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Abstract: 
 

Let p be a prime number (p = {3, 5, 7, 11, …}) and G a finite permutation group of 

degree 4p, generated via wreath products of pairs of permutation groups. We, in this 

paper discuss the solubility of G using numerical approach. The groups, algorithms 

and programming (GAP) is used to generate G and also validate our results. 
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1. Introduction 

The Wreath product of two permutation groups C and D denoted by 𝑊 =  𝐶𝑤𝑟𝐷 is the semi-direct product of P by D, so 

that, W  =  {(𝑓, 𝑑)|𝑓 ∈ 𝑃, 𝑑 ∈ 𝐷},  with multiplication in W defined as (𝑓1, 𝑑1)(𝑓2, 𝑑2) = ((𝑓1, 𝑓2𝑑1
-1) (𝑑1, 𝑑2))  ∀   𝑓1, 𝑓2 ∈

𝑃 𝑎𝑛𝑑 𝑑1, 𝑑2  ∈ 𝐷 is a special form of permutation group. When the nature of the Wreath products groups is well 

Understood it facilitates comprehension of certain types of subgroups of the symmetric groups.  

According to [1], if a group 𝐺 has a sequence of subgroups, say  

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e}, 

where each subgroup Hi is normal in Hi+1 and each of the factor groups Hi+1/Hi is abelian, then G is a soluble group. 

Solvable groups in addition to allowing us to distinguish between certain classes of groups, turn out to be very key to the 

study of solutions to polynomial equations.  

Let p be an arbitrary odd prime number. We intend to obtain more detailed descriptions of the unique structure of Wreath 

product (permutation) groups of degree 3p that are not p-groups and investigate their solubility using numerical approach. 

There are some recent results on the solubility of permutations groups including the following: 

Thanos [2] proved that If |𝐺| = 𝑝𝑘  where p is a prime number then G is solvable. In other words every p-group where p is a 

prime number is solvable. 

Bello et al [3] used the concept of p-groups to construct locally solvable groups using two permutation groups by wreath 

product. 

Gandi  et al. [4] investigated solvable and Nilpotent concepts on dihedral groups of an even degree regular polygon. 

The results from the above papers and other findings on group concepts from the works of  the authors in [5], [6] and  [7] 

will be used as valuable references towards achieving our desired objectives. 

In Section 2 we give some basic definitions, concepts and results which are required here. In Section 3 we applied groups, 

algorithms and programming (GAP) [8] to generate and discuss solubility of permutation groups of degree 4p (p = 3, 5, 

7,11, ..). The main result of this paper covering all the permutation groups of degree 4p is stated in Section 4. 
 

2. Materials and Methods 

2.1        p-group    

A finite group 𝐺 is said to be a p-group if its order is a power of p, where p is prime. A subgroup H of a group 𝐺 is a p-

subgroup if it (H) is a p-group. By Lagrange’s theorem, this is equivalent to the requirement that the order of H be a power 

of p for all H ∈ 𝐺. 

2.2 Stabilizer 

Any subset of 𝐺 which fix a specified element 𝛼 is called the stabilizer of 𝛼 in 𝐺 and is denoted by 𝐺𝛼 ≔ {𝑥 ∈ 𝐺 | 𝛼𝑥 = 𝛼}. 
 

2.3 Orbit 

When a group 𝐺 acts on a set Ω, a typical point 𝛼 is moved by elements of 𝐺 to various other points. The set of these 

images is called the orbit of 𝛼 under 𝐺, and we denote it by     𝛼𝐺 ≔ { 𝛼𝑥| 𝑥 ∈ 𝐺 }. 
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2.4 Wreath product [9] 

The wreath product of two permutation groups C by D denoted by 𝑊 =  𝐶𝑤𝑟𝐷 is the semi-direct product of P by D, so 

that,  

W =  {(𝑓, 𝑑)|𝑓 ∈ 𝑃, 𝑑 ∈ 𝐷},   
with multiplication in W defined as 
(𝑓1, 𝑑1)(𝑓2, 𝑑2) = ((𝑓1, 𝑓2𝑑1

-1) (𝑑1, 𝑑2))          ∀      𝑓1, 𝑓2 ∈ 𝑃 𝑎𝑛𝑑 𝑑1, 𝑑2  ∈ 𝐷 

Henceforth, we write f d instead of (f, d) for elements of W. 
 

