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ARTICLE INFO ABSTRACT

Article history: The Laplace distribution is a major distribution used in statistics to model
Received XXXXX different processes because of its flexibility. In this study, we derived a
Revised XXXXX four parameter Odd Generalized Exponential Laplace Distribution
Accepted XXXXX (OGELAD) which unlike other variants of the Laplace distribution has a
Available onlinexxxxx curve peak and can assume different shapes. While deriving the moments

generating function, characteristic function, quantile function, order

statistics and entropy, we have obtained the explicit form of the density

Keywords: function and distribution function of the proposed distribution.
Laplace distribution, Maximum likelihood estimation has been used to determine the
Maximum likelihood estimation, parameters of the suggested OGELAD, and a simulation study has been
Returns, used to evaluate the performance of the estimation technique. By using
Shape parameters. two actual data sets, the flexibility of the OGELAD is further assessed.

The results show that the proposed distribution outperforms other
competing distributions for both the financial and survival data used.

1. Introduction

The developments in generalizing classical distributions for flexible distributions that could model the characteristics
possessed by different kind of data is a developing area in the field of mathematical statistics that is gaining wider
acceptability [1]. Some of the methods that have been adopted recently involve combining existing distributions into
new distributions or adding parameters to existing distributions. This among other things help to provide a model with
a strong empirical fit to the data [2]. One of several generators that have been developed to generate these distributions
is the Odd Generalized Exponential-G (OGE-G) family of distributions by Tahir et al. [2]. The OGE-G has two
parameters — a shape and a scale parameter that improves the fit of the distribution when compared to some families
Generalized Exponential Power Function Distribution [4], Odd Generalized Exponential Inverse Lomax Distribution
[5], Odd Generalized Exponential Gumbel Distribution [6], and Odds Generalized Exponential — Exponential
Distribution [7].

Laplace distribution (LD) otherwise known as the double exponential distribution is the distribution of two
independent, identically distributed exponential random variables. When the shape parameter = 1, it is a
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Simon Laplace, the LD has been applied in several fields which include but not limited to finance, economics, biology,
guality control and engineering. For instance, the LD has been used to model financial returns because it has heavier
tails [8,9]. Furthermore, it is found to provide a better fit to asset returns and also provide a more realistic expectation
of daily returns for professionals in the stock market [10].
Skew variants of the LD considered as the generalization of the symmetric LD have also been found to be applicable
for error innovations in navigation, inventory management and quality control, among others [11]. Also, [12] studied a
two-parameter asymmetric Laplace distribution with significant peak and heavier tails than the classical distribution.
The distribution’s parameters were determined using maximum likelihood estimation, and the model’s appropriateness
is evaluated using actual data. On the contrary, [13] proposed a three-parameter asymmetric Laplace distribution. They
showed unlike the classical LD, the asymmetric Laplace distribution has two exponential distributions of unequal scale
and rate parameters. The distribution’s properties are derived, and its application to a flood data illustrated.
As an alternative to the classical LD, [14] developed the beta Laplace distribution. In their work, they determined the
mathematical and statistical properties of the distribution, and estimated the model parameters using maximum
likelihood estimation. The performance of the model is evaluated with a real data set. Another important alternative is
“a robust estimation procedure for mixture linear regression models by assuming that the error term follows a Laplace
distribution” [15]. 3
Furthermore [8] proposed two-parameters modified classical Laplace distribution. The flat segment in the
distribution’s centre substitutes the abrupt peak of the traditional Laplace distribution. The modified classical Laplace
distribution’s mode is an interval as opposed to the classical Laplace distribution’s. With actual data sets, the
usefulness of the model is assessed. The study indicates that the classical distribution be further improved as a
necessary alternative for the classical LD.
[16] proposed the weighted Laplace distribution after the method of obtaining weighted distributions by [17]. Similar
to the classical Laplace distribution, the weighted LD has a sharp peak. Nevertheless, the weighted LD outperforms the
classical LD in fitting of real data set.
[18] proposed a three-parameters distribution known as the modified Laplace distribution using the exponentiated
family of distributions. The parameters of the distribution were determined using maximum likelihood estimation. For
actual data sets, it was discovered that the distribution suited the data better than the traditional Laplace distribution
and GED.
In this study, we proposed a four-parameter distribution called Odd Generalized Exponential Laplace Distribution
(OGELAD). The Odd Generalized Exponential generator has a shape and scale parameter and a hazard rate which
could be increasing, decreasing, J, reversed-J, bathtub and upside-down bathtub [2]. These featuresmade the generator
suitable for fitting data set with differentshapes and heavier tails. “The use of four-parameter distributions should be
sufficient for most practical purposes as at least three parameters are needed; there is hardly any noticeable
improvement arising from including a fifth or sixth parameter” [19]. The remaining portions of study are organized as
follows. We develop the proposed distribution, demonstrate that it is a density function, and illustrate the density plot.
We derive the properties and parameter estimation for the proposed distribution in section 3. A simulation investigation
is conducted in section 4, and section 5 provides an application of the proposed distribution to real data sets. The last
remarks are then provided in section 6.
2. The Odd Generalized Exponential Laplace Distribution (OGELAD)

