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Abstract 
 

The paper presents the effects of wave breaking in the far field ocean water by wind 

generated from a given source with irregular heights and periods where the depth of 

water is considered deep and gravitational force important. We take into 

consideration Cariolis force and the Reynolds number from Laminar to turbulence 

typical of Rogue wave of the surface wind impact on Upper Ocean dynamic energy 

fluxes across boundary layers simultaneously interacting. 

Dissipation of energy waves lost in the forms of white capping, depth induced wave 

breaking, bottom friction and, wave-wave interactions are analyzed. Associated 

equations for the wind growths for both linear and exponential forms are given. It is 

established that wave variance densities for both potential and kinetic energies with 

their wave energy modulations are dependent on the wave height and water depth. 

The cross correlation function for the stationary ergodic real valued process for the 

spectral density functions and their auto correlation spectral density functions for the 

wave horizontal velocities inform of Fourier transform for the wave velocity and 

acceleration transfer functions are discussed. 

The regularity theory of energy minimizing harmonic maps into Riemannian 

manifolds in the sense of Schoelen and Uhlenbeck is introduced. The D2 Burgers 

equation for the Stokes waves is stated under special conditions. The eigenvalue 

bounds and backward stability for the flow of waves mechanism formed the peak of 

discussion for the pressure matrix based on pre-conditioned iterative solvers for the 

incompressible flow of the Navier –Stokes equation. 

 

Keywords: wave breaking, turbulence, spectral density functions, Navier –Stokes equations, eigenvalue 

problem 

2010 AMS subject classifications. Primary: 76B15, 74J15, 76D05, 76D06, Secondary: 34A55,11K70, 26A15. 

 

1.0 INTRODUCTION 

This paper aims at giving underlying understanding surface wind impact on upper ocean dynamics and the energy flux 

modulations across boundary layers. We give the mechanisms with which waves are created on and within the body of 

Ocean water and work done per unit area. For a single wave process the auto correlation and auto spectral density functions 

are respectively defined in the form of Fourier series embedding wave frequency and the acceleration transfer functions. 

The probabilistic nonlinear wave density function for the instantaneous force is expressed. The pressure matrix from the 

ergodic non stationary 2D Burgers’ equation is presented where the spectral radius is important with their Riemannian 

manifolds. 

The paper is motivated by effects of wind generated waves in the far field ocean water where depth of the water is 

considered deep and gravitational force important. The waves are generated from a source when wind blows across water 

surface for a long period of time with irregular heights and periods due to irregular nature of wind. The generation of the 

surface elevation of ocean water is a sum of harmonic waves obtained at different times and locations and is presumed 

statistically independent of their sources of origin. 

We define deep water ocean waves as waves which are unaffected by the ocean bottom [1, 2]  and cited references therein.  
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‘’When air first flows in contact with the water, it creates a kind of ripples called capillary waves. The ocean surface [4] is 

then roughened and a mechanism of transfer of energy from the wind to the water is then made where gravitational 

attraction is expressed through still water’’. 

Firstly, we give overviews of an ocean ( e.g., Atlantic ocean). For instance, it has an average depth with its seas of 10, 925 

feet (3,330 meters) in Lagos, Nigeria, while it has a maximum depth of 27,493 feet (8,380 meters) in Pueto Rico trench, 

north of the Island of Pueto Rico. The area of the Atlantic Ocean without its dependent seas is approximately 31,830, 000 

square miles (82,440,000 square kilometers). When square kilometers of the seas are added, it has a total area of 41,100,000 

square miles (106,460,000 square kilometers). 

Using above information therefore, factors that do make up components of the ocean wave are the length, height, period 

and speed. The size of the wind produced is determined by the wind speed, wind duration and fetch within limited period. 

The primary objectives in the paper are to know information  on ocean water waves based on impulse, potential energy, 

kinetic energy , mean square of bed, velocity, radiation stress , wave power, momentum flux and pressure equations. 
 