2.5 Theorem [9] 

Let D act on P as f d(𝛿) = 𝑓 (𝛿𝑑−1) where 𝑓 ∈ 𝑃, 𝑑 ∈ 𝐷 𝑎𝑛𝑑 𝛿 ∈  ∆.  Let W be group of all juxtaposed symbols fd, with 

𝑓 ∈ 𝑃, 𝑑 ∈ 𝐷 and multiplication given by (𝑓1, 𝑑1)( 𝑓2, 𝑑2) = (𝑓1 𝑓2 𝑑1
-1) (𝑑1, 𝑑2). Then W is a group referred to as the semi-

direct product of P by D with the action as defined 
 

2.6 Theorem  

If G is a group then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N happens to be a 

normal subgroup of the group G, then the factor group G/N is abelian if and only if  G' <  N'.  

Proof  

Let the mapping f : G → G be any automorphism of a group G. Then by any homomorphism property  

f (aba-1b-1) = f (a) f (b) f (a-1) f (b-1) = f (a) f (b) (f (a))-1( f (b))-1 ∈ G'. Then every element of G' is a finite product of powers 

of commutators aba-1b-1 (where a, b ∈ G) and so f (G') < G'. Let fa be the automorphism of G given by the conjugation by a. 

Then aG'a-1 = fa(G') < G'. So every conjugate aG'a-1 is a subgroup of G' and then G' is a normal subgroup of G. Since all a, 

b ∈ G, we have a-1b-1 ∈ G and so (a-1) -1 (b-1) -1ab  ∈  G' and so a-1b-1abG' = G-1 or abG' = baG'. But then by delinition of 

coset multiplication, (aG')(bG') = abG' = baG' = (bG')(aG') and so coset multiplication is commutative and G/G' is abelian. 
 

2.7 Theorem  

A permutation group G is said to be a solvable group if and only if it has a solvable series.  

Proof  

Suppose G is solvable. Then by the definition of “solvable,” in the derived series of commutator subgroups we have G(n) = 

(1), for some n ∈ N. By Theorem 2.6, in the series G > G(1) > G(2) >... > G(n) = (1), we have that G(i+1) is normal in G(i) and 

G(i)/G(i+1)) is abelian. Clearly, each subgroup is normal in the preceding subgroup and it follows that G is solvable since the 

factor groups are abelian.  

Now suppose G = G0  >  Gl > ... >  Gn = (l) is s solvable series. Then Gi/Gi+1 is abelian (by definition of solvable series) for 

0 ≤ i ≤ n - l. By theorem 2.6, Gi+l > (Gi)’ for 0 ≤ i ≤ n - 1. Since in the derived series of commutator subgroups we have G 

> G(1) > G(2) >... > G(n), then  

G1 > G0’ = G’ = G(1) 

G2 > G1’ = (G(1))’ = G(2) 

G3 > G2’ = (G(2))’ = G(3) 

Gi+1 > G’i = (G(i))’ = G(i+1)  

Gn > G’n+1 = (G(n-1))' = G(n) 

But Gn = (1) so it must be that G(n) = (1) and G is solvable. 
 

2.8  Sylow’s Theorems [10] 

Let 𝐺 be a finite group. If |𝐺| = p𝑟𝑚 and (p, 𝑚) = 1, then  

1. There is at least one Sylow p-subgroup 𝐻 of 𝐺. 

2. If 𝐵 is any p-subgroup of 𝐺, then 𝐵 ⊆ 𝑥−1H𝑥 for some 𝑥 ∈ 𝐺. 

3. If 𝐾 is any Sylow p-subgroup of 𝐺, 𝐾 = 𝑔−1H𝑔 for some 𝑔 ∈ 𝐺 

4. If np is the number of Sylow p-subgroups of 𝐺, then np divides 𝑚 and np  ≡ 1 mod p. 
 

2.9  Corollary  

A Sylow p-subgroup of a group 𝐺 is normal if and only if it is unique. 

