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Abstract 
 

Equicontinuity is a Uniform Space (General Topology (GT)) concept that has 

assumed some notoriety in Locally Convex Space theory (Topological Vector Spaces 

(TVS)). We here 

(i)  Trace the link from GT to TVS, and  

(ii) Exploit  the link to assemble some notes.  

In addition, from the notes, we show that:  

(iii) The T-limited sets of John Webb are equicontinous sets of linear functionals. [7]. 
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1. LANGUAGE AND NOTATION  

For the rudiments of General Topology (GT) we assume the reader is familiar with [1]. ℝ denotes the real numbers, ℭ 

denotes the complex numbers, and by  K we denote either of  ℝ and ℭ. Our vector space E = (E, +, )K is an additive 

Abelian group with an external multiplication (scalar multiplication) by the elements of K, the additive identity of our 

vector space  E = (E, +, )K is the element  called its zero. Note: (K, +, , 0, 1) is itself a vector space over itself with its 

zero the element 0. A topological vector space  is a topological space (E,) where E is a vector space (over K) and  is a 

topology on E compatible with the addition and scalar multiplication of E. We assume familiarity with the rudiments of 

TVS, that can be gleaned from the first few pages of [2], [3], [4] and [5].  

We indicate by /// the end or absence of a proof. 
 

2 THE UNIFORMITY OF A TVS [8] Let EK = (E, +, )K be a vector space, and A a non-empty subset of E. A is 

called a balanced set  if A  A for all   K, ||  1.  

FACT 1   Let  EK = (E, +, )K be a vector space and   A  E. If A is balanced, then – A = (– 1)A = A. More generally, A 

= A for all   K, || = 1. ///  

Let (E,) = ((E, +, )K,) be a topological vectors space. We denote by N() the neighbourhood system of zero, .  

FACT 2   Let (E, ) = ((E, +, )K, ) be a topological vector space.  

(i)   For every U  N(), there exists a balanced V  N() such  that V  U.  

(ii)  For U  N(), there exists a balanced V  N() such  that V + V  U.  

(iii)  [2, Proposition 2.3.1, p.81]. There exists a local base of balanced neighbourhoods of zero. /// 
 

Now recall from [1] that if X   , the subset X = {(x, x)  X x X : x  X} of X x X  is called the diagonal of X x X; if    

A  X x X, A – 1  

= {(a, b)  X x X : (b, a)  A} is called the inverse of A; if    A, B  X x X, the nought product AoB = {(p, q)  X x X : 

there exists r  X such that (p, r)  B and (r, q)  A}. 

Let (E, )  = ((E, +, )K, ) be a topological vector space and W N(). Define  

BW = {(x, y) E x E : x – y  W}. 

Then, with notation as above, we have  
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FACT 3 (i)  BW   E,  

(ii)  (B – W) –1 =  BW  BW 

(iii) For some balanced U  N(), B(1/2)U o B(1/2)U  BW. 

Proof (i):   W, and for any x  E, x – x = . Hence, Bw   E 

(ii):  Let (x, y) (B – W) –1 which means (y, x)  B – W, which in turn means y – x  – W. Hence,  x –  y = – ( y –  x)  –  (– 

W) = W. And so, (x, y) BW. Thus, we have shown that (B – W) –1   BW. BW    (B – W) –1 can similarly be proved  

(iii):  By FACT 2(ii), there exists a balanced U  N() such that  

 U + U  W           …..(1) 

Hence, since 
2

1
  1, by the definition of balanced, it follows from (1) that  

(1/2)U + (1/2)U   U + U  W          …..(2) 

Now let (x, y)  B(1/2)U o B(1/2)U . Then, there exists z  E such that  

(x, z)  B(1/2)U and (z, y)  B(1/2)U 

That is,  

x – z  (1/2)U and  (z – y)  (1/2)U. 

And so, from (2) it follows that  

x – y = (x – z) + (z – y)  (1/2)U  + (1/2)U  U + U  W. 

That is, x – y  W. And so, (x, y)  BW. /// 

Again, let X  , and recall from [1] that a filter U in X xX is called a uniformity on X if every U  U has the properties 

UFT 1  U  X   

UFT 2  U – 1   U   

UFT 3  There exists V  U such that VoV  U.  

