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ABSTRACT 
In this paper, we consider the determination of the mode III stress intensity factor (SIF) 

at the tips of a finite line inhomogeneity (anti-crack) of length b  units lying on the right-

hand side of the x -axis in an infinite elastic material with loads T  and Q applied on 

the surface of the crack at lengths l  and h  respectively from the origin. The 

inhomogeneity is rigidly bonded and so is displacement free. The loading gives rise to 

two-dimensional boundary value problem for a Laplace equation that models the 

antiplane strain displacement ( )w r, . The problem is solved by Mellin integral 

transform and Wiener-Hopf technique. The displacement and stress fields were 

obtained leading to the stress intensity factors outer

IIIk  and inner

IIIk  for the deformation at 

the outer inhomogeneity tip and at its inner tip respectively. The existence of the stress 

intensity factors implies that crack initiation can start either at the outer or inner tip 

depending on the loading. A linear relationship is found between nor

IIIk  and 
l

b
 where 

nor

IIIk  is the normal stress intensity factor formed by the ratio of inner

IIIk  to the known 

mode III stress intensity factor 0

IIIk  at the tip of a crack in a material of the same 

geometry as the one being investigated. A similar relationship is found also for outer

IIIk  

as shown in the graph.

 

1. Introduction  

Analytical solutions of elastic problems for structures comprising of a crack and a perfectly bonded 

rigid line inhomogeneity is of special interest in corresponding failure analysis. In recent years, 

the failure analysis of such configuration has reinvigorated the interest of researchers. This may 

be attributed to mainly to the increasing applications of such structures by wielders, motor 

mechanics and panel beaters. inhomogeneities of any form usually alter the elastic response of a 

material as well as its fracture properties  
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A rigid line inhomogeneity embedded in an elastic material is of theoretical interest because it is 

the counterpart of conventional crack in solids, hence the understanding of the characteristics of 

the elastic fields at a rigid line inhomogeneity becomes very imperative. The characteristics of the 

stress field near the tips of a rigid line inhomogeneity have been carried out by Chou [1] and Wang 

et al [2] .   In their works, they obtained analytical solution to the problem of a rigid line 

inhomogeneity under the action of inclined loading. Employing Eshelby’s equivalent inclusion 

method and conformal mapping of Mushelishvili’s complex potentials, they obtained the stresses 

at the tips of the inhomogeneity which has square root singularity. The stress intensity factors 

derived is seen to depend on the Poisson’s ratio. 

Xian et al [3] solved the problem of interaction of tip fields between periodic cracks and periodic 

rigid line inclusions. Employing exact solution methods, they obtained a closed form expression 

for the stress intensity factor (SIF) at the tips of crack and rigid line inclusions. Their result depicts 

that (i) the tip fields of cracks and rigid line inclusions show different laws when their horizontal 

and vertical distribution periods changes. (ii) With the increase of the length of crack, the SIF of 

cracks increases monotonously whereas the SIF of rigid line inclusions gradually decreases from 

1 to 0, whereas the SIF of cracks is only slightly increased. A dislocation pileup model for micro-

crack initiation at the inhomogeneity tip was proposed Xiao and Chen [4] based on Zener-Stroh 

crack initiation mechanism. The result of their analysis shows that the critical stress intensity factor 

for the anti-crack (line inhomogeneity) can be related to fracture toughness of a conventional 

Griffith crack in the same material. The analytical results further show that under mechanical 

loading, the stress and electric displacement intensity factors of an anti-crack are only related to 

the corresponding intensity factors of stress and electric displacement of the crack, respectively. 

Ballarini [ 5] presented an integral equation approach in solving rigid line inhomogeneity problem. 

