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Abstract 
 

It is shown that Cauchy integral matrix function is Lebesgue measurable on the 

contour integral based on the Little Wood’s third formula for which the trapezoidal 

rule and Simpson composite method are applicable. As a follow up, it is demonstrated 

that Taylor series representation of Cauchy integral matrix function is commutable 

with similarity matrix transformation when Jordan canonical block along diagonal is 

taken into consideration.     

The spectrum of the diagonalizable matrix A  is computed using the Givens 

orthogonal matrix plane rotation. As an extension of ideas; a measure of 

effectiveness on the use of SVD  in the computation process is emphasized and fully 

utilized which leads to demonstration with the exponential of a matrix function as an 

example. Further analytical reasoning on performance of Cauchy integral theorem 

for the matrix functional calculus leads to the method of Residue theorem. The 

density of a matrix function is calculated based on the hypergeometric series taking 

into consideration the behavior of gamma function. 
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1.0 Introduction 

The paper presents the Cauchy integral theorem of a matrix function )(Af , where, A  ₵
nn

.  

The Cauchy integral theorem for the matrix function in the Lebesgue measurable sense over S- dissections is presented 

using Little Wood’s third formula in which trapezoidal rule becomes a useful tool. We pay a special attention to the 

application of Residue theorem in the analytic senses. The distribution of the spectrum of a diagonalizable matrix is 

emphasized based on the knowledge of Givens matrix orthogonal plane rotation and Singular Value Decomposition (SVD). 

Behavior in the analysis of Gamma functions and hypergeometric function as well as the Bessel matrix polynomials are 

carefully explained for purposes of computing the density of a matrix. Relevant to the analysis in this direction is the nature 

of the distribution spectrum  A  of the matrix. 

 

1.1    Literature Review/ Problem statement 

In what follows, the presentation of the approximation theory to the Cauchy integral formula for the matrix function )(Af  

is discussed drawing attention of the readers to the existence of [1]. We give information on the spectrum of the matrix A
using the Givens orthogonal matrix plane rotations and Singular Value Decomposition (SVD). The accompanying inverse 

matrix in the calculation is computed by some numerical methods. Also the use of standard Residue theorems in the 

computation of the Cauchy integral matrix function problem is stated. We introduce in the computation the density of a 

matrix based on the hypergeometric and gamma functions provided the nature of the spectrum in the diagonalizable matrix

A  is known. 
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We motivate our interest in the presentation of the paper using the Cauchy integral complex theorem and Taylor series 

expansion of a holomorphic matrix function [2].In particular, the Trapezoidal rule is employed for the complex Cauchy 

integral theorem based on the Lebesgue measure on a measurable space. 

Let   be a closed contour in the complex plane enclosing all eigenvalues of matrix A . Assuming further that f  be 

holomorphic on and inside the contour . Then by the Cauchy integral formula matrix function )(Af
 
it is expressed in the 

form: 

 






dzAzIzf

i
Af N

1
)(

2

1
)(             ( z ₵).                                                                            (1.1) 

The term NI
 
appearing in equation (1.1) is the identity matrix and where the circle )20(   irez  is well 

defined, having center A and radius r such that rzIA N   holds verbatim. 

That
irezz  0  , and 0z  is enclosed in the contour D  ₵ for which holds,

 iirez  /  is an interesting 

exercise. 

To show that )(Af  defines a Cauchy integral, it is enough to show that   
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We then expand   1
 AzI  as  
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 By substituting equation (1.3) into equation (1.2) we have that  
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Using the fact that any contour not containing a pole is zero, then, we have that  
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It is necessary that for convergence, the term   IzAr 0  for the f  being analytic on D ₵ is valid. 

It must be noted that for a use of any small eigenvalues of the spectrum )(A ,any noise on the component of A  will cause 

a catastrophic consequences on 
ire

1
 appearing in the series expansion which will amplify the noise to an unacceptable 

level in equation (1.4).Therefore we depress (take) the value of spectral radius of the matrix to be greater than maximum 

eigenvalue of A .  

