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Abstract 

A Perturbation iteration algorithm for solving differential equations of first order is 

proposed. The applications of the new method to systems of first order ordinary 

differential equations are highlighted with four perturbation parameters considered. 

The results obtained using the model were compared to the exact solution of a first 

order ordinary differential equation problem after five iterations were carried out, a 

minimal error was obtained in the four perturbation parameters considered. 

Graphical representations of the results clearly show the relationship between the 

exact solutions and the approximate solutions at each iteration stage. 

Based on the results presented, it is concluded that the lower the perturbation 

parameter, the greater the efficiency of this model. Nevertheless, as the perturbation 

parameter increases, more iterations is expected to be carried out to get an accurate 

result. However, the model is efficient in solving first order differential equation. 
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INTRODUCTION 

Perturbation method is one of the pioneering techniques to obtain approximate analytical solutions for mathematical 

models. It was introduced by S.D. Poisson and extended by J.H. Poincare. Although the method appeared in the early 19 th 

century, the application of a perturbation procedure to solve nonlinear equations was used only a bit later. The most 

significant efforts were focused on celestial mechanics, fluid mechanics and aerodynamics. It has also been successfully 

applied to differential equations and algebraic equations. Many different perturbation techniques such as the method of 

averaging, the method of multiple scales, the renormalization method, the Lindstedt-Poincare method, the method of 

matched asymptotic expansion, and their variants were developed within time [1]. One of the deficiencies in applying 

perturbation methods is that a small parameter is needed in the equations or the small parameter should be introduced 

artificially to the equations. The solutions therefore have a limited range of validity. Nevertheless, the solved problem is a 

weak nonlinear problem and it becomes hard to obtain a valid approximate solution for strongly nonlinear systems. 

        

Perturbation iteration method has been successfully applied to different types of equations but there is a need to check its 

efficiency on ordinary differential equations. With an inspiration from the work on algebraic equations, the systematic 

approach of combining perturbation and iterations was applied to ordinary differential equations. The new algorithm 

developed would be applied to first order ordinary differential equations. 

 

Perturbation theory has been successfully applied in different ways to different types of equations. Many researchers have 

used perturbation iteration algorithm to produce various root finding schemes while others combined it with other methods 

to solve different problems. The review of its applications in different areas is presented below. 

Dolapci developed an iteration algorithm PIA(1,1) and applied to some fredholm and volterra type of integral equations for 

the first time. Their numerical results show that method PIA (1,1) is an effective perturbation-iteration technique producing 
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successful analytic results for integral equations. Aksoy and Pakdemirli used perturbation iteration method to solve Bratu-

type equations. In their work: 

a) A symmetric algorithm approach for developing new perturbation iteration is presented. 

b) The perturbation iteration algorithm developed do not require a “small perturbation parameter” assumptions for 

prerequisite for valid solutions. 

c) The perturbation iteration algorithms are applied successfully to Bratu-type nonlinear problems and iterations 

solutions with a few steps converge to numerical ones. 

With the systematic approach used in their study, new algorithm with PIA(n,m) (n: number of correction terms in the 

perturbation expansion; m: order of derivatives in the taylors series expansion; n≤m) can be constructed easily. 

In [1] effort, various root finding schemes are produced by employing perturbation theory. Depending on the number of 

correction terms, number of terms in the Taylors expansions and separation of equations, many different algorithms are 

produced. Some of those algorithms are the well-known formulas such as Newton-Raphson and Householders iteration and 

some are higher order iterations. The formulas as well as two recent algorithms are contrasted with each other. As expected 

as the number of correction terms in the perturbation expansion increases, the iteration schemes perform better and less 

iterations are needed. As far as the convergence intervals of a specific root are considered, a gain is not detected by 

additional correction terms. Pakdemirli et al. showed that one may take n correction term in the perturbation expansion and 

m additional terms in the Taylors expansion. Obviously m≥n for all unknowns to be solved. From his paper, one may 

conclude that the performance becomes better as n increases with an optimum selection of m=n. in his paper, m=n=4 is the 

best algorithm selected compared to the m=4, n=3 and m=4, n=2 algorithms.  