1.1        PRELIMINARIES /LITERATURE REVIEWS 

The relevant equations for the wind profiles are hereby presented. The equations for the wind speed, wind growths, 

steepness in wave front, wind skin friction velocity, wind drag coefficient and Pierson-Moskowitz spectrum are discussed. 

As an illustration for this purpose when the wind blows, some energy is thereby transmitted to the water through the 

atmospheric air. However, during this period of energy transmission from the air to the water, some dissipation of energy 

takes place. The following ways [7,8,9, 10,12] are the means by which energy is lost via: 

(i)        generation by wind; 

(ii)     dissipation by white capping; depth-induced wave breaking; by bottom friction; and wave- wave interactions in both 

deep and shallow water. 

The one point function for the sea surface elevation is described by the equation 

    
i

iii tat  cos                                                                                       (1.1.1) 

In equation (1.1.1) above,   is the surface elevation of the undisturbed surface of the ocean water,   is the amplitude of 

ith  wave component, i is the relative radian or circular frequency of the ith   wave component in the presence of ambient 

current. The absolute radian frequency which is the Doppler shift, is defined in the form 


 uk .                                                                                                            (1.1.2) 

For instance, in equation (1.1.2),    is the sum of relative frequency ,and the product of their ambient current velocity 

vectors 


uk .  and wave number. 

We give equation for the wave speed in deep ocean water of depth h  due to gravity in the form: 

 khgk tanh2                                                                                                     (1.1.3) 

Let us take notice that Newton iteration method described in [3,18] can be used to refine an approximate value of 
2  . 

 Wave breaking starts when the ratio of wave height over water depth is greater than a certain limit where dissipating 

energy acts rapidly. 

The steepness in wave front [7] which controls the white capping expressed in the form: 

    ,,, E

k

k
S wds 



    ,                                                                           (1.1.4) 

where,   is the steepness dependent coefficient,   is the wave number,   is the wind direction,  


  and 


k  are 

respectively the mean frequency and mean wave number. 

Categorization of wave growth [12] by wind consisting of linear growth and exponential growth is  

),( BEASin                                                                                                (1.1.5) 

with the wind spread measured at m10  elevation 10U  above sea level is highlighted. We then express [10,12] the wind 

skin friction velocity  U  in the form: 

2

10

2 UCU D
    ,                                                                                          (1.1.6) 
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where, DC  is the drag coefficient and can be obtained [12] in the form: 

 














smUforUms

smUfor
UCD

/5.7,10/065.08.0

/5.7,102875.1
)(

10

3

10

10

3

10
               (1.1.7) 

Thus on a given day the drag wind coefficient of the ocean surface is sea state dependent. Hence wind stress measurements 

collected from ocean which may be used for investigation of dependence of drag coefficient and dynamic roughness of the 

ocean surface at different times and places in the ocean is a worth undertaking as a major task for enhancing oceanic 

activities on a large scale. 

The practical purpose is to calculate the DC  and wind stress at each interval of time, say 12-hourly and then form monthly 

mean records of DC  and wind stress for each year. Proper investigation of studies may be carried out for over a period of 

twenty years or more, say from 2001 to 2021. 

With this, one is able to compute the ratio of wind skin friction velocity *U   to that of phase speed
h

c  with high certainty 

of confidence. 

The factor A  in the linear growth expressed in equation (1.1.5) is given in the form 

   ,]cos,0max[
2

102.1 4

2

3

HU
g

A w





 


                                         (1.1.8) 

where, (





2

28

13.0
,exp

*

*

4

* U

g
H pm

pm

































 )                               (1.1.9) 

In equation (1.1.8) the term w  
is the wind direction, H is the filter and 

*

pm is the peak frequency for the fully 

developed sea state [12]. 

The equation for the wind exponential growth [12] is expressed as: 

  2
2

*
^

cos,0max w

w
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
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


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,                                                               (1.1.10) 

where,   is the Miles constant [5,6]. The Miles constant is calculated in the form: 

 w
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U

c
re

c

gz
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


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
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2.1

*

2

4

2
                                                                         (1.1.11) 

In equation (1.1.11) the term 41.0  is the von Karman constant and ez  being the effective surface roughness. 