Proof: 

Suppose that a Sylow p-subgroup H of a group 𝐺 is unique. Since all Sylow p-subgroups are conjugate to H, the uniqueness 

of H implies that H = 𝑔−1H𝑔 for all 𝑔 ∈ 𝐺, that is H is normal in 𝐺. Conversely, suppose H is normal in 𝐺, then 𝑔−1H𝑔 =
H for all 𝑔 ∈ 𝐺. Let k be any other Sylow p-subgroup of 𝐺, then 𝐾 = 𝑔−1H𝑔 for some 𝑔 ∈ 𝐺. that is 𝐾 = H. 
 

3. Wreath product group of degree 4p (p = 3, 5, 7, 11, .. . ) 

We shall now construct some p-groups by means of wreath product of two permutations. 
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3.1 Consider the permutation groups C1 and D1 

C1  = {(1),(12345),(13524),(14253),(15432)} and 

D1 = {(1),(6,7)}  

acting on the sets Ω1  = {1,2,3,4,5} and  Δ1 = {6,7} respectively. 

Let P1 = 𝐶1
Δ1  = {f:∆1→C1}. Then |P1| = |C1||∆1|   = 52  = 25 

The mappings in P1 are as list below.  

f1: 6→(1), 7→(1) 

f2: 6→(12345), 7→(12345) 

f3: 6→(13524), 7→(13524), 

f4: 6→ (14253), 7→ (14253) 

f5: 6→ (15432), 7→ (15432) 

f6: 6→ (1), 7→ (12345) 

f7: 6→ (1), 7→ (13524) 

f8: 6→ (1), 7→ (14253) 

f9: 6→ (1), 7→(15432) 

f10: 6→ (12345), 7→(1) 

f11: 6→ (12345), 7→(13524) 

f12: 6→ (12345), 7→(14253) 

f13: 6→ (12345), 7→(15432) 

f14: 6→ (13524), 7→(1) 

f15: 6→ (13524), 7→(12345) 

f16: 6→ (13524), 7→(14253) 

f17: 6→ (13524), 7→(15432) 

f18: 6→ (14253), 7→(1) 

f19: 6→ (14253), 7→(12345) 

f20: 6→ (14253), 7→(13524) 

f21: 6→ (14253), 7→(15432) 

f22: 6→ (15432), 7→(1) 

f23: 6→ (15432), 7→(12345) 

f24: 6→ (15432), 7→(13524) 

f25: 6→ (15432), 7→(14253) 

We can easily verify that P is a group with respect to the operations (f1, f2) (𝛿) = f1 (𝛿1) f1 (𝛿1), where 𝛿1𝜖 Δ1  

We recall the definition of the action of D1 on P as f d (𝛿1) = f (𝛿1𝑑−1) where f 𝜖 P, d 𝜖 D1 and 𝛿1𝜖 Δ1, then D1 acts on P as 

a groups. 

We also recall the definition W = C1 wr D1, the semi-direct product of P by D1 in that order; i.e.  W = {(f, d) | f 𝜖 P, 𝛿1𝜖 Δ1} 

Now, W is a group with respect to the operation; 

(f1, d1) (f2 , d2) = (𝑓1, 𝑓2
𝑑1

−1

) (d1 , d2), and  

accordingly, d1 = (1), d2 = (6,7).  