The cumulative distribution function (cdf) and probability density function (pdf) of a random variable Y which follows a
Laplace distribution are given in (1) and (2) respectively;

_ ) _
F(y;A,7) = %+ %sgn (y—z){l—exp[—w—ﬂﬂ = %+% (z_ ) {1—exp[ yrlﬂ 1
and
f(y;4,7) =%exp(—@} (2
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where, _ :L}“‘
san(y-4) =77
Alternatively, the distribution function and density function of the Laplace distribution are given as
%exp[y;—’i] y<A
F(x) = ®)
Lol (Y=Y -
1 2exp[ [ - D Jy>A
and
1 y—4 C <
f(y)= Zrexp[ j ] v (4)
1o (YA
2Texp( [ - D,y>/1

respectively. The cdf and pdf of Odd Generalized Exponential (OGE) family of distribution as defined by [2] are respectively
given as:

. o
G(y) —{1—exp{—m[1fé)(/'f;)jH (5)

0t (y:9) F(y:¢) o) T
X Zm—y;EX —-m L —ex —-Mm L (6)
) (1-F(y:p) p{ [l-F(W)Ml p{ [l—F(y:vﬁ)jH

where, F(y;¢) and f(y;#) are respectively the baseline cdf and pdf of a random variable Y with parameter vector ¢, and m, n are
shape parameters.

Given that the baseline distribution is the Laplace distribution with cdf and pdf given in equations (3) and (4), then, the cdf and pdf
of the new distribution (known as Odd Generalized Exponential Laplace Distribution [OGELAD]) are respectively:

il N
1-expi-m 1_[%exp[y%l]} JY<A (5)
G(y)=1 [ [ ]j 0
l—lexp - y%l
1-exp{—m l_[:%exp [_(%}*D] s y>A
and
2 2] ) )
moexp| +— { 26X 2 28Xp|
expi—m 1-exp;—m v
27| 1~ %exp{y;—}“ﬂ 2 17[%exp[y;—/1]] 17{lexp[)’%ﬂﬂ (6)
a(y) = 6-1
il y%]} exp;—m [1—%exp[—[y;—im 1-exp{-m Léexp{_[y%l}] Vy>A4
2“ — — ’
g | LB Tt )
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wherem, 6, t >0, -00 </, y >o0.

The pdf of the OGELAD has four parameters; m and & are shape parameters,  is a scale parameter and 1 is a location
parameter.

