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1.1 BACKGROUND OF STUDY

In this study, we are aiming at finding the dynamic buckling loads of some imperfect elastic structures having
light viscous damping but trapped by a periodic load with slowly varying circular frequency. The analysis is
based on already existing theory derived by [1] and [2]. The two structures studied by [3] are the simple cubic
elastic model structure and an imperfect elastic spherical cap whose normal displacement is regarded as the
summation of the modes, that is, pre-buckling, an axis symmetric and non-axis symmetric modes, all having time
dependent amplitudes. The theory is here developed through the simple cubic elastic model structure followed by
a practical application on an elastic spherical cap, where all deformations (failures) are controlled within elastic
range. The problems derived are non-linear which need to be solved but there is no simple analytical method to
handle the solutions. We choose perturbation method to handle the problem because of the presence of two small
mathematically independent parameters through which a two-timing perturbation scheme is formed. In the same
vein, the problem now becomes a two—small parameter non-linear problem, which the solution here can be
approached analytically using regular perturbation and asymptotic methods.
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In most countries of the world we often hear of collapse of buildings, bridges and other material structures. These are
forms of material failures which are dangerous in nature and should be prevented by all cost. Great investigations and
efforts have been done by Engineers and Applied Mathematicians to determine the maximum loads that structures can
carry before buckling occurs but still, buckling of elastic structures still comes to play from time to time. The dynamic
buckling analysis of imperfect spherical shell with light viscous damping trapped by a periodic load with slowly
varying frequency, is a real life problem, yet, it does not seem, to our knowledge, that a lot of analytical investigations
have been done on the subject matter. Most of the earlier works done on this area, used numerical methods (Finite
Element methods) for the analysis of buckling. In this study, we are carrying out investigations using purely analytical
methods to investigate the dynamic buckling and stability of two viscously damped elastic structures, namely, a simple
cubic model and an imperfect elastic spherical shell pressurized by a periodic load that has a slowly varying frequency.
In addition, we investigate the effect of light viscous damping on the dynamic stability of the structures.

The concept of dynamic buckling is presently an interesting area of research which many researchers have gone into
based on the reality that it is closely related to some other fields of human endeavor. Structural elastic materials have
the tendencies of undergoing deformations and other instabilities when loaded either statically or dynamically. One of
the major concerns of structural Engineers and Applied Mathematicians is to know the load carrying capacity of a
given elastic material before buckling. Many researchers have worked on dynamic stability of structures by subjecting
these materials to various loading conditions .We recall that [1] studied the step loading, impulse loading, rectangular
loading and triangular loading while [2] analyzed the impact of periodic loading on elastic structures. Based on
researches conducted by many investigators some of which are [1],[2] and others, it has become clear that initial
imperfections, the loading history (i.e. the nature of the loading), the time duration and the elastic characteristics of
materials affect the dynamic buckling loads of structures. To our knowledge, periodic loading with slowly varying
circular frequency is not commonly discussed in the area of buckling. It is however quite pertinenent to mention that
the concept of periodic forcing with slowly varying frequency in the time variables was discussed by [4]. In that study,
the frequency was assumed to have a slow cubic variation with time and was discussed in the context of a weakly
damped and weakly non-linear excitation involving Duffing’s equation.

Currently, most studies on dynamic buckling appear to centre on beams, plates, columns, spherical shells and
cylindrical shells with extensive literatures and the techniques adopted are mostly numerical approach. In view of this,
mention must be made of [5], who studied the dynamic buckling of thin — walled viscoplastic columns while [6],
similarly studied some aspects of dynamic buckling of plates under in-plane pulse compression. In the same way, [7],
studied some important parameters in dynamic buckling analysis of plated structures subjected to impulse loading, [8],
investigated Asymptotic investigation of the buckling of a cubic-quintic nonlinear elastic model structure stressed by
static load and a dynamic step load, [9] studied the imperfect Bifurcation with a slowly — vary control parameter while
[2], studied the buckling of impulsively loaded prismatic cores. Worthy of mentioning are [10], who investigated the
stability of transverse vibration of rod under longitudinal step wise loading, [11] who investigated advances in shell
buckling theory and experiments, [2], studied dynamic buckling estimates and [12] who investigated the influence of
uncertainties on the dynamic buckling loads of structures liable to Asymmetric post buckling behavior. The study of
buckling behavior of beams and columns was studied by [13], a study on buckling — waves was carried out by [14]
while [15] dealt on the dynamic buckling of a model structure with quadratic non-linearity struck by a step load
superposed on Quasi- static load. The investigation into the dynamic effects of lateral buckling of high
temperature/High pressure offshore pipelines was carried out by [16], while [17] investigated the dynamic buckling of
shallow pin-ended arches under a sudden central concentrated load. In the same manner, [18] carried out investigation
on elastic buckling of steel columns under axial compression, [19] studied elastic buckling of columns with end
restraint effects, [20] conducted an investigation on analytic approach for exactly determining critical loads of buckling
of non-uniform columns while [21], investigated the buckling of variables section columns under axial loading.

The following investigations are equally of relevance in this work : [22] who studied perturbation technique in the
buckling of some elastic materials struck by a periodic load with slowly varying frequency in which this work is an
obvious extension by assuming light viscous damping, [23] investigated the dynamics of rods under axial impact, [24]
embarked on numerical methods for determining strongest cantilever beam with constant volume, [25] studied
nonlinear stochastic dynamical post buckling analysis of uncertain cylindrical shells, [26] investigated dynamic
buckling of composite cylindrical shell subjected to axial impulse while [27] conducted a research on numerical and
experimental stability of buckling of advanced fibre composite cylinders under axial compression.In the same vein,
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[28] investigated dynamic buckling of an inclined structure, [29] studied the dynamic buckling of thin thermovisplastic
rectangular plate, [30] researched on the buckling of a clamped viscously damped column trapped by a step load, [39]
researched on the buckling load of elastic quadratic non-linear structures by an axial impulse while [31] worked on
analysis of tilt- buckling of Euler columns with varying flexural stiffness using homotopy perturbation method.
Furthermore, [32] made remarkable contributions to the field on vibration analysis of cracked frame structures, [33]
conducted research on the comparison of critical buckling load in regression, fuzzy logic and ANN based estimations
while [34] studied buckling analysis of a beam-column using multilayer perception neural network technique. We note
that [35] investigated the determination of buckling loads and mode shapes of heavy vertical column under its own
weights using variational iteration method , [36] carried out a research on buckling of axially loaded castellated steel
columns while [37] made a contribution on a simple method to determine the critical loads for axially in- homogenous
beams with elastic restraints, [38] carried out an investigation on the buckling of Euler columns with a continuous
elastic restraint via homotopy analysis method, [39] gave the solution for the problem of a new FEM procedure for
transverse and longiditunal vibration analysis of thin rectangular plates subjected to a variable velocity moving load
along an arbitrary trajectory and [40] investigated the asymptotic analysis of an improved quadratic model structure
subjected to static loading. In the same way, [41] investigated the shape optimization of damaged columns subjected to
conservative and non-conservative forces, [42] made investigation on maximum load factor corresponding to a slightly
asymmetric bifurcation point, [43] studied an analytical formulation for local buckling and postbuckling analysis of
stiffened laminated panels, [44] investigated the optimal design of clamped columns for stability under combined axial
compression and torsion while [8] studied the asymptotic analysis of the static buckling of infinitely long and
harmonically imperfect column lying on quadratic- cubic elastic foundations.

2.0 METHODOLOGY

The methodology applied in this work is anchored on regular perturbation and asymptotic analysis. The type of
problem solved automatically demands the use of these methods. The two problems confronted in this work are non-
linear and so, we cannot determine their exact analytical solutions in a closed form. The formulations in both cases
have two small mathematically independent parameters in which asymptotic series expansions are used in this work.
To get a uniformly valid asymptotic solution in each case, we shall apply two-timing regular perturbation techniques in
the two problems. Expansions are asymptotic and are valid in the limit as the two small parameters become very small
compared to unity. Usually, in most multi-timing perturbation problems, the use of two timing procedure converts the
ordinary differential equations in which the problems were originally posed, to partial differential equations.

In each of these two problems, our initial intention is to get the displacement, and later, the maximum

displacement,n,.The condition for buckling (i.e. at maximum displacement), as in [2] is

a
2o=0 (2.1)

This is to be evaluated to get the dynamic buckling, A,,.