So for a large enough value of the radius in magnitude in the numerator part; the term 
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Thus the Cauchy integral theorem for the matrix function given by  

 








2

0

1
)(

2

1
)( dzAIzzf

i
Af  is well defined. 

Immediately following, we define the Residue theorem for the accompanied Cauchy integral theorem as follows: 

Theorem 1.1,[3]. Let D ₵ be a region bounded by a finite number of piecewise continuous curves. Assuming further 

that f  be at the boundary D  which is inside D  holomorphic up to a finite number of isolated singularities  
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 nn zzzz ,...,, 121   that are all in D . Then 

    
 




D

n

k
zz

zfsidzzf
k

Re2 .  

 

Fact 1: 

Let  0zf  have at 0zz   a pole of order m  then the residue may be obtained in the form 

 
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.                                                            (1.7) 

We notice computing )(Af for the Cauchy integral theorem matrix using residue theorem involves the inversion of a 

matrix. This is possible for a matrix of small size but increasingly difficult for matrices of much higher orders since the 

matrix   1
 AIrei  is complex. 

Therefore turning our attention again to equation (1.2) we create numerical integration out of the existing problem by 

writing that  
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where, it is set that     2/)()(
1 i

N

ii reAIrerefg


  is holomorphic on the circle. 

To do so, we construct an approximate value for )(Af  similar to a kind of Lebesgue measure over the measurable space [4] 

and the references therein, with dissection   over S- slices such that k
S

k




2
  . The parameter k  is a period which ranges 

over the circle { ki
re


}1,...,2,,1,0  Sk . 

Definition 1.1. Let  nxxx ...,,, 21
₵ be a finite set of points and ₵= ],[ ba . 

Let kibxxxa k  ,..., 21
. Consider the set P ₵  nxxx ...,,,\ 21

, the interval ₵ without the points nxxx ,..,, 21

. Let our measure be such that the measure of any interval with end points ba   be defined as ab   and ],[ bax . 

Then, measure of P   is given as  
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               (₵) 

We then define [5] the outer measure of any interval I  on the complex number line with end points ba  as ab  . The 

outer measure is denoted as )(* I  where, it is expressed that  (₵) is the infimum of   iI  overall coverings ₵ iI  

by the countable unions of intervals. Then outer measure of any )(* P  of any set P ₵ is the glb   DPD *  and D open 

in ₵.  

If we then denote inner measure of any set P ₵   by )(* P ,it follows that  

* (₵)-
* (₵\P) is feasible where ₵\ P  is the complement of P  with respect to ₵. 

Using above procedures the outer measure 
*  exhibits sub-additivity for which the set  ,...3,2,1kPk

 is a subset of ₵, 

such that  
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This gives that )()( *

* PP    for P ₵ is Lebesgue measurable set. In this case it is denoted as )()()( *

* PPP   . 
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Whilst MPi   for ,...,3,2,1i  such that ...,21  PP and 





1i

iPP then it holds that    PPi    as i

.Furthermore for ,...,2,1i such that ....,21  PP and   1P , 





1i

iPP , then    PPi    as i holds 

good. 

Before proceeding further, we have to take note that if  nf  is a sequence of measurable functions converging to f , then 

f  is also measurable. This means that there is a  nf  converging to f for which exists ffff n
n

nn 




limlimlim . This 

holds for nn fff limlim 


. So f  is measurable in the outer measure. The same analogy goes for inner measure, for 

this, we omit the proof here. 

 

Theorem 1.1. [6]. A bounded measurable function f  is Lebesgue integrable on a bounded measurable set ₵ if and only if 

given 0  there exist simple measurable functions 




 fff  such that 
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


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 Using Little Wood’s principle (3rd principle) and ignoring a set P  of small measure, then the uniform convergence is 

given in the form: 
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m  being outer and inner measures respectively. 