If Y ~ OGELAD(g), the survival and hazard functions are respectively;

1-|1-exp—m %exp(y;fl Ly<a
o | bt
Lo e
1—{1—%exp[—[¥]}
R | A
s S I
2711 Lexp[ Y4 21—1—exp “m %exp{)’%ﬁ]
. Hiod Jﬂ; l 1[;exp[y%ﬂﬂ
sl {8 oo L] ] e
P e 1[1éexpﬂﬁﬂh
el

The pdf and cdf plots of the proposed distribution are given below
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(a) Pdf Plot (b) Cdf Plot
Figure 1: Density and cdf plots of the Proposed Distribution
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The density plot (a) in Figure 1 is indicative of the fact that the OGELAD can be right skewed, symmetric, or left
skewed depending on the values of the parameters considered as such its suitability for data sets with different shapes.
Furthermore, the cdf plot (b) shows with increase in x, the distribution converges to 1.

2.2 Validity of the OGELAD

To show the validity of the OGELAD, we prove that C}O g(y)dy =1-

Let,
T o= sy g,y ©
where,
9,(y)= maexp()’;—lj 5 €Xpq—M M 10
2{1{%%[%))} 1’&“"@%)] o
. , 0-1
Jeol L)

5 TN )
|

SN )

x|1—-expy—m ? y> A
=)
2 T
then,
. ., ; 01
j gy (y)dy = (1_eém)6 meeXp[m yT ]2 expy—m %EXP[Y%J} 1-expi—m ;fxp{%J dy
R b e

T a0y - } maexp{_[y;l Jm_zl exp m{l‘éeXp{_[ fﬂ] 1-exp|-m [1—§exp[‘ ﬂ]] eldy
sl T 2 [T Tt
1)’ (13)

Therefore, substituting (12) and (13) into (9) gives
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0 A 0 6 0
1 a0y = g (0dy+[ gy (ay = (1-e7") " +1-(1-e7") " <1

as required

3. Statistical Propertiesof the OGELAD
In the following section, we derived some of the statistical properties of the OGELAD
3.1 Asymptotic Behaviour of OGELAD
The limiting distribution of the OGELAD;

() Iimy_)_ooG(y)=0and|imy_>ooG(y)=1
(i) Iimy_>_oog(y)=0andlimy_>oog(y)=0

Proof:(i)
0
o)
. . T
I|my_>_ooG(y)=I|my_>_OO l-expy—m 1 _—
1—(exp( D
2 T
0
1 —0—A
(zexp( D 0
1—exp{-m 4 {1-1} -0 -0

also,

Iimy_mG(y):Iimy_>Oo 1-expy—m

(i)

limy_y . 9(y) = limy_,
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Similarly,
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wel(2)
[2os(-(2)]

x|1—-expq—m

Iimy_,OO a(y) = Iimy_>OO

2

N

:m_gx():o
2t

The result in (ii) above shows the proposed distribution is unimodal.

3.2 Quantile Function

The quantile function of a distribution is the solution of the cumulative distribution function with respect to x i.e.
u=G(y)

where, y =G 1(u) and G L(u) =inf {y:G(y) =u}.

For the OGELAD, the quantile function is;

1
In[lugJ (14)
yy=4A-7in| 2|1-

1
m—In|1-u®

wherem, 8, 7> 0 and —oo<A<oo
The above quantile function can be used to generate random observations from the OGELAD. In (14) if u = 0.5, we
have the median of the OGELAD given by:

1
—In|1-05°¢

: (15)
m—In [1—0.59]
3.3 Series Expansion

Using the expression in (6),

6-1 k
F(x) _ 2 k(61 _( _F(y)
{1—exp{—m[l_F(x)]H _kéo( 1) ( K ){exp{ m[l—F(y)jH (16)

substituting (16) into (6) gives;

Yo 5 =A-7ln| 2|1-
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k
)= MO (yie) exp(_m F(y:¢) j%’ (_1)k(0l:1){exp(_m F(y) ﬂ