Summing up, the wind profile could be described as given below 










 


e

e

z

zzzU
zU 0* ln)(


                                                                           (1.1.12) 

 The total surface of wind [5,6 , 7 ] stress relative to the density of the air a  is given by 



 UUa                                                                                                       (1.1.13) 

Wherefrom, the term ez   appearing in equation is: 

r

r

z
z

w

e






1

0 ,           (where, 
g

U
z

2

*
0



 )                                                      (1.1.14) 

In equation (1.1.14), the value of  is taken as 01.0 . Note that the value of the steepness   appearing in equation (1.1.4) 

is obtained in the form 
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 
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                                                                        (1.1.15) 

The parameters ,dsC  and p  are [5] the tunable coefficients and   may be taken as 0. 

The term 


S is the overall steepness of the wave whilst 



pmS being the value of 


S  for the Pierson-Moskowitz 

spectrum 

tolpm EkS





 31002.3
                                            (1.1.13) 

The rest parts in the papers are arranged as follows. Section2 gives materials and methods adopted .The values 

for mean frequency 


  , mean wave number


k  and total wave energy tolE  are defined using relevant materials in 

the existing literatures. Based on the foregoing, the aim is to provide the numerical formulae for the 

mathematical models on the spectral short crested wind generated waves in the coastal regions and their group 

velocity. The Euler-Stokes equations as well as the accompanying auto-correlation and auto spectral variance 

density are discussed. It is established that the Cross correlation function for the stationary ergodic real valued 

processes )(tX  and )(tY  in the directions of the wave profiles is the main statistical tool for analysis of wave 

variance density. We adopt the regularity theory for the energy minimizing harmonic maps into Riemannian 

manifolds. The strong differentiability of the function F implies the continuity of the Jacobian matrices with 

respect to the geodesic ball. We motivate this section principally with the work of [11. In section 3, the 

backward stability for linear system of equation arising from the discretization of Euler-Burgers equation in 2D 

is presented and the eigenvalue bounds are given utilizing the Weyl’s theory in the sense of [2]. We give 

equations for encompassing square root of a diagonalizable matrix which may be useful in control theory in 

manner similar to [13,14].It is suggested that a modified fast linear solver such as the SOR method (Succesive 

Overelaxation method) could be used for the resulting system of equations. 

 

2.0        MATERIALS AND METHODS 

The values for mean frequency



 , mean wave number



k , and the total wave energy tolE
 are defined by the 

equations 

 
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
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
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
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 
1

2

0 0

1 ,
1




















  



 ddE
k

Ek tol

                                                                  (2.1.2) 
2

2

1
gaE wtol 



 ( where, a  )                                                                  (2.1.3) 

where the total wave energy for the dynamical wave pattern is  

  







2

0 0

, ddEEtol

                                                                             (2.1.4)                     

The equation expressing saturation point for the white capping is  
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where, 

  


dEkcB gk ,3
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    (threshold saturation point)                          (2.1.6) 
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Waves start breaking when, kBkB )( . 

The bottom friction equation for the ocean water [10] is expressed as: 

 


,
)(sinh 22

2

, E
khg

CS bbds 

 .                         (2.1.8) 

The bC  22067.0  sm  is the bottom friction coefficient [8] independent of the bottom orbital motion 

  




ddE
khg

U rms ,
)(sinh

2

0 0

22

2
2

 




 .                      (2.1.9) 

It follows from the fore goings that in a fully developed wave conditions in shallow water, the logarithm wind 

profile is the equation 

0

ln
11

z

z

kCz



                                          (2.1.10) 

Where for instance, zC  is the wind drag coefficient in the reference point of wind speed at the elevation z  for 

4.0k , the Karman constant. Strong wind forcing takes place when
1.0* 

wc

U

 .  