By Fatou’s Lemma [6] and since  nf  is a sequence of non-negative measurable function on ₵ it follows that  
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We thus established that Cauchy integral matrix function over the contour integral 
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1  is measurable in the 

Lebesgue sense provided that the matrix A  is diagonalizable. We can now state as follows in the sense of [7]: 

 Let f  and g  be holomorphic functions in a connected region D ₵. If gf   in the neighbourhood of some point a , 

then gf   on D . 

Having established the existence and uniform convergence of the Trapezoid rule applied on the Cauchy integral matrix 

function via the Lebesgue measurable, we in the vicinity of compactness give the Taylor Series expansion for complex 

function f
 
in the form: 
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If we replace )(zf  with )(Af  in equation this leads to the Cauchy integral matrix function expressed in Taylor series 
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The error estimate can be obtained in the form 
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on ),( 0 rzD . Thus the Taylor series representation of matrix function [8] commutes with the similarity transformation 

1)()(  XAXfAf   where X a matrix of column vector. This will be discussed later on in section3 in the paper. 

Thus the Cauchy integral matrix function becomes 
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Differentiating the )(g in q times, then  
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where jqic ,  are some constants 

In the real space the Trapezoidal rule is  
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This translates to equidistant trapezoidal rule : 
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Thus for 000 4,2, SSSS  , then taking appropriate linear combination [9]  we have that 
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If the function possesses third order continuously differentiable  bac ,3  then it may be approximated by the Composite 

Simpson Rule: 
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Since    bfaf   over the contour integral then equation (1.7) becomes 
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Turning our attention to our given problem under discussion in compact form, the Trapezoid rule applied on complex 

Cauchy integral matrix function )(Af  corresponding to equation (1.2) could be approximated in the form: 
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r, and R  are positive real numbers. 

Besides, we also use the SVD factorization on the matrix DVXA T  , where  ndiagD  ..,,, 21  to obtain  
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Usually as advised in [10] we take Centre of the circle z  to be   maxmaxmin
2

1
,

2

1
  r . 

The remaining part in the paper is arranged as follows. Section2 describes the hypergeometric function as it applies to the  
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integral calculus. In section 3 we give the methodology required for the numerical computation of the Cauchy integral 

matrix function having in mind the point of focus on Trapezoid rule, the Residue theorem and the SingularValue 

Decomposition (SVD) of a diagonalizable matrix. We give error estimate arising from the Givens orthogonal matrix plane 

rotation. Section 4 in the paper gives the discussion aspect arising from results computed in section3. Section 5 gives the 

conclusion based on the strength of findings from the computed results.  
 

2.0        Materials and method 

We aim to use knowledge of eigenvalues of the diagonalizable matrix A to compute the Cauchy matrix function )(Af . We 

will use the hypergeometric function with a view of obtaining the density of the matrix. We give information on the gamma 

matrix function as well as the Di-gamma function. The Euler representation of gamma function was emphasized. To be 

lucid in our presentation, the use of SVD is a useful tool in the computation of the matrix function based on the knowledge 

of Jordan block matrix. Givens orthogonal matrix plane rotation is employed in calculating the eigenvalues via Sturm’s 

sequence. The matrix exponential for the Cauchy integral theorem was calculated based on the knowledge of the Eigen 

space of the matrix.  
 

2.1         The Hypergeometric Function And Density of A Matrix. 

In lieu of making use of section 1 discussed earlier in the paper, matrix analysis has several uses in the sciences and 

engineering wherein, hypergeomtric and gamma functions play dominant role, see e.g,[11].The following preliminaries 

are adopted following[11,12],given that cba ,,  are positive integers, the gamma and hypergeometric functions are 

described. Firstly we define the gamma function  



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0

1)( dtetz tz ,               (Re z>0)                                                                                        (2.1) 

where, 
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For Nn , the first three rational (fractional) form of gamma functions are well known[13] in the form: 
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Conversely, for negative integers their gamma functions [14] are defined in the form: 
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The hypergeometric series with variable z is defined to be the equation 
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We give the zero balanced function for the hypergeometric function [15] assuming that bac   with the asymptotic 

behavior for );;,( xcbaF  as 1x  in the form 
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Where, 
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The symbol     is the Euler-Mascheroni constant. 