(1-Flyp)’ 1-F(yig) k=0 1-FO) an
| mot(yig) R, k(64 { ( F(y) ﬂ
=—"= > (-1 exp| —m(k +1
(1-Fly:p)” k=0 (o] ol e
simplifying the last expression in (17) gives
k-+l (61
__mof(yd) (0" [m(k+1)] ( k ) (F(y.9)) 18
(1-F(y.))° k=0 . (1-F(y.9)
k+l I (61 |
o (D7 | m(k+1)
9(y)=mo ¥ o] [ )f<y,¢) (F.9) (19
1+2
k,lZO I (1_ F(y,¢)) +
After further simplification,
a(y) = Z Vv ) (20)

where, hi(y) = f(y;¢)F(y;¢)"" represents the pdf of the Exp-G family with power parameter | + v and
m|+19(_1)|+V(_(|¢2)J o ) {61

Yiv~= I oD ke ( k )

Thus the OGELAD belongs to the class of Exp-G family of distributions.

3.4 Moments Generating Function

The moments generating function of a random variable Y, My(t) is given as follows;
o0

My 0 =E(e™ )= 1 Yoy
From (20),

0()=, 2 v, fGF(ie)

l+v

0 © I+v
My O =E(eY )= [ ¥ Ty f(ia)F(nd)  a

0 A 0
= 2 Vs [_{D eV 1 (iR (i) ey + ! eV fz(y:¢)F2(y;¢)'+de} (21)

Using the first part of (21),
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I
i N [H} [u] +V
[ YR i) Vdy=T Y| el T e T gy
—00 —00 T
2 1+v+1
IR e[ g ] dy
T —00 2
4ty l+v 1 4y (I+V+1)[%/1]
_{)Oe L (y:9)F (v:9) dy=72(|+—v+1)_£oe e dy
—(l+v+1) 4
e 7 A j(—tr—(l+v+1))
= e’ dy (22)
z'2( +v+l)
letting X = %(—tr— (1+v+1)) in (22) yields
—(l+v+1) A
A _ T Ao
ty . BN EEY; e (~te—(1+v+1) _y dx
e’ £, (y;0)F (y; dy =——F——=—1J7 e 'r—————
L hAR Tl =y )
—(I1+v+D)A
___ ¢ T [e_x]’;(—tr—(lwﬂ))
2K (4 (Gakan)-
B eﬂt 23
o(1+v+1) (tr+(1+v+1))
Also, using the second part of (21),
I+v
_[MJ _[MJ
e8] [00]
Ietyfz(y:¢)F2(y:¢)'+"dy= [eY Lol 7 l-2e LT dy
A A 2t 2
- b
_[u] _[y=4
19 ty| 1 T ® b(l+v) 1 T
=—Je’|—e -1 —e d
,Iz 2 bgo( A 2 d
b (y—
i 2 yi 2 yi y_ 2’[ ) 2b /1 y

b( I+v
L (-1 (b+DA, _y _
ZL(b)e A L

1
= 24
P Jb | (24)
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letting p == ((b+1) —tz) in (24) yields

N <

b(1+v) (h41)2

© ty [+v 12 (D) ( b ) b -p dp
fo(V:0)F, (Vi dy =— 4 —
/11e 2 (Yi9)Fy(yig) " dy gfbgoz—be I%[(bm_tf]e T[(b+1)—tz']
b

(b+1-r) 2)

b

Substituting (23) and (25) into (21) gives the moments generating function of the OGELAD as
b 1+v
A 1 e (0°()

My (t) = z
v(=" |,v:ol//"v 2(|+V)[(I+v+1)+tr] b=02b(b+1—rt)

(26)

3.4 Momentsof the OGELAD
Thenon-centralmomentsoftheOGELADarederivedbydifferentiatingthemoments
generatingfunctionobtainedin(26)w.r.t.tatt=0.Symbolically,

r ;_df
E(Y") = s =7 MY O] (27)
where, r=1, 2, 3, .... The mean, variance, skewness and kurtosis of the OGELAD are computed numerically for some
choices of its parameters using suitable statistical packages like R.