This approach clearly illustrates the similarities between crack problems and rigid line 

inhomogeneity problems. The linear elastic plane deformation of a soft material containing a rigid 

line inhomogeneity subjected to a concentrated force, a concentrated moment and a point heat 

source was studied by Pengyu et al [ 6].  Using the Green function technique and solving the 

corresponding Riemann Hilbert problem, they obtained a closed form solution for the full stress 

field in the soft material. The problem studied here is an antiplane strain problem of an elastic 

infinite material having a semi-infinite crack and a rigid line inhomogeneity. Although presently 

related works has been carried out by many researchers, this work is distinguished from the 

previous as it went further to investigate the behavior of the SIF at the outer and inner tips of the 

inhomogeneity. The same technique was used by the author [7] to analyze an elastic homogeneous 

isotropic material with a right inhomogeneity embedded in the material under anti-shear The 

mathematical model of the problem was a boundary value problem formulated using the Mellin 

transform and solved by the Wiener-Hopf techniques. From his investigation, a closed formed 

solution for displacement was obtained from which the SIF was calculated. The stress field were 

found to have square root singularity at the inner tip inferring that a micro -cracking can initiate at 

the inner tip of the line inhomogeneity depending on the applied loads. The outer tip showed no 

singularity. 

 

2.0 THREORETICAL ALALYSIS 

[Mathematical Formulation] 

Consider a homogenous elastic isotropic material occupying the region z−  , 

cos=x r  , sin=y r  ,0 ,  −  r     with a crack running from the left hand side 

of the x -axis and terminating at the origin, while on the positive x -axis there is a finite rigid 

inhomogeneity ( anti-crack) of length b  units, imbedded in the elastic material along 0=  and 

0  r b . Anti-plane shear deformation state is achieved by the application of a pair of 
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concentrated loads T  and Q  at the points of distance l  and h  from the origin. A ray 

0 , 0  =r b   is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.   Geometry of the problem 

By introducing the polar coordinate system ( ),r  , we have the displacement ( ),w r  in z direction 

satisfying  

( ) ( )
2 2

2

2 2 2

1 1
, , 0w r z w r

r r r r
 



   
  + + = 

   
, 0, −  r              (1) 

The non-zero stresses are given by  

( ) ( ), ,
,

 
= =

 
z rz

w r w r

r r


 
  


                                                          (2a,b) 

Where   is the shear modulus of the material. 

The boundary conditions are  

( ),0 0=w r     , 0  r b                                                                                    (3a) 

( ) ( ), , 0z r T r l    = −                                                                 (3b) 

( ) ( ), , 0z r Q r h    − = − −                                                          (3c) 

Where   is the Dirac’s delta function                                                           

The continuity of the traction and displacement requires  

( ) ( ),0 ,0 0+ −= =w r w r      0  r b                                                                       (3d) 

 ( ) ( ),0 ,0 0+ −= w r w r      ,   r b                                                                        (3e) 

( ) ( ),0 ,0+ −z zr r                                               0  r b                                (3f) 

( ) ( ),0 ,0+ −=z zr r                                             , r b                                        (3g) 

The asymptotic behavior of the stresses is 

( )

( )

( )

,

3

2

0

0

0 , 0

k

z rz

o r as r

r as r

r b as r b



 



−

−

− +

 →



= →

 − → →

                                                     (4a-c) 
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Defining the Mellin transform ( ),w s   of ( ),w r   as  

( ) ( ) 1

0

, , , 1 Re 0



−= −  
sw s w r r dr s                                                               (5) 

Applying eqn.(5) to the governing equation eqn(1)  and the boundary conditions (3) yields 

( )
( )

2

2

2

,
, 0+ =

d w s
s w s

d





     1 Re 0,−   −  s                                (6a) 

( ) ( )
( )

,0 ,0+ −

− =
sdw s dw s b
G s

d d  
                                                                           (6b) 

( ) ( ),0 = sw s b F s                                                                                                           (6C) 

( ),
= sdw s T

l
d



 
                                                                                                            (6d) 

( ),−
= sdw s Q

h
d



 
                                                                                                       (6e) 