Also, a filterbase ℬ in XxX is a base for some uniformity (i.e., generates a uniformity) if every U  ℬ  has the following 

properties.  

BUFT 1  U  X  

BUFT 2 There exists V ℬ such that V – 1  U. 

BUFT 2  There exists V ℬ such that V oV  U. 

FACT 4 Let (E, )  = ((E, +, )K, ) be a topological vector space. Then, ℬ(E, ) = {BW : W N()} is a base for a 

uniformity on E. 
 

Proof Clearly, ℬ(E, ) is a non-empty family of non-empty subsets of ExE. Clearly, for W, W  N(), BWBW  = BWW , 

from which follows that  ℬ(E, ) is a filterbase in ExE. That ℬ(E, ) is a base for a uniformity on E is upheld by FACT 3. /// 

Let (E, ) be a topological vector space and let us denote by U(E, ) the uniformity on E for which  ℬ(E, )  is a base.  

FACT 5 [4, (11.10), p50][5, First paragraph, p. 134] If  (E, ) is a topological vectors space, then  = U(E, ). /// 

For the topological vector space (E, ), the uniformity U(E, ), which we deal with throughout, is the uniformity of  the 

topological vector space (E, ). 
 

3 EQUICONTINUITY  We recall from [1] that a collection F of maps  f  : (X, )  (Y, U) from a topological 

space (X, ) into a uniform space (Y, U)  is said to be equicontinuous at a point x0  X  if for every entourage W of the 

uniformity U, there exists N  Nx() such that ( f (x0), f (x))  W for all x  N and all  f  F. And noted is  

FACT 1  F is equicontinuous at x0 if and only if for every basic entourage W of  U, there exist N = N(x0)  Nx() such that   

(f (x0), f (x))  W for all x  N and all  f  F. /// 

Let (E, *) be a topological vector space . Then, (E, U (E, *)) is a uniform space, and so can be used in place of  (Y, U) in  
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either of the definition or FACT 1 above. If used in FACT 1, then the members of ℬ(E, *) may be chosen as our basic 

entourages. Therefore, it follows from the definition of  ℬ(E, *) that we can give the following. 
 

DEFINITION 2  Let (X, ) be topological space, (E, *) =  ((E, +, )K, *) be a topological vector space, a  X, and F a 

collection of maps f  :  (X, )   (E, *). F is equicontinuous at a if for every W   N(*) there exists N  Na() such that  

( f(a), f(x))  BW for all  x  N and  all f  F.  
 

Observation 3 We have followed the tradition in the literature by writing  

“…..of maps  f  : (X, )   (E, *)”. 

instead of appropriately writing  

“…..of maps  f  : (X, )   (E, U (E, *))” 

We continue to do this in deference to a well-established practice. 

For the discussions that follow, we fix the notation of DEFINI- TION 2 above. 

Notation 4  (X, ) is a topological space  

a  X 

(E, *) = ((E, +, *)K, *) is a topological vector space   

U (E, *) is the uniformity of  (E, *) 

ℬ(E, *) = {BW : W   N*(*)} 

and  

BW = {(x, y)  ExE : x – y  W} 

For W   N*(*) fix balanced  W    N*(*) such that W  

 W (2.2(i) and (iii)).  
 

From the definition of BW, one sees easily that  

W1 , W2    N*(*)   

and      
1WB   

2WB .  

W1   W2 
 

Hence, for W   N*(*) and its fixed balanced W    N*(*),  we have  

BW     BW         ……() 

Therefore, from () and DEFINITION 2, it follows that : 

If (X, ) is a topological space, (E, *) = ((E, +, *)K, *) a topolo- gical vector space, a  X, and F a collection of maps  

f  : (X, )   (E, *) = ((E, +, *)K, *)(See Observation 3), then the following are equivalent.  

(1)  F is equicontinuous at a.    

(2)  For every W   N*(*) there exists N = N(a, W , W)   Na() such that  

( f(a), f (x))  BW   BW for all x  N and all  f  F. 

(3)  For every W   N*(*) there exists N = N(a, W , W)   Na() such that  

 f(x) –  f(a)   – W  = W   W for all x  N and all  f  F. 