3.5 Characteristic Function

The characteristic function ¢, (t) of the OGELAD is:

ity et = 1 z (_1)b( Igv)
t)=E =My (it)=—— X v 2
& O (e ) v (== |,v:ol//|’ o(1+) [(I+v+1)+rit]+b=0 ob (b+1-rit)

(28)

3.6 Order Statistics
Let Y1, Y2, Y3, ...,Yq be random samples of size q from a pdf, (f(y)) and cdf, (F(y)). Suppose Yi.q, Y2.q, Y3, --.,Yq:q
denotes corresponding order statistic derived from the samples, then, the p™ order statistic is defined by:
q'g(y) p-1 q-p
9pgY)=7——=G6(" "|1-G(x) (29)
P00~ [t-60)
From the series expansion,
t
r— —l) rl t

(L-yy=g D0

Eo (r—t)t!
then,

- t
[1-GX)]™ = quwe(x)t
t=0 (q—p-t)it!

and (29) becomes

Pt q! t+p-1 30
9pgq(¥)= 2 (D' ——————0g(y)G(y) (30)

Pa()= & O (e p-oy

where, g(y) and G(y) is the pdf and cdf of the OGELAD. Note that,
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O(t+p-1) O(t+p-1) 2 T
> (=S exp]—ms Jy<A
o L P g
(e ]*P= ey
Loyp Y4
o(t+p-D)  (0(t+p-D) . zexf’[ 7 J
ZO (-1 exp;—m . . Ty>A
W= -
1- 1—2exp{yr—H
Substituting (31) into (30) gives the order statistics of the OGELAD,
o(t+p-1) 1 »
qipe(H—z?_l) (_1)I+SM8XP —ms Eexp[%j 9r (y) Sy<A
t=0 s=0 (p-DY(g-p-t)! l_[%EXp[HD ! ’ (32)
9png(V) =
pq O(t+p-1)
PP ptew | exp|-m ) 9,y y>
t=0 w=0 (p-D!(g—p-t)! 1_(1_%6)@(%1}] A

where, gi(y) and gz(y) is the pdf for the of the OGELAD given in (10) and (11), respectively.

3.7 Entropy

Let Y be a random variable with pdf, g(y), then the Renyi entropy is given fort>0and t =1 as:
I t 33

I _l_tln[_{x)(g(y)) dy} (33)

t
—Lo[g(y)]t dy Z_LOL Z iy AR ¢)'+V} dy

0 tra t 0 t
=( 5 wLVj [_{D iR v [ 1R 0™ dy} (@)

I,v=0
v T
AT
4 . v T _il[f 1[T] B A (35)
T amoRma ™ fay=T |2 T 2 e
. ; ,[yi}t 7[)’;/1] (I+v)t
1 puoR o™ | dy—ﬁ{;e ! Hl—e ‘ ] day (36)

Substituting (35) and (36) into (34) gives the Renyi entropy for the OGELAD as:
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 y<4

! t(|+v+1)2('+"+1)t
_ (37)
tzl t { r{l+v} t
Y -1
1 [lw 'V} ® 1 r .
" t r§0(r+1) or+l YA

3.8. Estimation of Model Parameters
Different methods are employed in the estimation of parameters. The attractiveness of the maximum likelihood lies in
the estimation being asymptotically consistent, asymptotically efficient and asymptotically unbiased among other

properties. Let Y1, Y2, Y3, ...