 

METHODS 

Generally, perturbation iteration method explore the Taylors series expansion to obtain approximate analytical solutions of 

nth order ordinary differential equation. However, this study is limited to first order ordinary differential equation. 

For the roots of the nonlinear equation 

𝑓(𝑥) = 0          (1) 

A perturbation expansion of the below form with n correction terms might be assumed 

𝑥 = 𝑥𝑜 + 𝜀𝑥1 + 𝜀2𝑥2 + ⋯ + 𝜀𝑛𝑥𝑛        (2) 

Inserting (2) into (1) and expanding in a taylors series up to mth order derivative terms yields 

𝑓(𝑥𝑜 + 𝜀𝑥1 + 𝜀2𝑥2 + ⋯ + 𝜀𝑛𝑥𝑛) ≅ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝜀𝑥1 + 𝜀2𝑥2 + ⋯ + 𝜀𝑛𝑥𝑛) +
𝑓′′(𝑥0)

2!
(𝜀𝑥1 + 𝜀2𝑥2 + ⋯ + 𝜀𝑛𝑥𝑛)2 + ⋯ +

𝑓𝑚(𝑥0)

𝑚!
(𝜀𝑥1 + 𝜀2𝑥2 + ⋯ + 𝜀𝑛𝑥𝑛)𝑚 = 0       (3) 

Note that since n terms in the perturbation expansion and mth order derivatives in the Taylors series are considered, the 

perturbation iteration algorithm developed will be named 𝑃𝐼𝐴(𝑛, 𝑚). 
n should be always less than or equal to m, otherwise the unknowns (correction terms in the perturbation expansion) cannot 

be determined. Equation (3) should be grouped with respect to the orders of 𝜀, then separated and solved for the unknown 

correction terms. Substituting back the correction terms into (2) yields an iteration algorithm for solution of (1). Note that 

separations may not be unique and there might be different ways of separating (3). Below are the details of the algebraic 

equations. 

𝑓(𝑥) = 0 

𝑥 = 𝑥𝑜 + 𝜀𝑥1 

Taylors expansion 

𝑓(𝑥0 + 𝜀𝑥1) + 𝑓(𝑥0) + 𝑓′(𝑥0)𝜀𝑥1 = 0 

𝑓(𝑥0) + 𝑓′(𝑥0)𝜀𝑥1 = 0 

𝜀𝑥1 = −
𝑓(𝑥0)

𝑓′(𝑥0)
         

(Newton-Raphson Equation) 

∴ 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
         (4) 

          

[𝑃𝐼𝐴(1,1)] 
In this work, (PIA 1,1) is applied to first order differential equation. 

Consider the general first order differential equation 

𝐹(𝑢, 𝑢̇,  𝜀) = 0,          (5) 

with 𝑢 = 𝑢(𝑡) 𝑎𝑛𝑑 𝜀 the perturbation parameter, only one correction term is taken in the perturbation expansion. 
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𝑢𝑛+1 = 𝑢𝑛 + 𝜀(𝑢𝑐)𝑛 + ⋯         (6) 

Upon substitution of (5)into (6) and expanding in a Taylor series with first derivative only yields 

𝐹(𝑢, 𝑢̇, 0) + 𝐹𝑢(𝑢, 𝑢̇, 0)𝜀𝑢 + 𝐹𝑢̇(𝑢, 𝑢̇, 0)𝜀𝑢̇ + 𝐹𝜀(𝑢, 𝑢̇, 0)𝜀 = 0     

𝐹 + 𝐹𝑢𝜀𝑢 + 𝐹𝑢𝜀𝑢̇ + 𝐹𝑢̇𝜀𝑢̇ + 𝐹𝜀̇𝜀=0,        (7) 

where subscripts denote differentiation with respect to the variable . 

Note that in this method, the function and its derivatives are considered to be independent variables. 