To this end, the quadratic Hypergeometric function follows from [15] in the form  
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The duplication formula inequality for the hypergeometric function in the Grotzsch ring function is then given by  
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Using above for both gamma and hypergeometric functions it follows that a diagonalizable matrix A  has the gamma 

representation 
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where the Euler’s representation is defined in the form 
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Also we have that 
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Thus the gamma matrix function and digamma (inverse function) matrix function )(A are given by 
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Besides for a single function, the Beta function in the sense of [16] is defined in the form 
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Since )(zf  and )(zg  are holomorphic then we define the gamma matrix function [16] that  
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We then define the Bessel matrix function )(zJ A  which is given by the equation 
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The modification formula for the Bessel function )(zKA , known as Macdonald function is  
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The task of computing )(Af  implies calculating the square root of a diagonalizable matrix [17]. To this extent, let 1A  and 

2A  be independently distributed matrices of same dimension such that   2,1,~, 2,1 ipAA in  . 

Let 21, AAS   and   2
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21
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 AAR . The density of S  in the sense of [18] for a square matrix A of order n   with 
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Then, the density of R  is  
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The  RIR n

kk
,

,, 





   are  polynomials. 

Difficulty in implementing methods of equations (2.23), (2.22) due to high computational work needs a simplified joint 

density of 1A  and 2A  in the form 
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where, OAA 21 , . 

We compute 2,1 AA  using the transformation 

  2

1

2

1

2
2

1

2

1

1 , RSSASRISA m  .                                                                                      (2.25) 

 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 18, (January - December, 2022), 87-100 



95 
 

Computing Cauchy Integral…                         Stephen                               Trans. Of NAMP 

 

 

3.0 Numerical Examples. 

Computing the Cauchy integral matrix function )(Af  involves computing the matrix eigenvalues of A  and the residue of 

the integral function. As a result, the numerical computation of the matrix eigenvalues is provided by the Givens orthogonal 

matrix plane rotation [19,20] for a reasonable matrix size which reduces a symmetric matrix to a tridiagonal form from 

which comes in hand the  fast higher order Newton’s method to compute roots to the resulting polynomial.This is 

achievable by using the MATLAB Givens matrix plane rotation subroutines. 

The number of finite rotation of matrix of size nn  is given by  

n

nn
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)1( 
 . This is accompanied by the unitary matrices with 
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 Givens factors to be optimally approximated. 

Particularly, by the Kantorovich inequality [10], there are n ...0 21   the spectrum of the symmetric matrix A  

such that for any vector x for which holds 
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A prototype of Givens orthogonal matrix rotation [19],20] is  
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The main purpose is to produce a matrix  nTT    from the sequence of orthogonal plane matrix rotations 

kGGG ...,,, 21  such that  
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We describe the perturbation error from the perturbation matrix IAA    , where   is a parameter. Using 
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product of Givens factors with angles of rotations k and letting 
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is the normalized approximation error [22,23,24] for a given   assuming that )(TN  is the number of Givens factors. 
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In addition, we may replace the matrix A  by the Givens transformation matrix kT  in equation (1.1), since the eigenvalues 

of the matrix A  are preserved under any similarity transformation. 

Besides, assuming the QR - Factorization is considered. Let QRA  . Assuming D  is the preconditioner to the matrix


A , 

and AAA 
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We also verify [25] that A has full rank  if 12  ,  and its QR  factorization satisfies the inequalities 
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EXAMPLE 1 . Consider the Matrix  
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The aim is to reduce the matrix A to tridiagonal form using Givens matrix orthogonal plane rotations. 

The first step is 10 AA   . That is 
HTTTTAATTTAAT 23

1

12311

1

11

1

00

1

1 ,,  
. 

1

1

1

1

4
sin,

20

22
cos

rr






  , where   4721.442 22

r . 