The dynamic buckling loadA, is the largest load parameter for the problem to have a bounded solution.

2.1 FORMULATION OF THE SIMPLE MODEL PROBLEM

DETERMINATION OF THE DYNAMIC BUCKLING LOAD IN THE CASE OF CUBIC MODEL
STRUCTURE

N DS
P — = R T

Fs = KLIX — bX3]
IFig 1
ZIT7
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SIMPLE CUBIC MODEL STRUCTURE
We consider a simple model in the form of two bars of equal length L which fixed at both ends to the rigid wall as
shown in the figure 1 above. The bars are subjected to a horizontal load P(T) applied shortly after time T =0. The bar
must be rigid to avoid deformation when load is applied. A mass M is suspended at the meeting point of the two arms
of the bars whose movement is regulated by a non-linear (cubic) spring that gives a restoring force Fs per unit length of
KL (X-bX?), b>0 where K is a spring constant, where X is the additional displacement from the point of  equilibrium.
Let X be the imperfection parameter when the two arms of the bars are joined in the horizontal direction. Let Q be the
tension (force) on the each arm of the bars and 0 be the angle between the horizontal direction and each arm of the
bars.
We assume that 6 must be small relative to unity .Therefore we make the following approximations
X+ X
Sinf = T singd = 0

"= XL;X (2.2)

It is to be noted that P(T) on the horizontal axis relates with the tension Q on each arm of the bars. For equilibrium of
the forces on the axial direction where P(T) acts, we obtain

Cos 6 = ?,P(T) = QCos 8 (2.3a,b)

For equilibrium of forces in the vertical direction, where mass M acts, we have

F, = 2Q Sinf (2.4)

The restoring force of the spring is,
r-k (S-b(%) 25
s = L L ( . )

The net vertical force is,
F=F —Fs (2.6)
According to Newton’s law of motion

Md*Xx
F—Ma—fﬁ (273.)

where a is the acceleration, hence, (3.7a) becomes,

Md? X
S =F (2.7b)

Substituting (2.4), (2.5) in (2.6), gives,
F = 20Sin6 — KL (’L—‘ —b (’L—‘)3) (2.8)

Hence, substituting (2.8) in (2.7b), gives,
M d?x ) X x\3

Then, (2.3b), becomes,

P(T)=Q (2.10)
Substituting (2.2) and (2.10) in (2.9), gives

MEX_ oy (B - ki {—b()—(f —2p(T)§+2P(T){—KL§+bKL({)
- L L] ] L L L

3

L dT? L L
= 2P(T)X + KLX(ZP(T) 1) + bKL (X)3 2.11
- L L\ K2 L/ (211)
X
From (2.11),we make 2P(T) 7 the subject and get

M d2X 2P(T)\ X xX\* 2P(D)X
Tare i (=T ) -0 (7) == (2.12)
Now it is pertinent to introduce the following non-linear dimensional equations,
n=%;e=§;t=T\/%,0<e «1 (2.13)
Let,
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2P(T)P(0)

2P(T) = 20)

= 2f(O)P(0)(2.14)

where,

_P(T). . _2P(0) :
f@©) = POy T K2 ;P(0) #0 (2.15)

Substituting (2.13), (2.14) and (2.15) in (2.12), the results gives

KL%\ d? 2£()P(0
M( ) dt;] + KL (1 _%% — KLb(n)* = 2¢f(t)P(0)

This implies that,

KL? ZZZ +KL? <1 - %)n — KbL*n® = 2¢f (£)P(0) (2.16)
After simplifying (2.16) using (2.13)-(2.15), (2.16) becomes,
Zztz + (1=2f®)n — bn® = 2ef();t > 0 (2.17a)
n(0) = ) (2.17b)

dt
Equation(2.17a) is the required equation of motion for all types of loadingAf (t). It was first derived by [2]
For our work, Af(t) is periodic load with slowly varying frequency with amplitude 1. We let,
f(®) = Cos (w(6t));0<t< 0,0 <K 1 (2.18)
where w(6t)is a continuous slowly varying time dependent frequency function
with right hand derivatives of all orders att = 0 and is such that
w(0)=0; lw(dt)] K1;0<6 << 1.
Then, the relevant equation of motion (2.17a), which is here adjusted to include a light viscous damping now becomes
d? dn
d_trzl + 26— + (1 — Acos (w(8t))n — bn® = Ae cos(w(5t)) (2.19a)
where b is the |mperfect|on sensitivity parameter and 25; is the damping term with coefficient 25.The damping is

said to be light because of the coefficient 2§ issuchthat 0 < § << 1.

We now let,

T=24t (2.19b)

~w=w(dt) = w(r)(2.20a)

The general equation (2.19a) forms a second order non-linear, non-homogenous differential equation with slowly
varying time-dependent and periodic co-efficient where 7 is a slow time scale and & is small compared to unity .
Here,A is load parameter, for 0 < A < 1,7 isthe deflection(displacement)

Now, we let,

Zi [1 — Acos (a)(dt))] = [1 — Acos (w(1))] '/ (2.20b)
{Z ((D)€e! } =t+ % [, (T)e + py ()€ + -] (2.20¢)
where, -

1w (0)=0;i=123,..

Therefore, we have,

dn _0on dt 9t  onodtdr dnde

at ~iot ot Tofordr Tarar (2.21a)
We note that,

on _af_l_ar; dt
) ot Mt et Var Mt
oo 1 - 3
P 5(“1 €+ Uye” + pze’ + ) (2.21b)

Here a subscript following a comma indicates partial differentiation and
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d(..) ,
—ar - )

Substituting (2.21b) in (2.21a), we obtain,

dT] 1 1

—r = (L= Acos(@(D) 2 ne+ 5 (e + s € + phe® + - )8n,e+ 81,

= (1= Acos (@(0)) 72 e+ (uhe + phe? + phe® + - I, + 811, (2.21¢)

Hence forth,we shall write cos(w(r)) simply as cos(w)
Then, it follows that,

d2
d—tz = (1 — Acos(@)Mge+ 2(1 — A cos(w)) /2(uie + phe? + - Ing
+ (i€ + phe? + )+ 28(1 — Acos (@) 2meo+ 28(uie + phe? + phe® + e

6w’ sin(w)

2(1-2 cos(a)))l/Z
It is to be recalled that the relevant equation is,
d? d
d_tz + 26d_7t7 + (1 — Acos (w))n — bn® = Ae cos(w) (2.22b)
Substituting (2.21c) and (2.22a) in (2.22b), leads to,

| (1 = Acos (@))mee+ 2(1 — Acos () /2(ue + phe? + phe® + -+ In,ge

Mt + 82,00+ (1€ + pp€® + pze® + - )y (2.22a)

(e + upe® + pyed + )2+ 26(1 — Acos(@)) P2z, + 28(uhe + pye?
Adw' sin(w) 5 . - e
T+ Tt (M€ + pp€® + pze® + - )¢ |
2(1 —Acos(w)) /2
+268 [(1 — A cos(@)) V2n,i+ (e + pye? + phe® + i+ 677,1]

+(1 — Acos(w))n — bn® = Ae cos(w)(2.23)
Dividing (2.23) through by (1 — A cos(w)) gives,

FH3€® Mt

2
Fras ( e + 162+ IE3+...) 'M_|_—( e+ ’62+ ’63+'") -
et 1 — Acos (a))l/z et i s it (1 — Acos (w)) He I Hs it
+ 26 + 26 ( 1] + ! 2+ i 3+ )
T € € € “M,ir
(1 —Acos(w))l/znt (1 — Acos (w)) €T i Hs N
AMw' sin(w) n,; 52 1 ) L ]
+ et Hi€ + pp€? + pze® 4 ),
2(1 — Acos (a)))3/2 (1 — Acos (w))n" (1 — Acos (w))( 1 2 3 )T]t
+[ 28 N 28 U+ 1e? + 1he® + - )mt 262 ]
ot € € € e ——— 7,
(1 —ACOS((‘)))l/Znt (1 _ACOS((D)) M1 25 U3 Nt (1 —ACOS(O)))‘”T
b Aecos (w)
T deos @) - (2.24)

(1 — Acos (w)) = (1 — Acos (w))
Now it is pertinent to assume the following asymptotic series

n(t,t) = n (£,7) €'67(2.25)