Rearranging the equation: 

𝑢̇𝑐 +
𝐹𝑢

𝐹𝑢̇
𝑢𝑐 = − [

𝐹𝜀+
𝐹

𝜀

𝐹𝑢̇
]         (8) 

= 𝑒
∫

𝐹𝑢

𝐹𝑢̇
𝑑𝑥

.          (9)  

Multiply through by 𝑒
∫

𝐹𝑢

𝐹𝑢̇
𝑑𝑥

 

𝑑 [𝑢𝑒
∫

𝐹𝑢

𝐹𝑢̇
𝑑𝑥

] = [− [
𝐹𝜀+

𝐹

𝜀

𝐹𝑢
] 𝑒

∫
𝐹𝑢

𝐹𝑢̇
𝑑𝑥

] 𝑑𝑥 .       (10) 

Integrate both sides to have 

𝑢𝑐 = 𝑐𝑒
(− ∫

𝐹𝑢

𝐹𝑢̇
𝑑𝑥)

− [[
𝐹𝜀+

𝐹

𝜀

𝐹𝑢
] 𝑒

∫
𝐹𝑢

𝐹𝑢̇
𝑑𝑥

] 𝑑𝑥𝑒
∫

𝐹𝑢

𝐹𝑢̇
𝑑𝑥

.      (11) 

Substituting equation (11) into equation (6) and constructing the iteration scheme yields 

𝑢𝑛+1 = 𝑢𝑛 + 𝜀𝑐𝑛𝑒 [− ∫
𝐹𝑢(𝑢𝑛,𝑢̇𝑛,0)

𝐹𝑢̇(𝑢𝑛,𝑢̇𝑛,0 )
𝑑𝑡] − 𝜀 [∫

𝐹𝜀(𝑢𝑛,𝑢̇𝑛,0)+𝐹(𝑢𝑛,𝑢̇𝑛,0)
𝜀

𝐹𝑢(𝑢𝑛,𝑢̇𝑛,0)

𝑒 [∫
𝐹𝑢(𝑢𝑛,𝑢̇𝑛,0)

𝐹𝑢̇(𝑢𝑛,𝑢̇𝑛,0)
𝑑𝑡] 𝑑𝑡] 𝑒 [− ∫

𝐹𝑢(𝑢𝑛,𝑢̇𝑛,0)

𝐹𝑢̇(𝑢𝑛,𝑢̇𝑛,0)
𝑑𝑡 ]  (12) 

 

EXAMPLE PROBLEM 

Consider the differential equation with the condition 

 𝑢̇ + 𝜀𝑢2 = 0                        𝑢(0) = 1  (Boyaci and Pakdemirli, 2007)  (13) 

whose exact solution is 𝑢 =
1

1+𝜀𝑡
 

𝑢̇ + 𝜀𝑢2 = 0 
𝑑𝑢

𝑢2 = −𝜀𝑑𝑡.          (14) 

Integrate both sides to have 

−
1

𝑢
= −𝜀𝑡 + 𝑐          (15) 

𝑠𝑖𝑛𝑐𝑒 𝑢(0) = 1 

𝑢 =
1

𝜀𝑡+1
                 𝑜𝑟            𝑢 =

1

1+𝜀𝑡
       (16) 

Using equation (12) 

𝑢𝑛+1 = 𝜀𝑐𝑛 − 𝜀 ∫ 𝑢𝑛
2𝑑𝑡         (17) 

In applying the iteration formula, an initial guess satisfying the initial conditions should be selected and at each step 𝑐𝑛 

coefficient have to be determined from the initial condition. Selecting 𝑢0 = 1  

When 𝑛 = 0 

𝑢1 = 𝜀𝑐𝑛 − 𝜀 ∫(𝑢0)2𝑑𝑡         (18) 

𝑢1 = 𝜀𝑐𝑛 − 𝜀𝑡 

𝑢𝑠𝑖𝑛𝑔 𝑢(0) = 1 

1 = 𝜀𝑐𝑛 − 𝜀(0) 

𝑢1 = 1 − 𝜀𝑡          (19) 

When 𝑛 = 1  

𝑢2 = 𝜀𝑐𝑛 − 𝜀 ∫𝑢1
2𝑑𝑡         (20) 