The solution of the ordinary differential equation (6a) is  

( )
( ) ( )

( ) ( )

1 1

2 2

cos sin , 0
,

cos sin , 0

+  
= 

+ −  

A s s B s s
w s

A s s B s s

   


   
                                      (7) 

Where the coefficients ( ) ( ) ( ) ( )1 1 2 2, ,A s B s A s and B s  are functions of s  to be calculated using 

the transformed boundary conditions. (6a-6e) 

 

3.0   The Wiener -Hopf equation 

The emergence of two unknown functions ( )F s  and ( )G s  from the boundary conditions 

presupposes a Wiener-Hopf problem.  

Now substituting the boundary condition eqn. (6c) into eqn. (7) gives 

( ) ( ) ( ) ( )2 2

1 2,A s b F s A s b F s= =                                                                  (8a,b) 

Taking the derivatives of eqn. (7) gives 

   
( ) ( )

( )1 2

,0 ,0
( ) ,

dw s dw s
sB s sB s

d d 

+ −

= =                                                       (8c,d) 

Thus from eqn. (8c,d) 

( ) ( )
( ) ( )

2

1 2

,0 ,0
( )

dw s dw s b
sB s sB s G s

d d  

+ −

− = − =                                   (8e) 

Also further evaluation using the boundary conditions gives the following equations 

 

( ) ( ), ,
,s sdw s dw sT Q

l h
d d

 

   

−
= =                                                               (9a) 

( )
( )

1

sin

cos

s sTl sb F s s
B s

s s

 

 

+
=                                                                           (9b) 
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( )
( )

2

sin

cos

s sQh sb F s s
B s

s s

 

 

−
=                                                                         (9c) 

Hence  

( )
( ) ( )

1 2

,0 ,0
( ) ( )

s dw s dw sb
G s B s B s

s d d  

+ −

= − = −  

                      
( ) ( )sin sin

cos cos

s s s sTl sb F s s Ql sb F s s

s s s s

   

   

 + −
= −  

 
 

                        
( )2 sin

cos cos

ss s sb F s sTl Qh

s s s s

 

   

−
= +  

                      
( )2 sin

cos cos

s s

s

l h
T Q

sF s sb b b

s s s

 

  

    
−    

    = +
 
 
 

 

Therefore  

( )
( )2 sin

cos cos

s s
l h

T Q
sF s sb b

G s
s s

 

 

   
−   

   = +                                                   (9d) 

Let  

 

( )
s s

T l Q h
D s

b b 

   
= −   

   
                                                                                  (9e) 

Thus  

 

( )
( ) ( )2 sin1

cos cos

D s sF s s
G s

s s



  
= +                                                                      (9f) 

Simplifying further, we obtain the following Wiener Hopf equation. 

( ) ( )
( )

( ) ( )
( )cos 1 1

2 sin cos cos

D s D s
F s G s N s G s

s s s s



    
− + +

   
= − = −   

   
    (10) 

Let  

cos
( )

2 sin

s
N s

s s




=                                                                                                            (11a) 

Decomposing ( )N s into a quotient of the form   

( )
( )

( )

N s
N s

N s

+

−

=                                                                                                       (11b) 

Where 
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1

1 1

2
1

( )

1 1

s

k

k k

s
e

k
N s

s s

k k




=
+  

= =

 
+ 

 =
   
+ +   

   



 
                                                                       (11c) 

 
22

( )
( )

s
N s

N s


−

+

=
−

                                                                                                  (11d)  

We have 

( )
( )
( )

( )
( )1

cos

N s D s
F s G s

N s s 

+

− +

−

 
= − 

 
                                                                (12a) 

This produces a separation of the form  

( ) ( ) ( ) ( ) ( )
( )1

cos

D s
F s N s N s G s N s

s 
− − + + += −                                            (12b) 