22
Where ij on n¥ indicates superscript but not powers
On expansion, (2.25) leads to,

+ 330 + 6m3L +82n32 4 ) + - (2.25)
Equating equations of orders (e'67) in (2.24) using (2.25) and (2.26), gives the following equations,
0@): ' + n10 = A cos (@) (2.27a)
et T 1 — Acos (w) '
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—2n43 20353 Aw'sin (w)n%°
0(ed):nii + 1t = L L S Sk - (2.27h)
(1 — Acos (w)) /2 (1 - Acos (w)) /2 2(1 — Acos (w)) /2
0(eb?): nlti + nt?
_ N2 —20t 20’
(1 — Acos (a)))l/z (1 = Acos (@) (1 — Acos (w))l/z (1 — Acos (a)))l/z
Aw'sin (w)nit
- @ . (2.27¢)
2(1 — Acos (w)) /2
3 b(n°)° 253
0(e”): n’tt + 7’] (1 —Acos ()  (1-Acos w)) (2.27d)
0(e38): 13k + 7t = 3b(n")*n"! 2upmdt 2wmy 20
(1—Acos(w)) (1 -2 cos(w))l/z 1-2 cos(w))l/z 1-2 cos(a)))l/Z
_mmy 2w’ pemg  Ae'sin(o)n 2.27¢)
(1 — Acos (w)) (1=2cos (w)) (1 —2cos (®))  2(1 — Acos (w))*/2 '
0@+ = oy 4 (qroyzzy 2D
tt (1 Acos(w)) (1-2 cos(w))l/Z
B 2n.¢; B i g 2wmit mimg
(1—2Acos(w))/2 (1 —Acos (w)) /2 (1=Acos(w))  (1—2Acos(w))  (1—Acos (w))
2 30 30 [ 31
_ N _ Ul __Aw'sin (@)n,¢ i 2.27f)
(1—Acos (w)) (1 —4cos(w))  2(1 — Acos (w))*/2
The initial conditions are,
dn(0)
n0) = ——= 0 (2.28a)
However, realizing the fact that,
dn
¢ = (1= 2cos (0)) 7216 + (u5.(D)e? + (D + - Ing + e (2.28b)
d
the velocity initial condition d_z = 0in (2.28b) becomes,
n:+ Q- Acos(w))” V2{upe? + phed + I +6(1— Acos(w)) Vzn,, =0 (2.29)
Taking the initial conditions, (2.29) results to
N (0,00 + (1= )7 /2{upe? + e + - In,e (0,0) + 81 =) /2m,, (0,0) =0 (2:30)
Other initial conditions in orders of (e'87) are,
nY(0,0)=0Vi,j (2.31a)
0(e):n*°(0,0) = 73°(0,0) =0 (2.31b)
0(€8): n21(0,0) + (1 — 1) /22 = 0 (2.31¢)
0(e8%):n$(0,0) + (1— /1) Yaplt = 0 (2.31d)
0(e®):n3 (0 0)+ (1 =) 2p5(0)nt° = 0 (2.31e)
0(e36):n31(0,0) + (1= 2)™ /2{uy(0)n3*(0,0) + n3°(0,0)} = 0 (2:31f)
0(e262):n(0,0) + (1= ) /2{u5(0)13*(0,0) + 02 (0,00} = 0 (2319)
3.1Solution of the equations of orders n¥ of the Model Problem
From equation (2.27a),we have
Acos (w)
TI 0 (1 Acos (w))
with initial conditions (2.31a)and (2.31b)

Solving (2.27a), results to,
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n1°(t, 1) = ay9(t)cost + byo(7)sint + B(7) (3.1a)
where,
_ Acos (w)
B(T) ~ (1-2cos (w))
Usingtheinitialconditions(2.31a, b)in(2.32), gives
n'°(0,0) = a;,(0) + B(0) =0

(3.1b)

A
“~a10(0) = —B(0) = 1-2

From(2.31b), it follows that,
13 (0,0) = by (0) = 0

= b1p(0) =0
Next, solving (2.27b), gives,
-2 Aw' sin(w) n3°
ni + 0t = {mie + 3’} - - (3.2a)

B 1-2 cos(w))1/2 2(1 — Acos (a)))3/2

with initial conditions,
n1(0,0) = 0,73 (0,0) + (1 - ) 721, (0,0) = 0.
Substituting for n’1f0 and n}tg in (2.2a), gives,
11 11 _ 2(ajo+aio) ajolw’ sin(w) } L oa { 2(b1o+b10) 2(b1o+b10) } a
Mee £ {(1—/1 cos@n Tz 2-ncos@ne) "M T Vacacosn Tz | Gcos@n’e) 05t (3.2b)
To ensure a uniformly valid asymptotic solution in £, it is necessary to equate to zero the coefficients of
sint and cost t respectively in (3.2b).
Thus, it follows from the coefficients of sint, that,
2(ajo + aqp) N apAdw'sin (w)
(1 — Acos (a)))l/z 2(1 — Acos (a)))3/2
and from the coef ficient of cost, the result is
2(big + byp) N bpdw'sin (w)

=0 (3.2¢)

=0 3.2d
(1 — Acos (a)))l/2 2(1 — Acos (W))3/2 ( )
Solving (3.2c), gives,
@ + Aw'sin (@) =-1 (3.2e)

a;o  4(1—Acos (w))
Now integrating both sides(4.23e) with respect to t, gives
Ina;q + 1/4 In(1 —Acos(w)) = -1+ C;
where(C; is an arbitrary constant.
i.e Inayy(1— Acos (w))1/4 =—17+Cy, ay0(1 — Acos (w))1/4 =e Tt

a;o(1— lcos(w))l/zt =A,e77,  a,,(1) = Age™T

——— wh A, = e‘1(constant
(1—Acos(w))1/4 where 2o € ( )

a10(0)(1 = )74 = 4y = —BO)(1 = D)4, = a;o(r) = —B(0)e™
Similarly, solving (3.2d), gives,

b1, Aw'sin (w) 1 32
by T #(1—Acos (@) (3:2f)
Integrating both sides of (3.2f)w.r.t 1, gives,

1-2 ]1/4

(1-Acos (w))

1
Inby, + Zln(l —Acos(w)) =—-1+C,
whereC, is an arbitrary constant.

i.e Inbio(1— Acos (a)))l/4 = —1 + Cyandb,((7)(1 — Acos (w))1/4 =e ™2 =47
where A; = e“2andfort =0

bio(0)(1 — )4 = A, = 0 and byo(t) = 0
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Substituting by, (7)in (3.1), gives

1%, 1) = a;0(r) cost + B(1) (3.3)
Furthermore, solving the remaining part of equation (3.2b) gives
(£, 1) = a1 (1)cost t + byy(T)sint (3.4a)

Then, applying the initial conditions in (2.31b), gives
n'(0,0) = a;,(0) =0, ~ a;1(0) =0

Fromn,;* (0,0) = by;(0) = 0, thus, b;1(0) = 0

Now solving (2.27c), gives

12, .12 _ —2 11 11 1 10 10 Ao’ sin(w) 77'%1
(R a1- Acos(w))l/z {77va+ T } - (1 — Acos (a)))l/z Mot 2073 = 2(1 = Acos (w))3/2 (3.4D)
with the initial conditions
n12(0,0) = 0 and 7,12 (0,0) + (1 — 1)~ 72,11 7(0,0) = 0 (3.40)
Substituting n,t*,n,ir, 1,0 and 0,12 in (2.27¢), gives
2(ay; +aq1) N a1 Aw’ sin(w) (b{o + Zb{O)

N+ 1% =101 - 1cos) /2 2(1 — Acos(w)) 2 (1 —Acos(w)) ( sint

~ {2 < bj; + b4 by1Aw'sin (w) (az0 + 2aly) )} cost — (B'(x) + 2B' (1)) (3.50)

(1 — Acos (w))¥/2 ~ 2(1 — Acos (w))3/2 (1 — Acos (w)) (1 — Acos (w))
To ensure a uniformly valid asymptotic solution in t, there is need to equate to zero
the coefficients of sint and cost t respectively in (3.5a) .
The coef ficient of sint, gives
2(aj; + as1) N a1 Aw'sin (w) (b{o + 2b10') B