𝑢2 = 1 − 𝜀𝑡 + 𝜀2𝑡2 −
𝜀3𝑡3

3
         (21) 

When 𝑛 = 2 

𝑢3 = 𝜀𝑐𝑛 − 𝜀 ∫𝑢2
2𝑑𝑡         (22) 

𝑢3 = 1 − 𝜀𝑡 + 𝜀2𝑡2 − 𝜀3𝑡3 +
2𝜀4𝑡4

3
−

𝜀5𝑡5

3
+

𝜀6𝑡6

9
−

𝜀7𝑡7

63
     (23) 

When 𝑛 = 3 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 41 –50 



44 
 

Solution of Ordinary…        Ayodele, Odetunde, Olubanwo, Olasupo, Ajani and Olabanjo       Trans. Of NAMP 

 

𝑢4 = 𝜀𝑐𝑛 − 𝜀 ∫𝑢3
2𝑑𝑡         (24) 

𝑢4 = 1 − 𝜀𝑡 + 𝜀2𝑡2 − 𝜀3𝑡3 + 𝜀4𝑡4 −
13𝜀5𝑡5

15
+

2𝜀6𝑡6

3
−

38𝜀7𝑡7

63
+

71𝜀8𝑡8

252
−

86𝜀9𝑡9

567
+

22𝜀10𝑡10

315
   

−
55𝜀11𝑡11

2079
+

𝜀12𝑡12

126
−

𝜀13𝑡13

567
+

𝜀14𝑡14

3969
−

𝜀15𝑡15

59535
       (25) 

When 𝑛 = 4 

𝑢5 = 𝜀𝑐𝑛 − 𝜀 ∫𝑢4
2𝑑𝑡         (26) 

𝑢5 = 1 − 𝜀𝑡 + 𝜀2𝑡2 − 𝜀3𝑡3 + 𝜀4𝑡4 − 𝜀5𝑡5 +
86𝜀6𝑡6

90
−

111𝜀7𝑡7

105
+

1348𝜀8𝑡8

2520
−

3677𝜀9𝑡9

5670
+

20303𝜀10𝑡10

28350
−

17447𝜀11𝑡11

44500
+

19459𝜀12𝑡12

68040
−

2921𝜀13𝑡13

14742
+

491𝜀14𝑡14

3780
−

72874𝜀15𝑡15

893025
+

73732𝜀16𝑡16

1587600
−

1222093𝜀17𝑡17

1686825
+

80657𝜀18𝑡18

6429780
−

702325339𝜀19𝑡19

1.212179×1011 +
3517𝜀20𝑡20

1428840
−

272431457𝜀21𝑡21

8.934179×1010 +
6257𝜀22𝑡22

18336780
−

6890899𝜀23𝑡23

6.262927×1010 +
16987𝜀24𝑡24

540101520
−

58453𝜀25𝑡25

7426395900
+

53𝜀26𝑡26

46437300
−

2𝜀27𝑡27

6751269
+

13𝜀28𝑡28

315059220
−

29𝜀29𝑡29

6852538035
+

2𝜀30𝑡30

7088832450
−

𝜀31𝑡31

1.098769×1011  (27) 

 

INTRODUCTION OF THE PERTURBATION PARAMETERS 

The exact solution for the problem in consideration (𝑢̇ + 𝜀𝑢2 = 0) is 𝑢 =
1

1+𝜀𝑡
 

In this work, the perturbation parameter 𝜀 is considered to be 0.001, 0.005, 0.01 and 0.05 

At 𝜀 = 0.001 

𝑢1 = 1 − 0.001𝑡          (28) 

𝑢2 = 1 − 0.001𝑡 + 0.0012𝑡2 −
1

3
0.0013𝑡3       (29) 

𝑢3 = 1 − 0.001𝑡 + 10−6𝑡2 − 10−9𝑡3 +
2

3
10−12𝑡4 −

1

3
10−15𝑡5 +

1

9
10−18𝑡6 −

1

63
10−21𝑡7 

           (30) 

