have been effectively 

deployed into the solution of FDEs include finite difference method, methods of orthogonal function, Chebyshev wavelets, generalized 

block pulse operational matrix etc [6 – 9].  

Methods based on the orthogonal functions are powerful and effective for solving FDEs as they have achieved great success in this field  

[1, 2]. The direct implications of this statement is that these numerical methods possesess the ability to handle a wide spectrum of 

problems derived from mathematical models of real life problems. In addition to this, vast majority of available computational tools do 

not have built-in functions for obtaining numerical solution for FDEs, this can be effectively incorporated into them as numerical tool 

boxes.  

The multi-order FDEs considered in this study is typically of the form: 
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With sufficient conditions imposed on the boundary. 

Where 
D are defined in Caputo sense, 

11 ...   nn
,   ,1,0  nn   and .,...,1,, nkRR kk     The 

function )(tf belongs to the space )(2 L  and 
 RTT ,],0[  [10]. 

2. Review of relevant definitions and results from fractional calculus  

Fractional derivatives is the derivatives of arbitrary real order  denoted  
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 )(tfDta

  

Where  is the order of the derivative,  the subscripts tanda  are the 2 limits related to the operation of fractional 

differentiation and are referred to as terminals of the fractional differentiation [8]. The terminals are sometimes omitted for 

convenience. There are several expressions for fractional derivatives, out of which 3 most used are given as follows. 

 

2.1 Grunwald-Letnikov Derivatives 

Grunwald-Letnikov fractional derivatives of function )( tf  with order 0 is defined as:  
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Note that here and elsewhere,   denotes the Gamma function. 

 
2.2 Riemann-Liouville Fractional Derivative 

It has been observed that the use Grunwald-Letnikov fractional derivative is not convenient, especially for non-integer terms [1]. The 

most widely known alternative to this is the Riemann-Liouville definition given as the integro-differential expression: 
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where Rtaat  ,,,,0  . Equation (2.3) is the Riemann-Liouville fractional differential operator of order  . 

Equation (2.2) is considered as a particular case of the integro-differential equation (2.3) called Riemann-Liouville definition of fractional 

derivative. The expression of Grunwald-Letnikov goes with an assumption that the function )(tf must be 1n  times continuously 

differentiable, except with very few exceptions, Riemann-Liouville’s definition bypasses this condition on the function )(tf as it only 

demands the integrability of )(tf . 
 

2.3 Caputo Fractional Derivative 

Mathematical modelling of a good number of physical phenomenal such as in viscoelasticity, solid mechanics, biology etc demands for 

the utilization of physically interpretable initial conditions such as the ones defined as ...)(',)( cteafaf , but the Riemann-

Liouville’s definition leads to initial conditions containing the limit values of the Riemann-Liouville fractional derivatives at the lower 

terminal at  . [1, 6]. For example: 
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Where nkbk ,...,2,1,   are given constants.                                    

As observed by Podlubny [1], despite the fact that initial value problems with such initial conditions can be successfully solved 

mathematically, their solutions are practically useless because there is no known physical interpretation for such type of initial 

conditions. To resolve this limitation, M Caputo  proposed, a definition for fractional derivative as: 
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It is noted that for n  the Caputo derivative resulted into integer order 
htn  derivative of the function )(tf  i. e. 
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As in the case of Grunwald-Letnikov and the Riemann-Liouville’s definition, Caputo’s definition equally provides an interpolation 

between integer-order derivatives [1, 2].   The advantage of Caputo’s definition is that the initial condition takes the same form as that of 

integer-order differential equations      i. e. it contains the limit values of integer-order derivatives of unknown functions at the lower 

terminal .at   In this work, Caputo’s definition is used for the expression of fractional derivatives. 

As illustrated in [1], the above fractional derivatives )(tfDta

 are with fixed lower terminal a and moving upper terminal t, this is 

the case when ta   and refered to as left derivatives. For cases with moving lower terminal t and fixed upper terminal b, we have the 

derivatives as  )(tfD bt

 and referred to as right derivatives. More on this can be found in [1, 2]. 

 

3.0 Spread Polynomials Collocation Method (SPCM) 

In this section we review some properties of spread polynomial which are applied in finding numerical solution of FDE (1.1). 

This method entails approximating the unknown function )(xy  as: 
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where  
kc ,  ...,2,1k  are unknown parameters to be determined and )(sSi

 are spread polynomials which can be obtained as 

follows:  
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Where n is a fixed positive integer and  
nS satisfies the second order linear nonhomogeneous differential equation: 
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The ordinary generating function of this polynomial is: 
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While the exponential generating function is:  

  )1(21
2

1

!

)( 2

1

sstCoseet
n

sS sttn

n

n  





     (3.6) 

The first 5 Spread polynomials )(sSn
 are given as follows: 
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A 3-term fundamental recurrence relation is given as   
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Other explicit formulae can be found in [11, 12]. 