= (3.5b)
(1—Acos (@)/2  2(1 — Acos (w))/2 (1 — Acos (»))
From the coef ficient of cost, the simplification gives
2(bi;+ b by, Aw?sin (w ao + 24,
(b11 11)1 4 _Pu ( )3 _ (a1o 10) _ (3.5¢)
(1 —Acos (w)) 72 2(1 — Acos (w)) /2 (1 —Acos (w))
Solving equation (3.5b), gives
2(ayj; +a a1 Aw'sin (w
(a1, 11)1 Pt ( )3 —0 (3.5d)
(1 — Acos (@) /2 2(1 — Acos (w)) /2
Because byy(t) = 0,then, bj, = bi, =0
) ai, N Aw'sin (w) " 35
Y€ a4y 4(1—cos (@) (3-5¢)
Integrating both sides of (3.5d)w.r.t.t, gives
1
Inay; + Zln(l — Acos (w)) = =1+ C3
Where C5 is an arbitrary constant.
i.e Ina;1(1— Acos (w))1/4 =—7+C3
a11(0)(1 — Acos(w)) /4 = e=™Cs = Ae " (where A = e3)
1
a1 ()AL~ /4 =4;3=0,"0a;,(1) =0
Similarly, solving (3.5¢), gives
2(b11 + b11) by dw’sin (w) (az0 + 2ay0)
1/+ 3, " =1 ) (3.51)
(1 — Acos (w)) 72 2(1 — Acos (w)) /2 cos (w)
Aw'sin (w) (aio + 2ay9)
i.ebj; +bi1{1+ = 3.5
l.e Dyq 11{ 4(1_1(:05 ((1))) } 2(1_1(:05 ((U)) ( g)
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Integrating both sides of (3.5g) gives,
eS(aso + 2aj,)ds

b1 (1) e (1 - Acos () /4 = Uo 2(1 — Acos (w)) /4

by1(0) = (1= 2) 74[0+C,] = C,(1—2) /4=0,1=0,C, =0
Hence,

+ 64] (3.5

- T e5(ayo + 2ajo)d
byy(7) = e7(1 — A cos(w)) v, U’ e*(ayo + 2ayy) 15]
0 2(1 — Acos (w)) /2
~n*(E,1) = by, (Dsint; (becausea,, (1) =0) (3.6)
There remaining part of equation (3.5a) is

B'(7) + 2B'(1)
12 12 — _ 3.7
Mee + N <(1 — Acos(w)) (8.7a)
Solving (3.7a), the result gives
. . (B(®+2B'(1)
n'2(t,7) = a5 (1)cost + by, (T)sint — (m (3.7b)
Applying the initial conditions (2.31a) and (2.31d) in (3.7b), gives
12 B"(0) ,
n+%(0,0) = a;,(0) — a-n = 0; becuaseB'(0) =0
B'(0) B(0)w?(0)(21—1)
%~ aq5(0) = a—n = -7 and b,,(0) =0 (3.7¢)
3.2 Solution of the equations of orders ¥, = 0,1, 2 of the model problem
The next solution contains terms such as (71%)3 which need to be evaluated before substitution.
Doing this, the following is obtained
103 . 3 . . 3aioB 3a3, ) .
1'%)° = (aqpcost + B)> = B°> + > + 2 + 3a,9B“ | cost
3, . @i .
+ §a10c052t + Tcos3t (3.8)
Substituting (3.8) in (2.28d), gives
3b 3a3,B 3a3, . 3 . ad, .
ni +n%0 = A 705 @) (83 +— ) + ( 2t 3a,0B? | cost + Ea%OCOSZt + Tcos3t
2uba gcost

I (3.9
(1 — Acos (w)) /2
with initial conditions,
n*°(0,0) = 0; n°(0,0) + (1 = ) /2 [u5 (M (0,0)] = 0
Ensuring a uniformly valid asymptotic solution in t, needs equating to zero the
coef ficients of sint and cost respectively in (3.9).
Thus, the coef ficient of cost, gives
3b aiy 2} 2u3aq0
(1 — Acos (w)){ 4 F bty (1 — Acos (w))1/2 ° (310
From (3.10), it follows that
—3b(a?, + 4B?)

= 7 (3.11)
8(1 — Acos (w)) /2
The remaining equation (3.9) is
73 + 130 = b [(E az,B + B3> + §a%OBCOSZf + §a§0COS3f] (3.12a)
it (1 —2Acos(w)) 1\2 2 4
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The solution (3.12a) is

30(£,1) = azo(1)cost + bso(7)sint + 3a10B +B3) -
b 30 30 (1— /1cos (@)

(3.12b)
n3°(8,7) = azo()cost + bzo(v)sint + b[Sy (7) + S;(¥)cos2t + S, (T)cos3t]  (3.12c¢)

Ba?, . 3ad,cos3t

where,
So() = ;(3 Ba?, + 33) (3.124)
(1 — Acos (w)) \2 ,
—Ba10 —3aj,
5i1(0) = 2(1 — Acos (w)) ' 3 $2(1) = 32(1 — Acos (w)) (3:12¢)
and where,
5(0)_w.5(0)_ﬂ.5(0)_ﬂ (3.12f)
T2 =) T T 20 =2) TR T 321 =) '

Using the initial conditions in (3.12c), gives
7°°(0,0) = azy(0) + b[Sp(0) + 51(0) + S,(0)] = 0
s (0) = —b 5B3(0) B3(0) N 3B%(0) | 67 bB3(0) b (0) = 0 312
“a0 0 ==b o Tsa ) TRa—n| - 32a-n L0 =0 Gl29)
In the next solution, there shall be the need for terms like B'(0), S;(0),S;(0)and S;(0)
which are neccessary and are evaluated as follows
—Aw’ sin(w) — A2w’'sin (w)cos (w)
; 2B'(0)=0
(1 — Acos (w))?

5 (2Bayoal, + B'a?, + 3B2B) + 3Bad 4 g3 ) (—Awsin (@) SH0) =0
(1 — Acos (w)) |2 10410 10 2 (1 — Acos (w))2)|"7°Y7 —

..~ 1[(B'ajy + 2Bayy aj, Ba?yAw'sin (w) oo
S1(7) = _E[( (1 — Acos (w)) > + ((1 — Acos (w))2>] $51(0) =0

B'(t) = (1 — Acos (w)) [

So(0) =

=3[ 3ajeab, a3, Aw’sin (w)

S2(0) = 32 |(1 = 2cos (w)) (1 — Acos (w))2|’ 52(0)=0
The following equation is obtained on substituting in (2.27¢)
Lo 3h@ )" 2upmg P R 2
e+ S Qa- lcos(w)) (1 —Acos ()72 (1 —Acos(w)) /2 (1 —Acos ()72 (1 —2cos(w))
Cdemp 2um'® Aw'sin (), (3.13)

(1 —Acos (w)) (1 — Acos (w)) 2(1 — Acos (w))3/2 .

with initial conditions,
7°1(0,0) = 0 andn,21 (0,0) + (1 — 2)/2[u5(0)n}1(0,0) + 13°(0,0)] = 0
Next, it is neccessary to evaluate the term (n1°)?nfirst, before going forward
The following is obtained in this casg, .
n1%)?2ntt = by, <% + B) sint + by;Bayosin2t + M (3.14)

Substituting (3.14) in (3.13), gives
3b

31 _
et +11 "~ (1 = Acos (w))
-2

(1 — Acos (w)) 72

bi1a3,sin3t N 2uyby,sint
(1 — Acos (a)))l/Z
{(—asgsint + bsgcost) + b (—2S;sin2t — 3S,sin3D)}

a%O 2 , A s 2
|\ + B* | sint + by1Bayysin2t +
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2 [—alosint + blycost + b(—2S]sin2t — 3S4sin38)] + 2430305int
(1—/1cos(w))1/z 30511 30€08 15 251 (1 — Acos(w))

Uy AqSint 2uh aqsint B Aw' sin(w) (—ayosint + bygcost
(1 -Acos(w)) (1 —Acos(w)) 2(1 — Acos (w))3/2 30 30
+b(—2S;sin2t — 3S,sin3t} (3.15)

To ensure a uniformly valid asymptotic solution in t, it neccessary to equate to zero
the coef ficients of sint and cost respectively in (3.15).
From the coef ficient of sint, the resultant equation is

3bb 2usb 2a 2a;
11 (a2, + 4B%) + H2D11 _ 30 . 30 .
4(1 = Acos (w)) (1 —Acos (@) 72 (1 —2Acos (w)) 72 (1 — Acos (w)) /2
2 ! ! n 2 ! A r.:
H2Q19 Hz Q19 Hz Q19 azpAw’sin (w) —0 (3.16a)