Decomposing 
1

cos s
into sum of functions, we have 

( ) ( )
1

cos
H s H s

s
− += +                                                                                   (12c)     

Where 

( )
( )

1

1

11
k

k k

H s
s 

+


−

=

 − 
=  

−  
                                                                                 (12d) 

                                                   

( )
( )

1

1

11
k

k k

H s
s 

+


−

=

 − 
=  

+  
                                                                                  (12e) 

Where  

2 1

2
k

k


−
=                                                                                                           (12f) 

Hence eqn. (8) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

(13 )F s N s N s G s N s D s H s N s D s H s a


− − + + + − + += − −  

Next , we decompose the mixed term ( ) ( ) ( )N s D s H s+ −  to sums one of which is a term with 

removable singularities. i.e.  

( ) ( ) ( ) ( ) ( )N s D s H s M s M s+ − + −= +                                                             (13b) 

Were 

( )
( ) ( ) ( )

1

1

11
k

k k

k k

D N
M s

s

 

 

+


+

−

=

 − 
=  

−  
                                                         (13c) 
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( )
( ) ( ) ( ) ( ) ( )

1

1

11
k

k k

k k

D s N s D N
M s

s

 

 

+


+ +

+

=

  − −  =  
−  

                        (13d) 

Consequently eqn.(13a) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

(13 )F s N s M s N s G s N s D s H s M s e


− − − + + + + ++ = − −   

Now because the functions analytic in the left half plane are equal to functions analytic in the right 

half plane, each function is an analytic continuation of the other with the fundamental strip as their 

strip of equality. Therefore, each side is bounded and analytic in the entire s -plane and by Sturm-

Liouville’s theorem must a constant.[8] 

Hence eqn. (3e) becomes 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

(14)F s N s M s N s G s N s D s H s M s c


− − − + + + + ++ = − − =  

Since eqn. (14) is true for all s , it must be true for 0s =  

Thus  

( ) ( ) ( )0 0 0F N M c− − −+ =                                                                            (15) 

Since  

( ) ( )

( )

0 0 , 0 0

0

F and N

M c

− −

−

 =

=
                                                                              (16a) 

Therefore eqn.(14) becomes 

( )
( ) ( )

( )

0M M s
F s

N s

− −

−

−

−
=                                                                                    (16b) 

( )
( ) ( ) ( )0M M s N s

F s
s s

− − +

−

− − 
=  
 

 

 [ Use has been made of eqn. (11d)]                                                                      (16c) 

Were  

( )
( ) ( ) ( )

( )

1

1

11
0

k

k k

k k

D N
M

 

 

+


+

−

=

 − 
=  

  
                                                        (16d) 

Now substituting the values of 1 2 1 2, , ,A A B B  into eqn. (7) and simplifying, we have 

( )

( ) ( )

( ) ( )

cossin
, 0

cos cos
,

cossin
, 0

cos cos

ss

ss

b F s sTl s

s s s
w s

b F s sQh s

s s s

 
 

  


 
 

  

 −
+  


= 

+ + −  



                         (17) 

Substituting eqn. (16b) into eqn. ( 17), we have 

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

0 cossin
, 0

cos cos
, (18)

0 cossin
, 0

cos cos

ss

ss

M M s b sTl s

s s N s s
w s

M M s b sQh s

s s N s s

 
 

  


 
 

  

− −

−

− −

−

  − −
+    

  
= 

 − +
+ −   
 
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Substituting eqn. (16c) into eqn. ( 18), we have 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 cossin
, 0

cos cos
, (19)

0 cossin
, 0

cos cos

ss

ss

M M s N s b sTl s

s s s s s
w s

M M s N s b sQh s

s s s s s

 
 

  


 
 

  

− − +

− − +

 − − − 
+    

  
= 

− − + 
+ −   
 

 

The displacement ( ),w r  are given by 

( ) ( )
1

, ,
2

c i

s

c i

w r w s r dr
i

 