We give only the respective phases of plane rotation matrices leading to the final tridiagonal matrices in  Table 1. 

TABLE1: PHASES OF ROTATION MATRIX VIA GIVENS PLANE MATRIX SIMILARITY TRANSFORMATION. 

ITERA

TION 

k 

PHASES OF ROTATION MATRIX 

kA  

1 

























6260990337.6407867

260990337.6510

341640786.111472135955.4

70472135955.42

 

2 

























1884057965.0528102915.2611986652.20

528102914.25814524542.50

611986652.2814524542.5188405797.5306623863.8

00306623863.82

 

3 



















 220107193.12630538098.000

2630538098.0083308727.6408351146.60

0408351146.6188405797.5306623863.8

00306623863.82

 

From the Table1 the original matrix A  has been reduced to tridiagonal matrix as showed for k= 3.  
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The matrix 























220107193.12630538098.000

2630538098.0083308727.6408351146.60

0408351146.6188405797.5306623863.8

00306623863.82

3T
 

Therefore we transform the matrix 3T  via Sturms’ sequence to polynomial equation. 

We can use a fast Newton solver to compute the zeros of the polynomial equation.  

Thus  

poly   05283677212 234

3  T .  

The eigenvalues of 3T  are  0116.15,5584.4,2270.1,3640.6  . 

While the eigenvalue of A  are  0116.15,5584.4,2140.1,3560.6   with polynomial  

03870.5399761.3702230.720516.12 234   . 

We computed for the error in computing for 2131.7
4

4262.14..
min)(

321












 


N

GGGT
NTN

, 

which is quite reasonable to the degree of closeness of approximation to the Tridiagonal matrix T .  

It is necessary to also compute for      






0

32

...
!3!2!i

i

A AA
AI

i

A
e  

Thus 

























0194.70345.40536.50372.7

0346.40589.20857.30676.4

0536.50957.30595.49300.1

0372.70676.49300.10369.3

Ae
 

Using SVD approach, we have   11)()(   SSfSASfAf  

Hence )(Af  

1

2140.1

558.4

3560.6

0116.15

5058.00030.04769.07188.0

8622.00214.03018.04064.0

0000.08074.04932.03238.0

0286.05896.06620.04619.0

000

000

000

000

5058.00030.04769.07188.0

8622.00214.03018.04064.0

0000.08074.04932.03238.0

0286.05896.06620.04619.0










































































e

e

e

e

 

Hence, result computed with SVD for )(Af : 





















7089.19661.07696.00977.1

9662.05462.04351.06206.0

7696.04351.04370.04947.0

0979.16206.04940.07058.0

)0060.1()( eeAf A . 

Direct analytical result with MATLAB for 
Ae  is  





















4034.00546.01484.00966.1

0546.00027.00201.00546.0

1484.00201.00201.00001.0

0966.10546.00001.00074.0

*0030.1 eeA . 

Example 2. Consider again the matrix  

























6457

4134

5332

7422

A
, 

2)( zzf  . 

Since )(zf  is analytic on the domain for which Dz ₵, for D  simply connected region containing the spectrum of  
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A .From        1

21

1 ...,,,
21

  XJJJdiagXXJXA innn k
  

The Jordan canonical form of A is then expressed in the general form 

            1

21 ...  XJfJfJfdiagXAf innn                             (3.9) 

The analytic function f  of a Jordan block  

     
   
 

   

 

 





































i

i

ii

i

i

n

iii

i

f

f

ff

n

f
fff

Jf

i










/

/

1

///

...

!1
...

)( 

                                 (3.10) 

where it is true that       





1

1 !

1n

v

v

i

v

iin Nf
v

IfJf  . 

Hence coupling all these we the write that 

    



























 

6897.07473.935404.1105573.72

5403.00440.549774.609226.41

2651.185615.181285.52442.58

4339.26572.281764.924926.56

1XJXfAf in 

 

 

In passing we remark that the pth root of a diagonalizable matrix can be computed as a byproduct of equation (3.9) free of 

additional cost.  