 

2.2    THE MANIFOLDS FOR HARMONIC MAP 

To begin with, we adopt the regularity theory for the energy minimizing harmonic maps into Riemannian 

manifolds. The strong differentiability of the function F implies the continuity of the Jacobian matrices with 

respect to the geodesic ball. We motivate this section as follows principally with the work of [11]: 

Let 
mn NMf :  be a map between Riemannian manifolds of dimension n  and m  where M  is compact and 

N is an open manifold. For 2n  the energy minimizing harmonic map is Holder continuous and smooth if M

and N  are smooth. Let  NMC r ,  be the space of maps NMf :  which possesses continuous r - derivatives 

wherefrom, ),(),( krr RMCNMC   is a Banach space sub manifold [11].We also let  NMC r ,,

,  ( ]1,0( ) be the 

subset of  NMC r ,  whose r th derivatives are Holder continuous with exponent .The separable Hilbert space 
 kRML ,2

 will be the set of maps
kRMf : whose component function have first derivatives in 

2L . Notably, by 

 kRML ,2

0,1  we mean those 
2

1L  maps which are zero on the boundary M . 

Further assumption that     MxeaNxfRMLfNML k  .,)(:,, 2

1

2

1  given that dim 1M , then  NML ,2

1  is a 

Hilbert submanifold on  kRML ,2

1  which needs not be so for dim 1M . 

It us note that the set  NML ,2

1  inherits strong and weak star topologies from  kRML .2

1 . 

As a result, the energy functional is expressed as  

   
M M

uedVxduxdufE )()(),(

                                                      (2.2.1) 

Where for instance, the Lagrangian  )(ue  is given in local coordinates in the form: 

 
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







,
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1
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i

ii

dxg
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                                                  (2.2.2) 

and g
 is the metric tensor of M . 

The energy norm is then given by 

 
M i

i dVxuuEu
22

2,1
)()(

 ,                                                             (2.2.3) 

 wherefrom, dV  is the volume element of M . 

With these expositions therefore, it follows that a harmonic map is a solution to the Euler –Lagrange equation 

for E  in ),(2

1 NML . 
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The geodesic ball 
)(aB  about Ma is then the open or closed sphere in the topology defined where u  is 

Holder continuous. In this case therefore a blow up harmonic map at the point vector 
)0(x  is of particular 

interest for a 
)0(u minimizing tangent map. 

 

3.2     THE EULER-STOKES- BURGER EQUATIONS 

As said earlier, higher steepness of wave implies ratio of wave height to wave length with higher water particle 

velocities. In line with this, we proceed by giving equations of wave’s motion. The relevant equations in the 

existing Literature [17,18] are hereby reviewed: 

Equation of Euler: 
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where, 

t

u

z

u
w

y

v
v

t

u
u

Dt

Du





















,                                                      (2.3.2) 

In equation (2.3.1), the parameters appearing denoted as  = mass density of fluid, ZYX ,, = abstract body force 

per unit mass along zyx ,,  directions. 

By adding the kinematic viscosity to each of equations in equation (2.3.1), the Navier Stokes equations are in 

the form: 
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Where,  
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denotes the Laplace equation. For irrotationality, 
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 Alternatively we rewrite the term


















2

2u

xx

uu , so that,  








































txxtt

u                                                                               (2.3.5) 

The expression for potential function   is given in the form: 

  
 

 tkx
kd

zdkgh



 


 sin

cosh2

cosh                                                                   (2.3.6) 

But it is known that 0
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Using this, it follows that  
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This has the solution in the form 
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We divide through by  XZT  to have  
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                                           (2.3.11) 

Setting as  

2

2

2 1
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 and  
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Z
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
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

                                                     (2.3.13) 

The equation for pressure below the sea surface is written in the form 
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))(cosh
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
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The work done in unit time or energy carried across unit width of a section is  
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Because khgk tanh2  , we then have that 
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.  

The energy is transferred at a speed equal to that of group velocity. 

Therefore, we write that  
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. 