(1 —=Acos (w)) (1 —Acos (w)) (1 — Acos (w)) 2(1 — Acos (w))3/2
For the coef ficient of cost, it easily follows that
2b3, N 2bs N b3oAw'sin (w)

- - —=0 (3.16b)
(1—Acos () 72 (1 —Acos (w)) 72 2(1 — Acos (w)) /2
Arearrangement of (3.16a) gives
2aj, 2a3q azolw'sin (w)
1 T 3
(1 —Acos () 72 (1 —Acos (w)) 72 2(1 — Acos (w)) /2
3bby4 2 2 2u;byq
= - +B%) +
[4(1 — Acos (w)) (4t ) (1 — Acos (w))1/2
n 2uza40 n 2u3a40 n H2Q10
(1 =A4cos (w)) (1 —Acos (w)) (1 — Acos (w))
) , " Aw'sin (w) B 316
l.e dajzg + aso + 4(1 — Jcos ((1_))) =q1 (T) ( . C)

where,
1-Acos (w)) Y/, [ 3bby,

@ (@ =—(
Solving (3.16¢) gives,

% azo(t) = e *(1 — Acos (w))_1/4 UT%(S)es(l - Acosa))l/4 + Cs]
0

2 2 2upbyy 2ubal, Y ag, 2ubase
(1-cos (w)) /2 (@i + B9 + (1-AAcos (w)) /2 * (1-Acos (w)) + (1-Acos (w)) + (1-Acos (w))l/z](3'16d)

1 67bB3(0) 67bB3(0)
azp(0)=(1-2) /af0 + Cs]; Cs = —————=—;| because azo(0) = — ———=
32(1 =) 74 32(1-2)
Similarly, solving (3.16b) gives,
by + b (14— (@) ) _ 3.16
30 7 730 4(1 — Acos (w)) ] (3.161)

Solving (3.16f) gives,
b3o(1 — Acos (w))1/4e T'=Cq; ~ b3o(1) = C4(1 — Acos (w))_1/4 e Tib3p(0) =0;~Ce =0
Hence,
b3o(7) =0
Substituting by (t)in (3.12¢) , gives
n3%(¢, 1) = aze(t)cost + b [Sy(7) + S;(t)cos2t + S, (7)cos3t] (3.16h)
The remaining part of equation (3.15) is solved to get

. . . S3 . S,sin3t
3£, 1) = ag; (¥)cost + bz, (t)sint — ?SLnZt -

(3.160)

where,
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3bbi1Bay bS;Aw'sin (w) 4bS; 4bS;
3. T it 1
(1 =Acos (W)  2(1 —Acos (w)) 72 (1 —Acosw) /2 (1 — Acosw) /2
3bbyia %) 3bS, 0’ sin(w) 6bS, 6bS)
3.17b

4(1-Acos(w)) ~ 2(1-Acos (w))3/2 (1-Acosw) /2~ (1-Acosw) /2 ( )

20bB3(0) ; —18bhB3(0) -18
S5 (0) =——~=DbB (0)Ss; S5 = =

= bB3(0)Ss; Ss =
Using the initial condition,n31(0,0) = 0 in (3.16h), gives,

17°1(0,0) = a31(0) = 0; ~ az;(0) =0
Using the second initial condition (2.31f) in (3.16h), gives
2 3 -1 ’ 1 lJ
b31(0) — 552 0) - 553(0) +(1-2) /2[‘130(0) + b(S5(0) + 51(0) + S3(0))] =0
% b31(0) = 0; (because Sy(0) = S;(0) = S5(0) = 0)
Solving the equation (3.27f)gives
3b Aw' sin(w) n,3* 2n,31
— [10 (12 + (n10)2n12] — 3 —— it .
(1 = Acos (w)) 2(1 — Acos (@))/2 (1 — Acos (w)) /2
_ 2n,¢! 2upm,¢f W 2wpmit 0
(1—Acos ()2 (1—Acos (@) Y2 (1 - Acos (w))/z (A1 —Acos(@)) (1 —2Acos(w))
Lk 2uan,i’
(1—-A2cos(w)) = (A —Acos(w))
with the initial conditions,
7%2(0,0) = 0 andn,? (0,0) + (1= 1)~ 2[u; (), (0,0) + 7,2 (0,0)] = 0
We need to evluate n*°(n'1)? + (n*°)2n12first before proceedlng and obtam

B’ a a?, + 2B?
10(.',’11)2 +(n10)2 12 [ZBamalz (1 ACOS(JJ)( 10 BZ> 11] [ ( 10 2 )

S3(1) =

(3.17a)

S4(7)=

n’tt + .'732

(3.18a)

ZBB”aw a10 b121a10 A B’ a10 Bb11 2
_— ——|cost + |2Ba,a,y — — cos2t
(- Acosw) 4 12710 (1 — Acosw) 2

a,,a? b a R
124 0 _ 104 Dl cost (3.18b)

Substituting (3.18b) in (3.18a) gives

3b B’ a?, + 2B? a?, + 2B?
32__ b _ 1o ) ajo +2B°
M+ (1 - Acosw) {<2Ba10a12 (1-2 cos(w))) < 2 > + Bbll} + {alz < 2 >

2BB’ afo aty | biiaig 2 B”a%O Bb?, 2
_—— 2 20y t[+1i28B - - 2t
(1—-2Acos(w)) 4 4 | @12%10 (1 — Acos (w)) 2 €os
a,a?, b?a . Aw'sin (w . .2 . 3 .
+ {( 12101t 10)} cost — (@) 3 {—aglsint + b3 cost — =S3co0s2t — —S4sin3t}
4 4 2(1 — Acos (w)) /2 3 8
2 R . R R 2 s
- 7 {—aj;sint + bg,cost — 2S5cos2t + 35,c0s3t} — T {—az;sint
(1 — Acos (w)) /2 (1 = Acos (w)) /2
. . . 2u . . 2u5bycost
+bs,cost + 255cos2t + 3S,cos3t} — ac’ —{—a12cost — bypsint} — H2P1 T
(1 — Acos (w)) /2 (1 — Acos (w)) /2

by, cost 2
(1—-A2cos(w)) (1 —Acosw)
Ensuring a uniformly valid asymptotic solution in t is achieved by equating to zero
the coefficients of cost and sint respectively in (3.19a).

{asosint + bigcost + b(S§ + Sicos2t + Sycos3t)}(3.19a)

11— a-n’ " T - 32(1 — 1)/
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From the coef ficient of cost, the resultant equation is

3b a?, + 2B? 2BBa?, a?y  biaq b3, Aw'sin (w) 2b%,
(1 — Acos (w)) 2 < 2 ) - (1 = Acos (w)) 4 4 | (1 — Acos (a)))3/2 - (1 — Acos (a)))l/Z
_ 2b3q n 2143012 _ 2pi3b14 _ 2pi3b14 _ 2b3g
(1—Acos ()72 (1 —Acos ()72 (1 —Acos (w))'/2 (1 —Acos (w)) (1 — Acos (w))
Habyy aso b3 H2b11 —0 (3.19h)

" (1—2cos (w)) (1 —Acos (@) (1 —Acos (w)) (1 — Acos (w))
From the coef ficient of sint, it follows that
az; Aw'sin (w) 2 az, 2as; 2usbq, 2 ajg

= =0 (3.19¢)
2(1 — Acos (a)))3/2 (1 — Acos (a)))l/Z (1 — Acos (w))1/2 (1 — Acos (w))1/2 (1= Acos(w))
Are_arrangement of equation (3.19b) gives
by, + by |1+ Aw'sin (@) = q3(7) 4.19d
where,
@ (1 — /'lcosa))l/2 3b a?, + 2B? 2BB'a?, N a?y biaq N 20504,
T a - —
s 2 (1 — Acos (w)) | 2 2 (1 — Acos (w)) 4 4 (1 — Acos (w)) /2
2u3b1q 2u3byq azo 2b3

(1 — Acos (w))l/z ~ (1—Acos (w)) (1 —Acosw) (1 — Acosw)

_ .U;bn
(1 — Acos (w))
Solving (3.19d), gives,

bs;(D)e*(1 -2 cos(w))1/4 = I:-[Tq3 ()e’(1 - Acos(a)))l/‘lds + C7]
0

o bay (T) = e~T(1 — Acos (w))” /4 [ f Tpg (s) e5(1 — A cos(w)) ads + 67]
0

bsy(0) = (1 — 1)~ 74[0 + C,] = 0; - C, = 0; (because by, (0) = 0)
Then, It follows that

bs;(t)=e T (1-2 cos(w))_1/4 [frp?, (s)e*(1 — lcos(w))l/‘tds] (3.191)
Solving (3.19¢) gives ’