We give a bound for the Cauchy integral matrix function. Firstly, consider that the first derivative of Cauchy integral 

theorem for matrix function )(Af  that is analytic within and on the boundary of the contour follows from same analogy of 

scalar function of complex variables. Hence we write that for a scalar complex function for Cauchy integral is in the form 

   







 







2

0

2

0

2

00

0

2

0

/

)(

)(

2

1)(

2

1
)( dz

zrez

rezf

i
dz

zz

zf

i
zf

i

i

                              (3.11) 

 Using the fact that zzrezz i  00 ;
, there holds that 

  





 






derezf
r

dire
er

rezf

i
Af iii

i

i

 





2

0

2

0

022

0/

2

1)(

2

1
)( .        (3.12) 

Since the function )(Af  is an entire function, by Morera’s theorem,  KAf )( . Hence we have that 
r

K
Af )(/  for 

r . Thus  AAf ,0)(/
₵

nn
. So it follows that KAf )(/ . A generalization to nth derivative of Cauchy’s 

integral matrix function is then in the form 

 








  Nnd

AzI

rezf

i

n
Af

n

i
n ,

)(

2

!
)(

1

0 






.                                                     (3.13) 

Therefore in view of  equation (3.10) it holds that the expression   1
 AzI  is in the form 

 

 

   

 

 




















































z

z

zz

zzz

AzI

n

1

1

11

1

)(

1

)(

1

2

2

2

1









             (3.14) 
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Then we write that )(Af  is given by 

  


 dzAzIzf
i

Af
1

2

1
)(



. 

4.0 Discussion 

The paper presented Cauchy integral theorem of matrix function wherein, the Lebesgue measure is discussed using Little 

Wood’s Third formula [4]. We made reference to Trapezoidal rule and Composite Simpson’s method [9]. It is showed that 

Cauchy integral matrix function is convergent with respect to the Eigen space of the matrix. The matrix A  is symmetric 

and its eigenvalues are preserved under any similarity transformation. We related this with the Trapezoid rule where the 

contour is taken over the over Jordan arc. 

Then, further using Taylor series, if )(zf  is analytic on the domain for which Dz ₵, for D , it is commutable with 

the Jordan block matrix via the Singular Value Decomposition (SVD). The eigenvalues of the diagonalizable matrix is 

computed using the Givens orthogonal matrix plane rotation where the Sturmian sequence becomes a handy tool. The 

matrix exponential is then computed based on the aforementioned SVD. In particular the function of a matrix for the 

Cauchy integral is computed by this method. 

Since )(zf  is analytic on the domain for which Dz ₵, where, D  is a simply connected region containing the 

spectrum of A  and from        1

21

1 ...,,,
21

  XJJJdiagXXJXA innn k
 , it is computed the density of a matrix based on 

the use of hypergeometric series. 
 

5.0 Conclusion 

The paper presented numerical formulae for computing Cauchy integral matrix function. After some preliminary 

discussions we introduced the concept of Lebesgue measure and showed that Trapezoidal rule and Composite Simpson rule 

are Lebesgue measurable over the contour integral. In particular, it is established that Cauchy theorem for matrix function is 

convergent provided the spectral radius of the complex matrix rAzI  . This was proved in the series expansion for the 

inverse matrix 
1)(  AzI   

Besides, we also computed the eigenvalues of the diagonalizable matrix A  by the aid of Givens orthogonal matrix plane 

rotation wherein, the Sturm’s sequence becomes a useful too. The error bound for the Givens rotation orthogonal matrices 

was computed. It is also given the method of testing for the rank of a matrix via QR decomposition method. We computed 

the exponential matrix using the Jordan canonical block. Then, as an extension, the use of Residue for the Cauchy matrix 

function explained and its limitation for a matrix of higher orders was stated. The use of hypergeometric series for the 

matrix function was given and stated its application in the testing for the density of a diagonalizable matrix. More of future 

works in this field of research may be found useful to the readership in this direction. 
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