Then the elements of W1 are 

(f1 ,d1), (f2, d1), (f3, d1), (f4, d1), (f5, d1), (f6 ,d1),  (f7, d1), (f8, d1), (f9, d1), (f10 ,d1),  (f11 ,d1), (f12 ,d1),  
(f13 ,d1), (f14 ,d1), (f15 ,d1), (f16, d1), (f17, d1), (f18, d1), (f19 ,d1), (f20, d1), (f21 ,d1), (f22 ,d1), (f23, d1) (f24, d1), (f25 , d1), (f1 ,d2),  (f2, d2), (f3, 

d2), (f4, d2), (f5, d2),  (f6 ,d2), (f7, d2),  (f8, d2),  (f9 ,d2), (f10 ,d2), (f11, d2), (f12, d2), (f13 ,d2), (f14 ,d2), (f15, d2), (f16 ,d2), (f17, d2), (f18, d2), 
(f19 ,d2), (f20, d2), (f21 ,d2), (f22 ,d2), (f23 ,d2), (f24, d2), (f25, d2) 

Now, define action of W1 on Ω1 x ∆1 as  

(𝛽, 𝛿1)fd = (𝛽𝑓(𝛿),𝑑𝛿) where 𝛽 𝜖 Ω1 and 𝛿1𝜖 Δ1 

Further, Ω1 x ∆1 = {(1,6), (1,7), (2,6), (2,7), (3,6), (3,7), (4,6), (4,7), (5,6), (5,7)} 

We obtain the following permutation by action of W1 on Ω1 x ∆1  

(1,6)f1d1 = (1f1(6), d1) = (1(1), 6(1)) = (1,6) 

(1,7)f1d1 = (1f1(7), d1) = (1(1), 7(1)) = (1,7) 

(2,6)f1d1 = (2f1(6), d1) = (2(1), 6(1)) = (2,6) 

(2,7)f1d1 = (2f1(7), d1) = (2(1), 7(1)) = (2,7) 

(3,6)f1d1 = (3f1(6), d1) = (3(1), 6(1)) = (3,6) 
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(3,7)f1d1 = (3f1(7), d1) = (3(1), 7(1)) = (3,7) 

(4,6)f1d1 = (4f1(6), d1) = (4(1), 6(1)) = (4,6) 

(4,7)f1d1 = (4f1(7), d1) = (4(1), 7(1)) = (4,7) 

(5,6)f1d1 = (5f1(6), d1) = (5(1), 6(1)) = (5,6) 

(5,7)f1d1 = (5f1(7), d1) = (5(1), 7(1)) = (5,7) 

And in summary, 

(Ω1 x ∆1)f1d1 =  (
(1,6)
1,6)

(1,7)
(1,7)

(2,6)
(2,6)

(2,7)
(2,7)

(3,6)
(3,6)

(3,7)
(3,7)

(4,6)
(4,6)

(4,7)
(4,7)

(5,6)
(5,6)

(5,7)
(5,7)

) 

(Ω1 x ∆1)f2d1 =  (
(1,6)
2,6)

(1,7)
(2,7)

(2,6)
(3,6)

(2,7)
(3,7)

(3,6)
(4,6)

(3,7)
(4,7)

(4,6)
(5,6)

(4,7)
(5,7)

(5,6)
(1,6)

(5,7)
(1,7)

) 

(Ω1 x ∆1)f3d1 =  (
(1,6)
3,6)

(1,7)
(3,7)

(2,6)
(4,6)

(2,7)
(4,7)

(3,6)
(5,6)

(3,7)
(5,7)

(4,6)
(1,6)

(4,7)
(1,7)

(5,6)
(2,6)

(5,7)
(2,7)

) 

(Ω1 x ∆1)f4d1 =  (
(1,6)
4,6)

(1,7)
(4,7)

(2,6)
(5,6)

(2,7)
(5,7)

(3,6)
(1,6)

(3,7)
(1,7)

(4,6)
(2,6)

(4,7)
(2,7)

(5,6)
(3,6)

(5,7)
(3,7)

) 

(Ω1 x ∆1)f5d1 =  (
(1,6)
5,6)

(1,7)
(5,7)

(2,6)
(1,6)

(2,7)
(1,7)

(3,6)
(2,6)