,Yn be a random sample of size n from the OGELAD with parameter vector ® = (m, 0, 4,7),

the likelihood function for ® is given as:

L(©) =

mHexp[ Yi~ ]

Vi~

{zexp Pz

)

(38)

—m

i’f
2{

exp 1-exp{—m Jy<A
1 Yi

exp{

J

1——exp[

s
)

méexp

21{1—

exp

T

K

cie{ ] | b

and the log likelihood function is

The m

sl 8
|
o
o
Stttz
e 2]
il 7]
(1_%8)(‘{_(“7_1]]] 1 1-Lexp[ {H7A) || ya
1(1_%exp(_(yi7*inj { [ 2 [( T ]JH

aximum likelihood estimators of parameters (m 0,4, f) are the solution of the simultaneous equations obtained

n(inm+InA-Inz— In2)+ Z(y, -A)- mz [ ¢
i=1 i=1

+(0-1)+ E log 1exp|m{ T YA
i=1
(39)

n(Inm+Iné—Inz—| In2)— z(y, -1)- mg;
i=1 i=1 1

+(0 1)2 log| 1-exp{—m|
i=1

—2zln
i=1

when (39) is differentiated partially with respect to each parameter and equated to zero. The solution of equations is
obtained using numerical methods found in statistical packages such as R.

4. Sim

ulation

We use the quantile function of the OGELAD to carry out simulation study. The study is carried out for four different
sample sizes (n = 50, 100, 200, 300) with parameter set (m, 6, A, 7) = (1.2, 2.5, 0.3, 0.7). The simulation process is
repeated 500 times for each sample size and the average parameter estimates, biases and the mean squares error (MSE)
have been determined. The biases and MSE result is presented in Table 1.

226



REUBEN O.D., JOB O. - TRANSACTIONS OF NAMP 19 (2024) 215-230

Table 1: Simulation Output

Sample Size Parameter Bias MSE
m -0.22657 2.49931
50 0 -6.55097 58.10643
A 0.29380 0.13605
T -0.11011 0.05401
m 0.09079 0.27522
0 -6.26059 48.99131
100
y) 0.34848 0.12886
T -0.11434 0.03860
m 0.20286 0.10622
0 -5.14450 31.20987
200
A 0.35440 0.12868
T -0.07998 0.01897
m 0.23713 0.09573
0 -4.67887 24.75850
300
A 0.35194 0.12589
T -0.06472 0.01161

Table 1 shows decrease in the biases and MSE as the sample size increases; these support the stability of the
parameters of the OGELAD using the MLE.

5. Application to Real Data Sets

In this section, we will compare the OGELAD with the classical Laplace distribution and other competing distributions
by Yahaya and Terna [6], and Agu and Onwukwe [18]. The comparison of the above distributions is facilitated with
the aid of two real data sets described below:

Data set 1(S&P500 Data): The data are the weekly returns of the S&P500 from May, 2013 to May, 2015. The data are:
-1.15,0.77, -1.02, -2.13, 0.87, 1.58, 2.92, 2.71, -0.03, 1.06, -1.07, -2.13, 0.46, -1.85, 1.35, 1.96, 1.29, -1.07, 0.07, 0.75,
2.40, 0.87, 0.11, 0.51, 1.55, 0.37, 0.06, -0.04, -1.66, 2.39, 1.26, -0.55, 0.60, -0.20, -2.67, -0.43, 0.81, 2.29, -0.13, 1.26,
0.99, -1.98, 1.37, -0.48, 0.40, -2.68, 2.67, -0.08, 0.95, -0.14, -0.03, 1.20, 1.20, 1.34, -0.68, 1.37, -0.10, 1.24, -0.90, 0.54,
0.01, -2.73,0.33, 1.21, 1.69, 0.75, 0.22, -1.11, 1.24, -1.38, -0.76, -3.19, 1.02, 4.04, 2.69, 0.68, 0.39, 1.15, 0.20, 0.38, -
3.58, 3.36, 0.87, -1.47, -0.65, -1.25, 1.59, -2.81, 2.99, 2.00, 0.63, -0.28, -1.59, -0.87, 2.63, -2.26, 0.29, 1.68, -1.00, 1.74,
-0.44, 0.37,0.31, 0.16, -0.25.