𝑢4 = 1 − 0.001𝑡 + 10−6𝑡2 − 10−9𝑡3 + 10−12𝑡4 −
13

5
10−15𝑡5 +

2

3
10−18𝑡6 −

38

63
10−21𝑡7 +

71

252
10−24𝑡8 −

89

567
10−27𝑡9 +

22

315
10−30𝑡10 −

55

2079
10−33𝑡11 …        (31) 

𝑢5 = 1 − 0.001𝑡 + 10−6𝑡2 − 10−9𝑡3 + 10−12𝑡4 − 10−15𝑡5 +
89

90
10−18𝑡6 −

111

105
10−21𝑡7 +

1348

2520
10−24𝑡8 −

3677

5670
10−27𝑡9 +

20303

28350
10−30𝑡10 −

17447

44550
10−33𝑡11 +

19459

68040
10−36𝑡12 −

2921

14742
10−39𝑡13 …      

           (32) 

At 𝜀 = 0.005 

𝑢1 = 1 − 0.005𝑡          (33) 

𝑢2 = 1 − 0.005𝑡 + 2.5 × 10−5𝑡2 −
1

3
1.25 × 10−7𝑡7      (34) 

𝑢3 = 1 − 0.005𝑡 + 2.5 × 1015𝑡2 − 1.25 × 10−7𝑡3 +
2

3
6.25 × 10−4𝑡4 −

1

3
6.25 × 10−10𝑡5 +

1

9
1.5625 × 10−14𝑡6 −

1

63
7.8125 × 10−7𝑡7         (35) 

𝑢4 = 1 − 0.005𝑡 + 2.5 × 10−5𝑡2 − 1.25 × 10−7𝑡3 + 6.25 × 10−10𝑡4 −
13

15
3.125 × 10−12𝑡5 +

2

3
3.125 × 10−12𝑡6 −

38

63
7.8125 × 10−17𝑡7 +

71

252
3.90625 × 10−19𝑡8 −

89

567
1.953125 × 10−21𝑡9 +

22

315
9.765625 × 10−24𝑡10 −

55

2079
4.8828 ×

10−26𝑡11 …          (36) 

𝑢5 = 1 − 0.005𝑡 + 2.5 × 10−5𝑡2 − 1.25 × 10−7𝑡3 + 6.25 × 10−10𝑡4 − 3.125 × 10−12𝑡5 +
89

90
1.5625 × 10−14𝑡6 −

111

105
7.8125 × 10−17𝑡7 +

1348

2520
3.9063 × 10−19𝑡8 −

3677

5670
1.9531 × 10−21𝑡9 +

20303

28350
9.7656 × 10−24𝑡10 −

17447

44550
4.8828 ×

10−26𝑡11 +
19459

68040
2.4414 × 10−28𝑡12 −

2921

14742
1.2207 × 10−30𝑡13 …    (37) 

At 𝜀 = 0.01 

𝑢1 = 1 − 0.01𝑡          (38) 

𝑢2 = 1 − 0.01𝑡 + 10−4𝑡2 −
1

3
10−6𝑡3       (39) 

𝑢3 = 1 − 0.01𝑡 + 10−4𝑡3 − 10−6𝑡3 +
2

3
10−12𝑡4 −

1

3
10−10𝑡5 +

1

9
10−12𝑡6 −

1

63
10−14𝑡7  (40) 

𝑢4 = 1 − 0.01𝑡 + 10−4𝑡2 − 10−6𝑡3 + 10−8𝑡4 −
13

15
10−10𝑡5 +

2

3
10−6𝑡6 −

38

63
10−14𝑡7 +

71

252
10−16𝑡8 −

89

567
10−18𝑡9 +

22

315
10−20𝑡10 −

55

2079
10−22𝑡11 …        (40) 
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𝑢5 = 1 − 0.01𝑡 + 10−4𝑡2 − 10−6𝑡3 + 10−8𝑡4 − 10−10𝑡5 +
89