(3,7)
(2,7)

(4,6)
(3,6)

(4,7)
(3,7)

(5,6)
(4,6)

(5,7)
(4,7)

) 

(Ω1 x ∆1)f6d1 =  (
(1,6)
1,6)

(1,7)
(2,7)

(2,6)
(2,6)

(2,7)
(3,7)

(3,6)
(3,6)

(3,7)
(4,7)

(4,6)
(4,6)

(4,7)
(5,7)

(5,6)
(5,6)

(5,7)
(1,7)

) 

(Ω1 x ∆1)f7d1 =  (
(1,6)
1,6)

(1,7)
(3,7)

(2,6)
(2,6)

(2,7)
(4,7)

(3,6)
(3,6)

(3,7)
(5,7)

(4,6)
(4,6)

(4,7)
(1,7)

(5,6)
(5,6)

(5,7)
(2,7)

) 

(Ω1 x ∆1)f3d2 =  (
(1,6)
3,7)

(1,7)
(3,6)

(2,6)
(4,7)

(2,7)
(4,6)

(3,6)
(5,7)

(3,7)
(5,6)

(4,6)
(1,7)

(4,7)
(1,6)

(5,6)
(2,7)

(5,7)
(2,6)

) 

(Ω1 x ∆1)f4d2 =  (
(1,6)
4,7)

(1,7)
(4,6)

(2,6)
(5,7)

(2,7)
(5,6)

(3,6)
(1,7)

(3,7)
(1,6)

(4,6)
(2,7)

(4,7)
(2,6)

(5,6)
(3,7)

(5,7)
(3,6)

) 

(Ω1 x ∆1)f5d2 =  (
(1,6)
5,7)

(1,7)
(5,6)

(2,6)
(1,7)

(2,7)
(1,6)

(3,6)
(2,7)

(3,7)
(2,6)

(4,6)
(3,7)

(4,7)
(3,6)

(5,6)
(4,7)

(5,7)
(4,6)

) 

(Ω1 x ∆1)f6d2 =  (
(1,6)
1,6)

(1,7)
(1,7)

(2,6)
(2,6)

(2,7)
(2,7)

(3,6)
(3,6)

(3,7)
(3,7)

(4,6)
(4,6)

(4,7)
(4,7)

(5,6)
(5,6)

(5,7)
(5,7)

) 

(Ω1 x ∆1)f7d2 =  (
(1,6)
1,7)

(1,7)
(3,6)

(2,6)
(2,7)

(2,7)
(4,6)

(3,6)
(3,7)

(3,7)
(5,6)

(4,6)
(4,7)

(4,7)
(1,6)

(5,6)
(5,7)

(5,7)
(2,6)

) 

(Ω1 x ∆1)f8d2 =  (
(1,6)
1,7)

(1,7)
(4,6)

(2,6)
(2,7)

(2,7)
(5,6)

(3,6)
(3,7)

(3,7)
(1,6)

(4,6)
(4,7)

(4,7)
(2,6)

(5,6)
(5,7)

(5,7)
(3,6)

) 

(Ω1 x ∆1)f9d2 =  (
(1,6)
(1,7)

(1,7)
(5,6)

(2,6)
(2,7)

(2,7)
(1,6)

(3,6)
(3,7)

(3,7)
(2,6)

(4,6)
(4,7)

(4,7)
(3,6)

(5,6)
(5,7)

(5,7)
(4,6)

) 

(Ω1 x ∆1)f10d2 =  (
(1,6)
2,7)

(1,7)
(1,6)

(2,6)
(3,7)

(2,7)
(2,6)

(3,6)
(4,7)

(3,7)
(3,6)

(4,6)
(5,7)

(4,7)
(4,6)

(5,6)
(1,7)

(5,7)
(5,6)

) 

(Ω1 x ∆1)f11d2 =  (
(1,6)
2,7)

(1,7)
(3,6)

(2,6)
(3,7)

(2,7)
(4,6)

(3,6)
(4,7)