 We define the statistical mechanics [12] for the Cross correlation function in the stationary ergodic and real valued 

processes )(tX  and )(tY  
by the equation 

  ,...)2,1,0(,)()(
1

)()()(
0

   dttYtX
T

tYtXEtR

T

XY
                 (2.3.15) 

where the Fourier wave transform for the Cross correlation is the equation 

      deRFS fi

XYXY

2





                                                                        (2.3.16) 

In equation (2.3.16), the real part is the spectrum while the imaginary part is the quadrature spectrum. 

For a single wave process the auto correlation and auto spectral density functions respectively are defined [12,15 ] in the 

form 

      XXX RtYtXER  )()(                                                                (2.3.17) 
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 




   defS fi

XX

2)(
                                                                                 (2.3.18) 

Therefore from the forgoing analysis, the spectral density functions of the wave horizontal velocities as described by the 

equations below: 
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Wherefrom, the Fourier transform for the wave velocity profile is  
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Where for instance, kdgkf tanh)2( 2   and f  is the wave frequency and the acceleration transfer function is  
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The probabilistic nonlinear wave density function for the instantaneous force is expressed as:  
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In equation (2.3.24) above, the following notations denote that: 

a Standard deviation of particle acceleration, 

uuCFa  , 

2

4

1
dCK m

 

mC Effective inertial coefficient  
 2

4

ka

kaA


 ;  

2

d
CC d  . 

The Reynolds number describing state of turbulence can be calculated from most ocean water waves which are expressed in 

the form of D2  Burgers equations.  In line with [16] a prototype D2  Burgers equation can be written in the form: 
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With boundary conditions 
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                           (2.3.26) 

and the initial conditions 

            zxzxtzxvzxtzxu tt ,;,,,,,,, 00                               (2.3.27) 

From equation (2.3.27) above,   is the Reynolds number, whilst  tzxu ,,  and  tzxv ,,  are the respective velocity 

components, h  is the wave height, d is the water depth, k  is the wave number =


2 ,   is the wave length, z is the 

vertical coordinate at the point where   is considered and x  is the horizontal coordinate with T being the wave period, t  

is time instant. 
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0.3      The Eigenvalue Bounds and Backward Stability Solution 

Discretization of equation (2.3.26) in the x  and z  direction for the discrete functions on an zx nn   grids in space 

domain    dcba ,,   leads to a system of linear equation in the form: 

bAs                                                                                                      (3.1.1) 

where the matrix mnm RbRA   ;     . We are required to solve for the unknown variable  s  as ocean water phase vector 

as influenced by the fluid density ratio of air density to water density.  The backward perturbation tube [13] is defined  

  bsAAtsA
Fs  .

min

                                                                        (3.1.2) 

where for instance,    2

1

AAtraceA T   . The least squares solution is given by  
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Equation (3.1.3) has a solution 
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     ,                                                                     (3.1.4) 

and   

)(min

2

2

^

A
s
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


                                                                               (3.1.5) 

Because the boundary layers of the Ocean b  in equation (3.1.1) is fixed, we need only consider worthwhile the 

perturbation in the matrix A . Therefore, using this technique, we write that  
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The AC  is defined to be  

 AA CAAC  :  and  
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 The holder continuity for the stream function nRD:  with exponent  1,0  and )(DCD nn  which satisfies the union 

of spectrum   DA   with exponent   as 
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for any ]1,0(,1,  DXX kk
.The 

kX  is the principal value of matrix A . 