Aw'sin (w)
it (1 T egr (w))> = p, (7) (3.20a)
where,
1 — Acos (O)) % [ aéo 2.u',2b12
ps (T) = ( > ) (1 - Zcos(w)) (1 — Acos (w))1/2]

Solving (3.20a), gives,

aso(1)e’(1 — Acos (w))1/4 = —J.Tp4 (1)es(1 — Acos (w))1/4ds + Cs]
0

as1(0) = (1 — ) /4[0 + C4] = 0 = Cg = 0; (since as;(0) = 0)
Then,it follows that,

az;; (1) =e " (1 — /'Lcos((u))_l/4 Urp4 (s)es(1 - Acos(w))1/4ds] (3.20b)
0

The remaining part of the equation (3.20a) is
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N2+ 032 = S,(t) + Sg(t)cos2t + So(r)sin2t + S14(t)cos3t + 14 (r) sin3t  (3.21)

where; i - . 5" a2, +2B%\ Bb? 2bs)) 292
R (e ) Gl eyt e R i ) R
S.(8) = 3b [ZBa Lo B'al, Bbfl] _ 2832w'sin (w) N 453
8 (1 — Acos (w)) 12710 (1 — Acos (w)) 2 6(1 — Acos (w))3/2 (1 — Acos (a)))l/z
3 453 _ 281 (3.22b)
(1—Acos (w)) 72 (1= Acos () |
Sy (1) = @ (3.22¢)
o (1 — Acos(w)) .
Aoy — b121a10> 65, 65, S3
_ _ — 22d
S10(7) ( 4 + (1 — Acos (w))l/z (1 — Acos (a)))l/z (1 — Acos (w)) (3.220)
_ S
Sll(T) = m (3226)
But,
6w'2(0) + B(0)(1 -2
S7(0) = =3bB?(0)S1; S1; = { G ; (J; _(/1))2( )}; 55(0) = 3b B(0)S13 (3:23a,b)

where,

.. = [ —4B"(0) — 2B(0)B"(0) — B2(0)(1 — A) N 4bB?(0)S;, ~ 4bB2(0)55]
e { 2(1- 12 } A-n" @a-n'
S9(0) = 511(0) =0, S514(0) = bZBS14(3-23C)
[{B"(O) + B(0)(1 — ,1)} 6bB(0)S;5 6bB(0)56]
where  Si4 = —

4(1-2) 1-n"2 a-n'
The solution of (3.21) is

. R o Sg (1) ,
n32(t, 1) = as,(t)cost + by, (1)sint + S, (t) — 5 cost
Se(7)sin2t  S;(z . S11(7)sin3t

_S9(D) _ Sio( )cos3t— 11(7) (3.24)

3
Using the initial conditions, (3.31a)and (3.31g) in (4.24), gives

7%2(0,0) = a3,(0) + 5,(0) — 22— 2160 = ¢ . ¢, (0) = 3bB(0)S;5
where,
—24B(0)S;, + 8513 + B(0)S14
15 = 24
4.3 The Maximum Displacement of the Model Problem
The displacement of (£, T) can be written as
n(f’ T) — 6(7710 + 57711 + 52n12 + ) + 62(1120 + 67721 + 621122 + )
+e3M30 + 631 + %32 + ) + .. (3.25a)
Butn® =0, j=012,
Therefore(3.25a)yields,
nE,)=emO+nt+62n2+ )+ M3+ 3t + 67032 +--) + -+ (3.25b)
The formula for determining the dynamic buckling load is given as
da
. 0 (3.26)
where 1), is the maximum of n(£,t) and n.is defined as n(t.,t.), where t.and t, are
the critical values of t and 1 respectively at maxmium displacement. We however
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need to determine n, first before invoking(3.26).1t is to be recalled that,in  terms  of the original t —

variable, the condition for maximum is
dn

=0
dt
However, the condition for maximum displacement interms of t and T is given as
€2+ used +- 6
nt+<“2 s ) - UL (3.27)
(1 = Acos(w)) 2 (1 — Acos (w)) /2

It is pertinent to assume the following asymptotic series
fC = (fo + 6&01 + 621?02 + "') + E(flo + Sfll + "‘) + Ez(fzo + 6£21 + "‘) + - (328)

From (2.19b), we get,
T, = Ot, (3.29a)
where t is the critical value of t at maximum displacement. Expansion of t,.
asymptotically, gives
4+ )+ €2(Ty + 8Ty +-+-) + -+ (3.29b)

tC = (TO + 5 T01 + SZTOZ + "') + 6(T10 + 6 T11

=6t =68[(To+8Tor+ )+ €(Tyo+ 8Ty + )+ €2(Tyo + 6Tyy + )]
At critical points, equation (3.27) gives
1 2 I 3

nt(tete) + Ha(t)e” + ks (TC)el * n,t(tete) + —n,7(£,7.) =0 (3.30)

(1 — Acosw(t,)) /2 (1 — Acosw(t,)) /2

The next thing is to expand (3.30) asymptoticallyusing using (3.28), (3.29b, ¢) and obtain
e[’ +{(8fo1 + 6280p + ) + €(b1g + Ostyy + 82Ey, + ) + €220 + 6tp1 + )i

(3.29¢)

1 . . . . . . . .
+E{(5t01 + 62t02 + "') + f(tlo + 6t11 + 52t12 + "') + Ez(tzo + 6t21 + 62t22 + "')}ant.gt

+6{(To + 8 Toy + ) + €(Tio + 8 Tyq + ) + €2(Tag + 8 Ty + -+ )05
+20{(Ty+6Tor + ) +€(Tyo+ 8Ty ++-) + E 2(Tyo+ 8 Tyy + )}{5%1
+e(t10 4 8tyq + ) + €2(Fp0 4 8ty + ) dee T 0Ty + - +e(Tyo + )
+62(T20 ntT‘L’] + 65[77,%1 {(5t01 + + 6(t10 + 5t11 ))+€2(t20 + 5t21 b )}n'%%

+6{Ty + -+ €(Tyg+ - +) + €2(Tyo + - +)}n + = {(&01 )+ (o + 6ty + 1)

+e?(ty + 8tp1 + "')}277,{3 +28{(To + ) + €(T10 ) + €*(Tyg ... +)HbEo1 +
+e(tio + 6811) + €2(Ey0 + 8ty + DIt + €620y +H{(6F01 + 521?02 + )
+e(fyg + ) +€2(Ty + )}Ult% + - ] + 53[U,t + {(6tgq + 62tp, + )}77 + 8{Ty + 6Tp1

. 2(0) 0 .
+"'}’7§t(r)+{5t01+"'}277m+ ] +5352[’730+ ]+E3[liz U,lt n 13 ( )1 (6%,
' 1= 1=

py (e 4,(0)
+52t02+”'}7],1fg 1_/1(:05 (w)l/z ,T{T0+6T01+"'}+5< 1/ >{T0+5T01+"'}
1 — Acos (w) 72

1 (0 . . ! 10 R
—< #2(0) . >{6t01+52t02 -k t+26< Ha (it T ) {To + - Hotor + -}
1 — Acos (w) /2 1 — Acos (w) /2 T

/ 10 L(0)n3!
+62 < “Z(T)n,t . > (TO + . )2 4+ 4 626 [ ,le( )n’lt + HZ(O) {6t01 + - }77
1 — Acos (w) /2 - 1-2 /2 a- A)

/ 11 :
+5< 1z (T)ng . > {T0+...}+l< #2 (1) >{5t01+ }nm
1 — Acos (w) /2 z 2\1 — Acos (a))
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' 11 ! 12
+26< H2 (TN i ) (T + ) +6352[M] =0 (3:31)
1 — Acos (w) /2 (1-1)

The next step is to proceed by equating (3.31) to zero in orders of (eiéf)and obtain the following equations.
0,7