(3,7)
(5,6)

(4,6)
(5,7)

(4,7)
(1,6)

(5,6)
(1,7)

(5,7)
(2,6)

) 

(Ω1 x ∆1)f12d2 =  (
(1,6)
2,7)

(1,7)
(4,6)

(2,6)
(3,7)

(2,7)
(5,6)

(3,6)
(4,7)

(3,7)
(1,6)

(4,6)
(5,7)

(4,7)
(2,6)

(5,6)
(1,7)

(5,7)
(3,6)

) 

(Ω1 x ∆1)f13d2 =  (
(1,6)
2,7)

(1,7)
(5,6)

(2,6)
(3,7)

(2,7)
(1,6)

(3,6)
(4,7)

(3,7)
(2,6)

(4,6)
(5,7)

(4,7)
(3,6)

(5,6)
(1,7)

(5,7)
(4,6)

) 

(Ω1 x ∆1)f14d2 =  (
(1,6)
3,7)

(1,7)
(1,6)

(2,6)
(4,7)

(2,7)
(2,6)

(3,6)
(5,7)

(3,7)
(3,6)

(4,6)
(1,7)

(4,7)
(4,6)

(5,6)
(2,7)

(5,7)
(5,6)

) 

(Ω1 x ∆1)f15d2 =  (
(1,6)
3,7)

(1,7)
(2,6)

(2,6)
(4,7)

(2,7)
(3,6)

(3,6)
(5,7)

(3,7)
(4,6)

(4,6)
(1,7)

(4,7)
(5,6)

(5,6)
(2,7)

(5,7)
(1,6)

) 

(Ω1 x ∆1)f16d2 =  (
(1,6)
3,7)

(1,7)
(4,6)

(2,6)
(4,7)

(2,7)
(5,6)

(3,6)
(5,7)

(3,7)
(1,6)

(4,6)
(1,7)

(4,7)
(2,6)

(5,6)
(2,7)

(5,7)
(3,6)

) 

(Ω1 x ∆1)f17d2 =  (
(1,6)
3,7)

(1,7)
(5,6)

(2,6)
(4,7)

(2,7)
(1,6)

(3,6)
(5,7)

(3,7)
(2,6)

(4,6)
(1,7)

(4,7)
(3,6)

(5,6)
(2,7)

(5,7)
(4,6)

) 

(Ω1 x ∆1)f18d2 =  (
(1,6)
4,7)

(1,7)
(1,6)

(2,6)
(5,7)

(2,7)
(2,6)

(3,6)
(1,7)

(3,7)
(3,6)

(4,6)
(2,7)

(4,7)
(4,6)

(5,6)
(3,7)

(5,7)
(5,6)

) 

(Ω1 x ∆1)f19d2 =  (
(1,6)
4,7)

(1,7)
(2,6)

(2,6)
(5,7)

(2,7)
(3,6)

(3,6)
(1,7)

(3,7)
(4,6)

(4,6)
(2,7)

(4,7)
(5,6)

(5,6)
(3,7)

(5,7)
(1,6)

) 
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(Ω1 x ∆1)f20d2 =  (
(1,6)
4,7)

(1,7)
(3,6)

(2,6)
(5,7)

(2,7)
(4,6)

(3,6)
(1,7)

(3,7)
(5,6)

(4,6)
(2,7)

(4,7)
(1,6)

(5,6)
(3,7)

(5,7)
(2,6)

) 

(Ω1 x ∆1)f21d2 =  (
(1,6)
4,7)

(1,7)
(5,6)

(2,6)
(5,7)

(2,7)
(1,6)

(3,6)
(1,7)

(3,7)
(2,6)

(4,6)
(2,7)

(4,7)
(3,6)

(5,6)
(3,7)

(5,7)
(4,6)

) 

(Ω1 x ∆1)f22d2 =  (
(1,6)
5,7)

(1,7)
(1,6)

(2,6)
(1,7)

(2,7)
(2,6)

(3,6)
(2,7)