(4) For every W   N*(*) there exists N = N(a, W , W)   Na() such that  

 f(x)  f(a)  + W    f (a)  + W for all x  N and all  f  F. 

(5) For every W   N*(*) there exists N = N(a, W , W)   Na()  such that  

 f(x)  f(a) + W for all x  N and all  f  F. 
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Thus, we have proved.  

THEOREM 5  Note 1 [2, last paragraph, p. 198]  Let (X, ) be a topological space, (E, *) = ((E, +, *)K, *) a topological 

vector space, a  X, and F a collection of maps  f  : (X, )   (E, *). Then, F is equicontinuous at a if and only if for every 

W   N*(*) there exists N   Na() such that f(x)  f(a) + W for all x  N and all  f  F. That is,  

f (N)   f(a) + W for all  f  F                ……(*) 

 ./// 

Now let (X, )  ((X, +, )K, ) and (E, *) = ((E, +, *)K, *) be  

both topological vector spaces. Let  f :   ((X, +, )K, )  ((E, +, *)K, *) be a linear map. Suppose  

a  X, W   N*(*), N   Na() and 

f(N)   f (a) + W         ….(1) 

Since (X, ) is a topological vector space and N   Na(), then  

N = a + V        …..(2) 

for some V N(). By the linearity of  f, we have therefore, that  

f(N) = f (a + V ) =  f (a) +  f (V). 

That is  

 f(N) = f (a) + f (V)      .…(3) 

Clearly, (3) and (1) now give  

f (a) + f (V)   f (a) + W                ....(4) 

which is equivalent to  

f (V)  W               ….(5) 

which in turn is equivalent to  

f (b) + f (V)   f (b) + W                ....(6) 

for any other b  X. Hence, from the preceding and THEOREM 5 with its (*), we now have  
 

THEOREM 6 Note 2  For topological vector spaces (X, ) = ((X, +, )K, ) and (E, *) = ((E, +, *)K, *), a  X, and F a 

collection of linear maps f : (X, )  (E, *), the following are equivalent.  

(i)  F is equicontinuous at a. 

(ii) [3, Definition 9 – 1 – 1, p.128]. For every W   N*(*) there exists V   N() such that  f (V)  W for all  f  F 

(iii)  F is equicontinuous at every other point b  X.  

(iv)  F is equicontinuous at . 

(v)  F is equicontinuous. /// 
 

Observation 7  If (X, +, )K and  (X , +, )K are vector spaces and   f  : (X, +, )K   (X , +, )K is a linear map, then  f 

() = . 

If  

((X, +, )K , )         .…(tvs) 

is a topological vector space, we shall call a net in (tvs) converging to the zero, , of (tvs) a null net. We now have from [1] 

and Note 2, taking cognizance of the balanced W   W of Notation 4.  
 

THEOREM 8 Note 3 For topological vector spaces (X, ) = ((X, +, )K, ) and (E, *) = ((E, +, *)K, *),  and F a 

collection of linear maps f : (X, )  (E, *), the following are equivalent.  

 (i)  F is equicontinuous. 

(ii) F is equicontinuous at the zero, , of (X, ). 

(iii) F is NEC at the zero, , of  (X, ). 
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(iv) For every null net (x)  (I, ) in  ((X, +, )K, ) and every W   N*(*), there exists 0 =  0(W)  I such that f () –  f 

(x)  W for all   0 and all f  F. 

(v) For every null net (x)(I, ) in  ((X, +, )K, ) and every W   N*(*), there exists 0 =  0(W , W)  I such that  f () –  

f (x)  W    W for all   0 and all f  F. 

(vi)  For every null net (x)(I, ) in  ((X, +, )K, ) and every W   N*(*), there exists 0 =  0(W , W)  I such that  f (x) 

– f () =  –( f () – f (x))   – W  = W     W for all   0 and all f  F 

(vii)  For every null net ((x)(I, ) in  ((X, +, )K, ) and every W   N*(*), there exists a 0 =  0(W , W)  I  such that  f 

(x)    W    W for all   0 and all f  F 

(viii)  For every null net (x)(I, ) in  ((X, +, )K, ) and every W   N*(*), there exists a 0  =  0(W)  I  such that  f (x)  

 W for all   0 and all f  F. /// 
 

The definition of a null sequence is clear. We have, for domain space first countable,  
 

THEOREM 9 Note 4  For topological vector spaces (X, ) = ((X, +, )K, ) and (E, *) = ((E, +, *)K, *),  (X, ) first 

countable, and F a collection of linear maps f : (X, )  (E, *), the following are equivalent. 