Data set 2(Uncensored Data): The data set is from Nichols and Padgett [20] consisting of 100 observations on breaking
stress of carbon fibers (in Gba). The data are: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41,
3.19,3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.20,
3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15,2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36,
0.98,2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12,1.71, 2.17, 1.17, 5.08, 2.48, 1.18,
3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68,2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89,
2.88,2.82,2.05, 3.65

5.1 Result and Discussion
In this section, we have fitted the proposed distribution (OGELAD), Odd Generalized Exponential Gumbel
Distribution (OGEGD), Modified Laplace Distribution (MLD), and the Laplace Distribution (LD) using the method of

227



REUBEN O.D., JOB O. - TRANSACTIONS OF NAMP 19 (2024) 215-230

maximum likelihood. The popular goodness of fit statistics such as Akaike Information Criterion (AIC), Consistent
Akaike Information Criterion (CAIC), and Hannan-Quinn Information Criterion (HQIC) have been employed for
model comparisons. In all cases, the model with the smallest of these statistics is often judged to be the best model
(‘Yakubu and Doguwa [21]).

Table 2 shows the parameter estimates and the log likelihood for the different fitted models. The proposed OGELAD
has the smallest of all the statistics for the S&P500 data indicating its suitability for modelling of returns data among
other competing models.

Similarly, Table 3 shows the fitting of the OGELAD with other competing models such as OGEGD, MLD, and LD for
the uncensored data from observations on breaking stress of carbon fibres. Furthermore, the AIC, CAIC, and HQIC for
the proposed model (OGELAD) is the least indicating its adequacy in fitting the uncensored data.

Figures 2 and 3 present the estimated density of the proposed OGELAD and the Q-Q plots for the two data sets. These
plots support the argument on the performance of the OGELAD over its competing models.

The result in this paper indicate that flexible models are insightful in studying the characteristics of data generated by
different processes. This result is consistent with result of other studies where the addition of an extra parameter is
found to improve the flexibility of the existing distributions. This has been reported in several studies including
Johnson et al.?°; Nadarajah and Kotz [22]; Rosaiah et al. [23]; Bukoye and Oyeyemi [24]; and Falgore [25].

Table 2: Parameter Estimates, Log-likelihood, AIC, CAIC, and HQIC for S&P500 Data

Log-

Model Parameter Estimates likelihood AIC CAIC HQIC
m 0.0662
0 5.1168

OGELAD -191.0196 390.0392  394.1240  394.3409
A -7.8798
4 2.9538
m 0.0541
0 5.9461

OGEGD -191.4547 390.9094 3949942  395.2111
A -11.1005
T 3.0688
0 0.9318

MLD A 0.3900 -194.4474 3948948  397.9584  398.1211
T 1.1365
A 0.3700

LD -194.5901 393.1802 3952226  395.3311
T 1.1736

Table 3: Parameter Estimates, Log-likelihood, AIC, CAIC, and HQIC for Uncensored Data

Model Parameter Estimates Log-likelihood AIC CAIC HQIC
m 1.4380
0 19.4575

OGELAD ; 0.3900 -141.5356 291.0702 295.1560 295.3729
T 4.2461
m 5.9279

OGEGD 0 28.3918 -141.5973 291.1947 295.2794 295.4963
A 2.3080
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T 5.0477
0 391.8008

MLD A -2.6762 -144.2340 294.4680 297.5316 297.6943
T 0.9108
A 2.7274

LD -147.1003 298.2006 300.2430 300.3515
T 0.8008
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Figure 2: Estimated Density and Q-Q Plots for S&P500 Data
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Figure 3: Estimated Density and Q-Q Plots for Uncensored Data
6. Conclusion
In this paper, we have proposed a four parameter Odd Generalized Exponential Laplace Distribution. Plot of the
proposed distribution indicate it can be symmetrical or asymmetrical depending on the chosen values of the
parameters. The pdf, cdf, quantile function and other mathematical/statistical properties of the distribution has been
derived. The parameters of the distribution were estimated via maximum likelihood estimation while a simulation was
carried out to assess the performance of the method. The fitting of the distribution to real data sets indicate the
usefulness of the model in both finance and survival analysis.
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