(3,7)
(3,6)

(4,6)
(3,7)

(4,7)
(4,6)

(5,6)
(4,7)

(5,7)
(5,6)

) 

(Ω1 x ∆1)f23d2 =  (
(1,6)
5,7)

(1,7)
(2,6)

(2,6)
(1,7)

(2,7)
(3,6)

(3,6)
(2,7)

(3,7)
(4,6)

(4,6)
(3,7)

(4,7)
(5,6)

(5,6)
(4,7)

(5,7)
(1,6)

) 

(Ω1 x ∆1)f24d2 =  (
(1,6)
5,7)

(1,7)
(3,6)

(2,6)
(1,7)

(2,7)
(4,6)

(3,6)
(2,7)

(3,7)
(5,6)

(4,6)
(3,7)

(4,7)
(1,6)

(5,6)
(4,7)

(5,7)
(2,6)

) 

(Ω1 x ∆1)f25d2 =  (
(1,6)
5,7)

(1,7)
(4,6)

(2,6)
(1,7)

(2,7)
(5,6)

(3,6)
(2,7)

(3,7)
(1,6)

(4,6)
(3,7)

(4,7)
(2,6)

(5,6)
(4,7)

(5,7)
(3,6)

) 

Renaming the symbols as  

(1,6)→1, (1,7)→2, (2,6)→3, (2,7)→ 4, (3,6)→5, (3,7)→6, (4,6)→ 7, (4,7)→8, (5,6)→9, (5,7)→10, 

The permutations in cyclic form are as follows. 

G1 = {(1), (6,7,8,9,10), (6,8,10,7,9), (6,9,7,10,8), (6,10,9,8,7), (1,2,3,4,5), (1,2,3,4,5) (6,7,8,9,10), (1,2,3,4,5)(6,8,10,7,9), 

(1,2,3,4,5)(6,9,7,10,8), (1,2,3,4,5)(6,10,9,8,7), (1,3,5,2,4), (1,3,5,2,4) (6,7,8,9,10), (1,3,5,2,4)(6,8,10,7,9), 

(1,3,5,2,4)(6,9,7,10,8), (1,3,5,2,4)(6,10,9,8,7), (1,4,2,5,3), (1,4,2,5,3)(6,7,8,9,10), (1,4,2,5,3)(6,8,10,7,9), 

(1,4,2,5,3)(6,9,7,10,8), (1,4,2,5,3)(6,10,9,8,7), (1,5,4,3,2), (1,5,4,3,2)(6,7,8,9,10), (1,5,4,3,2)(6,8,10,7,9), 

(1,5,4,3,2)(6,9,7,10,8), (1,5,4,3,2) (6,10,9,8,7), (1,6)(2,7)(3,8)(4,9)(5,10), (1,6,2,7,3,8,4,9,5,10), (1,6,3,8,5,10,2,7,4,9), 

(1,6,4,9,2,7,5,10,3,8), (1,6,5,10,4,9,3,8,2,7), (1,7,2,8,3,9,4,10,5,6), (1,7,3,9,5,6,2,8,4,10), (1,7,4,10,2,8,5,6,3,9), 

(1,7,5,6,4,10,3,9,2,8), (1,7)(2,8)(3,9)(4,10)(5,6), (1,8,3,10,5,7,2,9,4,6), (1,8,4,6,2,9,5,7,3,10), (1,8,5,7,4,6,3,10,2,9), 

(1,8)(2,9)(3,10)(4,6)(5,7), (1,8,2,9,3,10,4,6,5,7), (1,9,4,7,2,10,5,8,3,6), (1,9,5,8,4,7,3,6,2,10), (1,9)(2,10)(3,6)(4,7)(5,8 ), 

(1,9,2,10,3,6,4,7,5,8), (1,9,3,6,5,8,2,10,4,7), (1,10,5,9,4,8,3,7,2,6), (1,10)(2,6)(3,7)(4,8)(5,9), (1,10,2,6,3,7,4,8,5,9), 

(1,10,3,7,5,9,2,6,4,8), (1,10,4,8,2,6,5,9,3,7)} 

The degree of the wreath product (W1) = |C1| x |D1| = 10, while the order is given by 

|W1| = |C1||∆1| x |D1| = 52  x 2 = 50 
 

3.2 Consider the permutation groups C2 and D2 

Let C6 be a group of degree 6 and D6 a group of degree 2 acting on the sets Ω6 = {1,2,3,4,5,6} and  Δ6  = {7,8} respectively. 