(i) F is equicontinuous. 

(ii) F is equicontinuous at the zero, , of (X, ). 

(iii) F is SEC at the zero, , of  (X, ). 

(iv) For every null sequence (xn)n(ℕ,) in (X, ) and every W   N*(*), there exists a positive integer N = N(W) such that f 

() – f(xn)  W for all n  N and all  f  F. 

(v) For every null sequence (xn)n(ℕ,) in (X, ) and every W   N*(*), there exists a positive integer N = N(W) such that f 

(xn)  W for all n  N and all  f  F. /// 
 

4 EQUICONTINUOUS SET OF LINEAR FUNCTIONALS Suppose that in 3.8 we take (E, *) as  (K, K ), that is, as K 

with its usual topology [6]. And so, F is a collection of linear functionals. Hence, we have the two theorems that follow. 
 

THEOREM 1 Note 5  For a topological vector space (X, ) =  ((X, +, )K, ) and a collection F of linear functionals on (X, 

), the following are equivalent  

(i)  F is equicontinuous. 

(ii) For every null net (x)(I, ) in (X, ) and   0, there exists 0 = 0()  I such that  f (x)  Bd(0, ) for all   0  and all  

f  F [|Bd(0, ) is the ball in K  of radius , centered on 0|]. 

(iii)  For every null net (x)(I, ) in (X, ) and   0, there exists 0 = 0()  I such that 

Ff

 0δδ

sup | f(x)|  . /// 

THEOREM 2 Note 6 For a  first countable topological vector space (X, ) = ((X, +, )K, ) and a collection F of linear 

functionals on (X, ), the following are equivalent. 

(i)  F is equicontinuous. 

(ii) For every null sequence (xn)n(ℕ,) in (X, ) and   0, there exists  a positive integer N = N() such that  f (xn)  Bd(0, ) 

for all n  N  and all  f  F [|Bd(0, ) is the ball in K  of radius , centered on 0|]. 

(iii)  For every null sequence (xn)n(N,) in (X, ) and   0, there exists  a positive integer N = N() such that 

Ff

 Nn

sup |f(xn)|  . 

/// 

A topological vector space (E, ) is called a locally convex space, if it has a local base of neighbourhoods at zero 

comprising convex sets. 

John Webb in [7] calls a set F of linear functionals on a Hausdorff locally convex space (E, ) a T-limited set provided for 

every null sequence (xn)n(ℕ, )  in  (E, ), 
n

lim (
Ff

sup | f(xn)| = 0; and so for every    0, there exists a positive integer N =  
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N() such that  

Ff

sup | f (xn)|   for all n  N. 

And so, 

Ff
Nn



sup  | f (xn)|  . That is, for every   0, there exists a positive integer N = N() such that 

Ff
Nn



sup  | f (xn)|  .  

We therefore, have from THEOREM 2 Note 6 that  

THEOREM 3 Note 7 (i) If  (E, ), is a first countable Hausdorff locally convex space, then its T-limited sets are 

equicontinuous sets of linear functionals.  

(ii)  For a metrizable local convex space (E, ), its T-limited sets are equicontinuous sets of linear functionals . ///   

REMARK 4 (i) This paper results from the successful attempt of replacing John Webb’s null  sequence in his T-limited 

sets by a null net. 

(ii)  Another such successful attempt in replacing John Webb’s null sequence by bounded null nets results in a description 

of the continuous dual of Person’s [8] mixed topology of a bitopological space and a consequent characterization of 

separated locally convex space with complete strong dual. We report these elsewhere. 

REMARK 5 We report elsewhere, also, an application of 3.8 Note 3 (i)  (v) to supremum V of vector topologies  on 

the range space E =  (E, +, *) K. 
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