,T

0(e):n3° = 0; 0(ed): Loy + Tonge + it +———— =10 (3.32a,b)
’ ' ' (1-2) /2
2\. 7 .10 11 f02 10 s 11 12 fOln,lfg
0(€6%):toanse + Tong, + = Miee T Loz + 11 + i
1-1"
77111 10 2 .10
+———4+Tyn;z, + 2Tt 22 =0 3.32¢
(- A)I/Z oNir olo1" ¢ir ( )
R R ! 0 }0
0(eD):tonzy =0; 0(e®):tyonzy +n3 12O _ (3.32d,e)

a-n"
0(e36): f2177,1f(f) + Tzon,lfg + 2(Totpo + T1of10)77,1f(f)1 + fzoﬂ,lfl + f0177,3f(f) + Ton,%g + 77,3%1
AR TG . TAGUF 1y (0%
+—1/+T0 1/ +2T0t01 1/ +—1/
1-2A)"2 (1—=Acos(w)) 72/ (1 - Acos(w)) /2 . @A=-1
f2071,1{:3 77,310

Q-2 -1

0(e36%): fzzﬂ,lf(f) + T2177,1fg + 25217"077,1521 + T12077%{?T + £2177,1f% + Tzon,lfi + fzoﬂ,lfz + foz’l%g

\ 12 (0)Eoon 2 o (N7 () o1
+t0177,3%% + Toﬂjﬁ + 77,3%2 + o, + To1 Y + 1 7"%%&

(1-A)"2 (1= Acos (w)) 72/ . \(1 — Acos (w)) /2

/ 10 / 10 ' / 11
R U> (T)N3; U (t)n: " 0 U (t)ns
+2T0t01< bomi_ ) . T02< o ) . tm( () )n%% . TO< o )
(1 — Acos (w)) /2 z (1 — Acos (w)) /2 z 1-2 l2) " (1 — Acos (w)) /2 T
2 (O)U_lfl t 177,15(1) f2077,1,; ny
A= @-p"7 1-'2 -1
On solving (3.32a).that is,
ny = 0 and noting n*°(£,7) = a;o(t)cost + B(1)
Hence,

=0 (3.32f)

=0 (3.329)

n:°(£0,0) = —ay(0)sinty = 0;sinty = 0 but a;(0) # 0; = £, =nm;n =10,12,...
Since the aim is to look for a nontrivial solution, it is here necessary to take the smallest non —
trivial value of n; which isn = 1, and obtain
to = m(3.32h)
The Solution of (3.32b) is

by = [ om0 i g o)
01 77%% 0'ltr & (1 _ 1)1/2 0,
Since 77_1,?2(1?0‘0) =b11(0)=n3"=0
wtgr =0 (3.32i)
It is noted that,

n'1(£6,0) = by1(0)costy = 0;by1(0)cost = 0;b,1(0) =0
Solving (3.32d), gives
t1omif (t0,0) = 0; = &9 = 0 but r],lt(g #0,alsoty, =t =t =t ==t =18,,=0
The summary of the displacement so far is as follows;
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nt1)= e +nt+62+- )+ 3M30+ 3 +6%n%2 + )+ (3.33)
Let n¢ = n(t.,t.)be the maxmium of n(t,t) and from (3.33), it is evident that,
ne=n(7c) = € M + 0 + 82 + ) + M2 + Sn + 62 + ) + - (3.34)

where;

ncij = nij(fc,rc) (335)
Expanding each term of (3.35) asymptotically, gives the following

eng® = e[n*(£50) + n,;°{(8f01 + 6%op + ) + €(Byo + 6Fyq + 6%, + )
+ €2(tyo + 68y1 + 820 + )} + 020 8{(To + 6Ty + ) + €(Tyo + 6Ty + )

1 . . . . .
+€2(T20 + 5T21 + "')} + 2_{7']15(2){61:01 + 52t02 "'} + E(t()l + 6t11 + 62t12 + "')
+€2(£20 + 6&21 + 62£22 + "')}2 + 87] t‘l(f) {(TO + 8T11 ‘) + E(Tlo + 6T11 + "')
+€ (T20+6T21+ )}{6£01+ +E(t01+6t01+ )+62(£20+6£21+'“)}
80,0 {(Tg + ) + €(Tyo + ) + €(To + )} (3.36)
657’ —65[n11(t0'0)+r}'t {(6t01 "')+6(f10+6£11+"')+62(£20+5£21+"')}
1 R R »
0P 6{(To + )+ €(Tyo + ) + €2(Too + )} + _{7715%{(&01 + )} +€e(tyo + 6211 + )
+e?(fa0 + 0tp1 + )} + 26m (o +- )+ (o + ) + e (fao + )}

+62n 2 {(To+ .) + €(Tyo + ) + (T + )}] (3.37)
€62n3? = €6%[n*%(£y,0) + nltz{ A €y + ) + €2(Ep0 + )] (3.38)
€330 = 63[7730(% 0) + Ylt {(&01 +68%80, + )} + 613 {(To + 6Ty +++) + - }] (3:39)
e36m31 = €36[n31(8,,0) + N3  (8fpy + ) + I3 (To + ) + -} | (3.40)
€36%n3% = €352%[n32(£,0) + -] (3.41)

Grouping (3.36) to (3.41)in orders (6i5j), results to
R . to1
ne = €|n*°(£,0) + 6{t0 % + 01 (8,0) + Ton} + 62 {tozn 20+ Toyni0 > — N

+T0£0177%I(.) 2 T]TT + t0177 t + TOT]’ 1+ an(fOIO) +}] + M + 63[f207’,}f0

to1
2 7710 + 7732(t 0) + 5{t2177't + Toon:® + t1177't + Totzonte it tzo’lt

10
+—n1t%+tomt + Ton3° + 132 (2,0) + 62{ton e’ + Toany® + 5 {{2t01t21

+2tgat20 +1 1(t0 0) + tn}}mt + {2(£01T20 + Totz1 + t10Th1 + T0t11)}77 tT
+TEn 2+ EanG E L4 Tyonit + (Bortao + Lrot11)n5t 3 T (Eotzo + tlo)n'tr +ty0mt t
+Hoan3 + Toan3® + toint + To n3° +1n%(20,0)}] (342)
Further simiplifcation of (3.42)gives
T
Ne=€ [n“’ +52< M+ Ton +n12> (£0,0)
+€3[730 + 8(Ton3° + n31) + 82(Toontt + To1n3° + Ton3 +1n32)](£,,0) + - (3.43a)
Substituting the values of 1" (£,,0)in (3.43a), glves
2w'?(0
Ne = € [23(0) + 52{ ( 2(0)B(0) — ' (0)) ( )}]

a-4
67B3(0)b 656%b
€3 [32(1(_21) - /1)3( w'2(0)B(0) — waz(o)B(O))] (3.43b)

Equation(3.43b) contains the term T which is yet to be determined. This term is now
determined withrecourse to (2.20c¢)

2

202



Moses F.N. et. al. - Transactions of NAMP 19 (2024) 185-206

Thus at maxmium displacement, the expansion of (2.20c) gives

R .1
te =1tc + g{#z (D)e? + pz ()€ + -} (3.44a)
Let,
EC = ZO + 6 501 + 62502 + A + E(flo + 6511 + 62512 + "') + 62(520 + 6521 + "') + A (3.4’4‘b)
Expansion (4 44aq), gives
2

ety [Hz (0) + u2(0)(8¢c) + 5 M '(0)(Stc)? + ] 12(0) =0 (3.44c)

A 1
vt = f.+€? (uz(O)t += y '(0)6t? + ) (3.44d)
Expansion of both sides of (3.44d), gwes
fo + 6501 + 62£02 + A + E(flo + Sfll + Szflz + "')+€2(£20 + 6£21 + 62£22 + "')
= EO + 6501 + 62502 + °ee + E(Elo + 8511 + 82512 + "‘) + 62(520 + 6{21 + 62522 + "')
+ 62[(#’2(0)){50 + 5501 + -+ 62(520 + 5521 + 5522 + "') + .- }]

n 0 6 . R N . N R .