Let P6 = 𝐶6
Δ6  = {f:∆6 → C3}. Then |P6| = |C6||∆6|  = 62  = 36. Then Wreath product W2 = G2 is soluble.  

 

Proof: 

After following the same procedure as in 3.1, we obtained the permutations group G2 with order |W6| = |C6||∆6| x |D6| = 72 = 

2332  

G2 has Sylow 2-subgroups of order 8 and large number of Sylow 3-subgroups of order 9.  

This implies that the subgroups of G2 include: H1 of order 1, H2 of order 2, H3 of 3, H4 of order 6, H4 of order 12, H5 of 

order 24 and H6 of order 72.  

 G2 is solvable by theorem 2.7, since it has solvable series  

G6 = H6 ⊳ H5 ⊳ H4 ⊳ H3 ⊳ H2 ⊳ H1 = (1)  

with cyclic factor groups C3, C2, C2, C2 and C2, therefore the factor groups are abelian. Thus G6 solvable. 
 

3.3 Consider the permutation groups C3 and D3 

Let C7 be a group of degree 10 and D7 a group of degree 2 acting on the sets Ω7 = {1,2,3,4,5,6,7,8,9,10} and  Δ7 = {11,12} 

respectively. Let P7 = 𝐶7
Δ7  = {f:∆7 → C7}. Then |P7| = |C7||∆7|   = 102  = 100. Then Wreath product W3 = G3 is soluble. 

Proof: 
After following the same procedure as in 3.1, we obtained the permutations group G3 

with order  |G3| = |C7||∆7| x |D7| = 200 = 2352.  

G3 has Sylow 2-subgroups of order 8 and large number of Sylow 5-subgroups of order 25.  

This implies that the subgroups of G3 include: H1 of order 1, H2 of order 5, H3 of  order 25, H4 of order 50, H4 of order 100 

and H5 of order 200.  

G3 is solvable by theorem 2.7, since it has solvable series  

G7 = H6 ⊳ H5 ⊳ H4 ⊳ H3 ⊳ H2 ⊳ H1 = (1)  

with cyclic factor groups C3, C2, C2, C5and C5, therefore the factor groups are abelian. Thus G6 solvable. 

The main results obtain from the investigation of wreath product groups are as follows: 
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3.4 Proposition  

Let G be the Wreath product of pairs arbitrary permutation groups C and D of degree 4p (p ≥ 3) and H the Sylow p-

subgroup of G. Then (i) H is normal in G and is  soluble (ii) G/H is soluble and (iii) G is soluble. 

Proof  

Now, the order of G that is, |G| = 8×p2.  

Let np(G) be the number of Sylow p-subgroups of the group G.   

By Sylow theorem 2.8, we have  

np(G)  ≡  1  (mod p)  and np(G) | 8. 

It follows from this constraints that we have np(G)  =  1. 

Let H be the unique p-Sylow subgroup of G. 

The subgroup H is normal in G as is the unique p-sylow subgroup by corollary 2.9 proving (i).  

Then consider the subnormal series 

G▹H▹ {e}. 

Note, e here, is the identity element of the group G. 

Then the factor groups G/H, H/{e} have order 23 and p2 respectively, and hence these are cyclic groups and in particular 

abelian by theorem 2.7 proving (ii). 

Therefore the group G of order 8p2 has a subnormal series whose factor groups are abelian groups, and thus G is a solvable 

group by theorem 2.7 proving (iii). 
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