The Gaussian function   2exp: mtt   for 0m  is Lipchitz continuous on 
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thus for which holds the principal part for A  the inequality 
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The concave function resulting for two- phase wave matrices for a wave catching up with the one at the front is in the form: 



















 ]log[2

2
BA

BA

BA
BA



                                       (3.1.11) 

Using elementary calculus, the matrix Alog is given in the form: 
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whenever the wave series converges and I  being the identity matrix. The series converges if and only if 1 IA . Note 

also that 
   

A

A
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


1
1lnln

.  As a result, the condition number for  Aln  is defined as  
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ln
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ln   .                                                                  (3.1.13) 

 

3.2              The Spectral Representation And Sub-harmonics For the wave Equations. 

Particularly, we are interested in the amplification factor of high frequency noise corresponding to low eigenvalues for the 

wave equation accompanying the flow of Ocean water. This, is so from the decomposition of 
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 . For the noisy data 

b from the linear system bAs  , we give the Euclidean norm in the 

error data in the form 

 bb . The spectral representation follows from 
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Orthogonality of the eigenvectors implies that  
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. Therefore a summary of the error estimate from the solution to the data error is in the form 
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The principal part of the matrix is pth  root, e.g., [13,14] and the cited references therein; for the wave matrix via Newton 

iteration is computed using the equations: 
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Therefore as IMwhenAGn n

p
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, .  

From the above iteration, Aln  can be recovered as 
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The eigenvalues of A  are contained in the equation 
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We discuss the sub harmonics of the stream function . By Rado’s theorem, [2] for example, there are n ...,,, 21  

singular values of the matrix ordered in decreasing sequence for which  

       )(log....loglog 21  fff k        ,                                             (3.2.6) 
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are  subharmonics on   for nk 1 . Weyl’s theorem then shows that  
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By Cauchy’s formula it follows that                                                                          
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is subharmonic on  .  

which holds for all )(zfvi elements of  )(zfsp  in the union    kiszfB i ,...,2,1,,)( 0  . 
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0.4     Numerical Experiments  

Particularly, we start with the improved SOR iterative formula in the algorithm stated below: 
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  endif 

4.2             The improved SOR Method 
The improvement to the iterative method [13] comes from the fact that after some steps of successive iterates of Gauss-
Siedel method, define the error iterates in the form 
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We distribute the error estimate in the form 
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as an approximation for L
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Therefore, it follows that  
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Thus the implication of this is that the wave [13] at the front will have a break off criterion when )1()( qd k 


 for the absolute 

error. It is in the form 
)1(

)1(

)(

q
x

d

k

k







  for the relative error. 

5.0     Conclusion 

The paper presented methods of turbulence often seen in the ocean water caused by wind generated waves from a given source which moves into 

the far field ocean water. Various sources of energy dissipation which occur during this process are given and equations of wind speeds and wind 

skin frictional force are described. We mentioned that wind growths consist of linear and exponential growths. The values for mean frequency





, mean wave number


k ,and the total wave energy 
tolE  are defined by their equations in synergy with some existing literatures. We defined the 

statistical mechanics for the Cross correlation function in the stationary ergodic and real valued processes )(tX  and )(tY  
by an equation. It was 

adopted the regularity theory [11] for the energy minimizing harmonic maps into Riemannian manifolds where the Jacobians are assumed 

continuous with strong derivatives. The 2-D Burgers equations were described with the Reynolyds number dominating from Laminar to 

turbulence of Ocean water waves. The problem was reduced to solving a large linear system of equations where the spectral radius of the matrix 

was considered very important for analysis. Weyl’s theorem [2] for sub-harmonicity for the Eigen space discussed where Rado’s theorem 

implied.  

The principal part of the matrix with respect to the pth root [14] was presented. The improved SOR method for the linear systems solvers was 

used for analysis and illustration.   

As a whole, it is recommended that what have been discussed in the paper may be relevant to oil workers of Nigeria National Petroleum 

Company, the naval force, Sea farer who must must be able to adapt to ocean, air, litoral and riverine environments after reading this paper. The 

research paper will be found appealing for Naval operations in consonance with National oceanic and atmospheric administration and National 

Science foundation where investment in science and technology on oceanic [17] activities are highly needed both for academic activities and 

military operations with predictive capability to tactical missions. It will help in the naval capability warefare operations with focused on the 

improvement of air, surface and undersea weapon performances. The studies will also enable advanced electrical systems, components and 

survivable, agile, mobile sustainable manned and unmanned surface and sub-surface sea plateforms and undersea weapons, [17]. 
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