90
10−12𝑡6 −

111

105
10−14𝑡7 +

1348

2520
10−16𝑡8 −

3677

5670
10−18𝑡9 +

20303

28350
10−20𝑡10 −

17447

44550
10−22𝑡11 +

19459

68040
10−24𝑡12 −

2921

14742
10−26𝑡13 …    (41) 

At 𝜀 = 0.05 

𝑢1 = 1 − 0.05𝑡          (42) 

𝑢2 = 1 − 0.05𝑡 + 2.5 × 10−3𝑡2 −
1

3
1.25 × 10−4𝑡3      (43) 

𝑢3 = 1 − 0.05𝑡 + 2.5 × 10−3𝑡2 − 1.25 × 10−4𝑡3 +
2

3
6.25 × 10−6𝑡4 −

1

3
3.125 × 10−7𝑡5 +

1

9
1.5625 × 10−8𝑡6 −

1

63
7.8125 × 10−10𝑡7         (44) 

𝑢4 = 1 − 0.05𝑡 + 2.5 × 10−3𝑡2 − 1.25 × 10−4𝑡3 + 6.25 × 10−6𝑡4 −
13

15
3.125 × 10−7𝑡5 +

2

3
1.562510−8𝑡6 −

38

63
7.8125 × 10−10𝑡7 +

71

252
3.9063 × 10−11𝑡8 −

89

567
1.9531 × 10−12𝑡9 +

22

315
9.7666 × 10−14𝑡10 −

55

2079
4.8828 × 10−15𝑡11 … (45) 

𝑢5 = 1 − 0.05𝑡 + 2.5 × 10−3𝑡2 − 1.25 × 10−4𝑡3 + 6.25 × 10−6𝑡4 − 3.125 × 10−7𝑡5 +
86

90
1.5625 × 10−9𝑡6 −

111

105
7.8125 × 10−10𝑡7 +

1348
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3.9063 × 10−11𝑡8 −

3677

5670
1.9531 × 10−12𝑡9 +

20303

28350
9.7656 × 10−14𝑡10 −

17447

44550
4.8828 ×

10−15𝑡11 +
19459

68040
2.4414 × 10−16𝑡12 −

2921

14742
1.2207 × 10−17𝑡13    (46) 

 

RESULT AND DISCUSSION 
The result of the problem is presented here where t is considered at 0.1, 0.2, 0.3, 0.4, 0.5 are summarized in the tables and figures below. 
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Figure 1: Relationship between 𝑢 − 𝑒𝑥𝑎𝑐𝑡, 𝑢1, 𝑢2, 𝑢3, 𝑢4 𝑎𝑛𝑑 𝑢5 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜀 = 0.001 
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Figure 4: Relationship between 𝑢 − 𝑒𝑥𝑎𝑐𝑡, 𝑢1, 𝑢2, 𝑢3, 𝑢4 𝑎𝑛𝑑 𝑢5 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜀 = 0.05 
 

SUMMARY 

The efficiency of this model is deduced after comparing the result of the exact solution to the approximate 

solution. It is clear that when our perturbation parameter is set at 0.001 and 0.005, the approximate solution 

matches the exact solution which indicates convergence, meanwhile there is a very negligible difference in other 

cases, but the error has to be highlighted for the sake of accuracy of this work. At  = 0.001, 0.005 and 0.01, a 

little difference occurs 𝑢1 and 𝑢2 while convergence occurs from 𝑢3 upward which shows that the more 

iterations carried out, the more accurate the result is.       

   

A graphical illustration is shown from a careful look at figure 4.1, figure 4.2 and figure 4.3 which show the 

graph of 𝑢1, 𝑢2, 𝑢3,𝑢4,𝑢5 lying on the same path thereby making it look like a single line. This shows the 

accuracy of the model at 𝜀 = 0.001, 0.005 and 0.01. but figure 4.4 shows clearly at the tail end that the line is 

more than one and also table 4.4 shows the more t increases, the farther we are from the exact solution. 

  

 

CONCLUSION 

Hence, it is concluded that the lower the value of  the more accurate the result is. Nevertheless, as  increases 

more iteration is expected to be carried out for convergence to take place. However, this method is 

recommended to solve a first order ordinary differential equation. 
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