#2(2) [t0+6t01+62t02+"'+ 6(t10+6t11+"')+ 62(t20+6t21+"')]2 (3.45)
On equating the orders of both sides, the result gives
0(1): fo = fo; 0(6): 601 = 501; 0(52)502 = 502; 0(6): flo = flO (3.46(1, b, C, d)

0(€?): 50 = Tyo + 12(0)io (3.46¢)
It is to be recalled from(2.20b) that,

dt
= [1 — Acos (w(5t)] /2 (3.47)

Expansion of the right hand side of (3.47), gives
1/, 1
dat W@ '@ O w0 /2
i [1 /1{ T + 20 . =[1-1)+2 i + } (3.48a)
Further simplification of (4.48a)using binomial expansion gives

? = (-7 1+ ; (1 iz) {wzz(!r) B w‘;(!r) * } _15(1 i,1>2 {wzz(!r) Z(IT) }2 (3.48b)
More expansion of (4.48Db), gives
e e U
o B
B 41 [w4 0+ (w“);go)at NGl 2<?>(at)2 . ] _ 41 {w4(0) . w"*g?wt . w"“(c;)!(&)z N } (3480

Further simplification (3.48c)gives

dt 1 1 1/ 2 \? w8(0)
{”—2(1_@{7“’2(°>‘aw4<o)}}‘§(m) FEORL)

—=1=-1"
N { —2 ((wZ)'(O) ~ (w4)’(0)> 1 ( % )2}] N {wZ(O)w'Z(O) _ w*(0)w"*(0)

dt

20—\ 2 41 8\1— 2 288
@?(0)w"*(0)  »”?(0)w*(0) 5 102 V(@ )0 | 0?*(0w)"(0)] (@' 0\
© 1152 1152 } t _§<1—/1) 3 T 2 _< 576 >
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®} (0w (0) w?(0)w" (0) w”(0)w?(0) w"*(0)w*(0)
- 576 24 24 48 }}(&)2 L (3.484)
Now (3.48d) can bf written simply as
% = (1= 2)2[B; + B,5t + B3 (66)% + -] (3.49)
where,
B 1 (020) w*(0)) 1/ 2 \*(w*(©0) w3(0)
Bl_[1+2(1—/1){ 2 24 }_5(1—A>{ 4 576 }] (3-500)
[ (@20 @H'() 17 2\ (02(0)(@2)(0) «*(0)(@'(0)] w?(0)w'(0)
ﬂz_[Z(l—A){ 2 576 }_5(1—,1> { 2 - 288 }_ 1152
102 VY [@H(0) | 0*(0)(@H)"(0) (@h'(0)  w*(0)(@h)(0)
33__5(1—/1) [ 3 2 - 576 576
(0?)'(0)(w")"(0) (w?)"(0)w*(0)
— n — 183 ] (3.50¢)

From (3.49), it follows that,
df = (1= 1) 72[By + Bo6t + B3(6)% + -+ ]dt (3.51q)
integrating both sides of (3.51a), gives
. 1
E=1-1)'"2 [ﬁlt +5B,06 + %5%3 + ] (3.51b)
Thus,using (3.51b), it follows that,
Ec =(1- /1)1/2 [ﬁltc +
The termt, can be expanded as
EC = (EO + 6{01 + 62502 + M + 6(510 + 5511 + 52512 + "') + 62(520 + 5521 + "‘) + b
While it is to be recalled from(3.29b) that
te =T+ 6Toy + 82Ty + -+ € (Tyg + 6%Typ + ) + €2(Tog + 8Ty + 82Toy + ) + -
By asymptotic expansion of both sides of (3.51c), the result gives
EO + 5501 + 52502 + A + E(Elo + 6{11 + 62512 + "') + 62(520 + 5521 + 62522 + "‘) +
= (1 - A)l/z[ﬂl{To + 6T01 + 62T02 + b + E(Tlo + 6T11 + 62T12 + "') + GZ(TZO + 6T21

+62T22 + "')}] +ﬁ276[(T0 + 5T01 + 52T02 + "') + b + 6(T10 + 5T11 + 52T12 + "')

52
+ 62(T20 + 5T21 + 52T22 + "')]2 + ﬁ33 [(TO + 5T01 + "')

+6(T10+6T11+"')+€2(T20+6T22+"')]3 (351d)
On equating the orders of both sides of (4.51d),the following are obtained

(3.51¢)

B, 6t? + B36%t3 4o
2 3

0ty = (1~ DY yTy; 0(6):Tor = (1= )2 [T + 2] (3.524,b)
0(8%):Foz = (1= ) T2[B:Toz + B ToTos ) 0(€):Fao = (1= 1) /21Ty, (352¢,d)
0(e8): t11 = (1 = ) 2[B1T11 + B ToTon] - (352)
0(e6%):t1, = (1~ /1)1/2 [B1T12 + B2(ToT11 + To1T10)]; 0(€): E20 = (1 — )21 T20(3.52f, 9)
0(e28): 8y, = (1= D)2 [B1T21 + % (T 2, + 2T10T20)] (3.52h)
0(€28%):t, = (1~ 1)1/2 [B1T22 + B2(ToT21 + T1o + Ti1 + ToT21 + To1T20)] (3.52I)

Substituting from (3.46a), (3.32b), t, = m in (3.52a), gives,

] (3.50b)
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T m? 3
2 2

T Jalso,Tyy = —————Tyy = —————
MU= T 51— 0%

[
ACEPIRE
From (3.52d), it follows that,
TlO = 0; since flO = 0, alSO, T11 - T12 = Tzo - T21 = Tzz =0
Hence,we have determined Ty, Ty and T,q which are to be substituted in (3.43a)
On expansion of (3.43b), the results gives

(3.53a,b,0)

A L CACLORTA) M
2 [67BZ(O)b 65%b

320—1) (1—2)3 {o

ﬂmwm»&ﬁmwfmﬂ

This can be recasted as

Ne= €G, + €2G, + - (3.54)
where,
820" (0) )
= 67B3(0)b 1926%w'2(0)(2B(0) — 1) (3.550)
32(1-2) 67B2(0)(1 — 2)?
Further simplification (3.55a, b) gives;
_ ) _ 67B3(0)b )
Gl = 23(0)(1 + d16 ); Gz = m(l + d25 ) (356a,b)
where,
w" (0) 192w'* (0)

d, = 4(1_—/1)3@{(3(0) —1DT¢ +4} dy = (2B(0)—-1)  (3.57a,b)

3.4 Dynamic buckling load of the model structure
According to Amazigo and Ette (1987), the procedure for finding the dynamic

buckling load A, involves first reversing the series in (3.54)as follows:

€ =kine + knd + - (3.58)
Such a reversal of series is required in order to ensure the boundedness of solution after buckling
Substituting for n.in (3.58) using (3.54) results to

€ =ki(€G, +€3G5 + ) + k3(eGy +€3G5 + -+ )3 + - (3.59)
Equating the coef ficients of € in (3.59), leads to
kyGy =10 ky = Gi (3.600)

Equating the coef ficient of €3in (3.59), results to

67BZ(0)(1 — 1)2

kiGs +k3GP = 0.2 kg = -2 = -2 (3.60b)
1 1
To obtain the dynamic buckling load Ap,it is necessary to invoke(3.26) and obtain
de d de
=—|k kan3 +--1; =0; tant 3.61
T = @ e + kand T2 = 0 (constant) (361a)
_d(ky) da dne  d(ks) dA 5  kzd(ni

=0 3.61b
an dn. T g Yo @t T, (3.61b)

From (3.61b), it follows that

da
ky + 3ksn? + - = 0; (since -
Cc

- o);a = Ap;and ky(Ap) + 3ks(p)nZp =0 (3.61c,d)

where,

—huwfh:<—hfh

—n 61
3ks(Ap) 3k, (3.61€)

Nep =Nc(Ap). < Nep = (
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Substituting the values of kiand ksrespectively in (3.61e), leads to

63\ "2
Nep = <3—G3> (3.611)

where, n¢p is the displacement at buckling. To determine the dynamic buckling load Ap, there is need to evaluate
(3.58) at buckling and get,

€ = ky(Ap)ncp + ks(ApIndp + - (3.62)
Substituting the values of kyand kszand n¢pin (3.62), results to
1
2
2 |G 2 | 2B(0) [1+d,562
€=—— —1; €= 2( ) = (3.63a,b)
3\/§ G; 3\/§ 67B2(0)b \ 1 + d282
32(1-2)
Further simplifcation of (3.63b)gives
3 3v201 . 4 1 1+ d,6?
1-2p)72 = Apb2¢7'2;and 7 = | —2— 4.64
(1 =) 16 0V TesmoAn (1 +d, 07 (4.64)
CONCLUSION

Hence, we see that the dynamic buckling load, A, depends on the first derivative of the circular frequency evaluated at
the initial time. We found that the least order of dependence of 4, on § is of the form §2 (4.64). Hence, if is very small
compared to unity i.e.0 < § << 1,then &2 is even smaller and generally tends to zero. Thus, periodic loading with
slowly varying circular frequency tends to a step load. The equation (4.46) is the expected load equation and A, is
dynamic buckling load.
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