The technique involves substituting finite sum of equation (3.1) into (1.1) to obtain: 

)()()...(
0

11
11 tftScDDD

N

i

iinn
nn  




     (3.8) 

The derivatives are expressed in Caputo sense as given in equation section (2.3). Since the substituted equation (3.1) is finite and non-

exact, both sides of (1.1) are no longer equal, but as depicted in (3.8). Equation (3.8) is thereafter collocated at points ),0( Tti , 
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The given conditions are also imposed on finite sum of (3.1) to give   n  number of equations. These in addition to equation (3.9) 

give to a system of 1N  equations.  Solving this system, we obtain of unknown coefficients 
ic .  These are thereafter substituted into 

finite sum 
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to yield a spread polynomial collocation solution of order N to fractional differential equation (1.1).  

 

4.0  Bernstein polynomials Method (BPM) 

We approximate the unknown function )(xy  in form similar to (3.1), i. e. a linear combination of  Bernstein polynomials 

)(xBi
 and unknown parameters 

ia  [13]. 
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It satisfies a 3-term recursive relation:  
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The first 3 Bernstein polynomials )(tBn
 within interval (0 1) are given as follows: 
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Other properties of Bernstein polynomials as applied in this study are found in [13],  

substituting equation (4.1) into (1.1), we have: 
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 All other steps are as illustrated in section (3), from this we obtain unknown coefficients 
ka  which are substituted into 

finite sum 
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to yield Bernstein polynomial solution of order N to fractional differential equation (1.1).  
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5.0 Illustrative examples 

In this section we present some numerical examples of fractional differential equation to illustrate the methods. 

 Example 1. Consider the following inhomogeneous  boundary value problem: 
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A. Solution via SPCM:To apply Spread polynomial collocation method (SPCM) in solving equation (5.1), we 

substitute the finite  form of equation (3.1) : 
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into equation (5.1), with N = 5 and 
2
1 . We have: 
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Set of 5 equally spaced points within the interval [0 , 1] , i. e. 
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substituted into equation (5.3),  the condition 0)0( y  is also imposed on equation (5.2). From these, we obtain a system 

of 6 linear equations with 6 unknowns 5)1(0, kc k . By solving this system, we obtain the values of coefficients as 
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Substituting these values into (5.2), we obtain the numerical solution for equation (5.1) which is equal to exact solution when compared. 
 

B. Solution via BPCM: To solve (5.1) for 
2
1 via Bernstein polynomial method, we substitute equation (4.5) 

with N = 5 into (5.1) which gives: 
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As in SPM, set of 5 equally spaced points within the interval [0 , 1] , are  substituted into equation (5.4),  the condition 0)0( y  is 

also imposed on equation (4.5). From these, we obtain a system of 6 linear equations with 6 unknowns 5)1(0, ka k . We solve 

this system to obtain the 6 unknown coefficients, whose numerical values are: 
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Substituting these values into (4.5), we obtain the approximate solution for equation (5.1) which is also equal to exact solution when 

compared. 

The solutions of this example is displayed in figure 1  where SPM, BPM are plotted alongside the exact solution. 

Example 2. 
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Figure 5.1 Plot of example 1 (For N = 5) 

Example 2. Solve the following inhomogeneous  boundary value problem. Fakhrodin (2014) 
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A. Solution via SP method:  Following the same procedure, SP method produces the following values of the 

coefficients for N= 7. 
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Putting these values into (5.2), we obtain the numerical solution for example 2 
 

B. Solution via BPCM: Also for N = 7, The BP method  produces the following values of the  

Coefficients: 
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Substituting these into (4.5), to obtain the solution for example 2 

Table 5.1:  Table of maximum errors for values of N ranging from  5 - 12. 
N SPCM BPCM 

5 1.9335e-06 5.1721e-07 

7 3.8512e-06 6.9194e-07 

10 6.1702e-08 2.8491e-10 

12 1.0621e-09 4.5712e-10 
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Figure 5.2: Plot of example 2 (N = 7) 

Example 3.  

Consider  the following boundary value problem in the case of the inhomogeneous Bagley-Torvik equation [9]. 
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A. Solution via SPM: For this problem, SP method for N = 7 yields the following values of coefficients. 
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 We obtain approximate solution for this by putting these values into (5.2). 

B. Solution via BPM: For BP method with N = 7, the following values of the coefficients 7)1(0, ka k
are 

obtained. 
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Substituting these into (4.5), to obtain the solution for this example. 

 

Table 5.2: Table of maximum errors for values of N ranging from  5 - 12. 
N SPCM BPCM 

5 1.9604e-03 2.5266e-04 

7 1.0275e-03 5.4940e-04 

10 7.9214e-05 1.5044e-06 

12 3.1633e-06 6.3632e-07 
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Figure 5.3: Plot of example 3 (Foor N =12) 
 

6.0  Conclusion 
Numerical solution of fractional differential equation has been considered in this study, the performance of two basis functions (Spread 

and Bernstein basis) were compared in implementing collocation method. The numerical results as depicted in figure 5.1 – 5.3 show the 

efficiency of these two polynomials as basis function, the approach is simple and easily automated. Basis function from the two 

polynomials also produced results that are so close to the exact solution at varying degree N of the approximation. In all of these, 

Bernstein polynomial basis yielded better results than Spread polynomials at the same degree N of the approximate solution. 

Comparative study of different types of collocation points, rather than equally-spaced points is suggested for further investigation.   
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