+ 

−

− 

=                                                                            (20) 

Using eqns. (20) ,(19) 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

sin
0 cos1

,0
2 cos cos

,

sin
0 cos1

, 0
2 cos cos

s

ssc i

c i

s

ssc

c i

l
T s

M M s N s b s rb
ds

i s s s s s b

w r
h

Q s
M M s N s b s rb

ds
i s s s s s b


 

 
   




 

 
   

−+ 

− − +

− 

−

− − +

− 

  
   − − −     +     
   
 
 

=
  
   − − −     + −     
   
 
 



(21)

i+ 

















 

The Bromwich integral in eqn. (21) can be evaluated by Cauchy residue method, using Jordan’s 

Lemma.  Note also that 
sin s

s


    and 

( ) ( )0M M s

s

− −−
 have removable singularities at 0s = . 

The residue at 0s = ,may be ignored, because they lead to constants which do not alter the solution 

of a Neumann boundary value problem of the type we are solving.  The singularities of  
( )N s

s

+ −
 

and 
1

cos s
 are simple poles located at 0s = , for 

( )N s

s

+ −
with residue ( )0 0N+ = , and at 

2 1
, 1,2,3,...

2

k
s k

− 
=  = 

 
for  

1

cos s
  

It is not a difficult task to show the displacements 

For 0 , r b     

( ) ( )

2 1

2

1

2 2 1
, 1 sin

2 1 2

n

n

n

T l

nb
w r

n


 



−



=

 
    −   = − − +  −  

 
 
 


 

( )
( )

( )
1

1 2
2

2 1 1 2
0

2 12 2
2 cos (22 )

2 1 2 1 2

n

n n
M M N

n r
a

n n b
 

−− − +

  −  −   
−       −         −    

− −    
    

  

For 0 , 0 r b      
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( ) ( ) ( )

1 2

2

1

2
, 1 sin 2 1

2 1 2

n

n

n

T l

b
w r n

n






−



=

 
   

  = − − − + −
 
 
 



 

( )
( )( )

( )
1

2 1
2

2 1 1 2
0

12 2
2 cos 2 1 (22 )

2 1 2 1 2

n

n n
M M N

r
n b

n n b
 

−− − +

  −  −   
−              − −  

− −   
    

  

For 0, r b −     

( ) ( )

( )

( )

1
1 2

2

1

2
, 1 sin 1 2

2 1 2

n

n

n

Q h

b
w r n

n






−



=

 
  −  

  = − − − + −
 
 
 



 

 

( ) ( )
( ) ( )

( )
1

1 2
2

2 1 10 2 1
12 22 cos 1 2 (22 )

2 1 1 2 2

n

n
M M N n

r
n c

n n b
 

−− − +

  −  
− −         − −  

− −   
    

  

 

For 0, r b −     

( ) ( )

( )

( )

1
1 2

2

1

2
, 1 sin 1 2

2 1 2

n

n

n

Q h

b
w r n

n






−



=

 
  −  

  = − − − + −
 
 
 



 

( ) ( )
( ) ( )

( )
1

2 1
2

1 2 10 2 1
12 22 cos 1 2 (22 )

1 2 1 2 2

n

n
M M N n

r
n d

n n b
 

−− − +

  −  
− −         − −  
− −   

    

  

 

4.0 RESULTS AND DISCUSSION  

The displacements everywhere in the body has been obtained as given in eqn. (22a-d).   To 

investigate the state of stress at the tips of the inhomogeneity, we need only the local displacements 

in the region defined by 0 , 0 , 0r b      −      that is eqn. (22b, d). The 

inhomogeneity tip that is located at the end of the crack tip is approached as 0r → . The 

displacement field corresponding to this case is represented asymptotically by the dominant terms 

obtained when 1n =  and given as  0r →  by 

( )

( ) ( )

( ) ( )

1 1

2 2

1 1

2 2

1 1 1
sin 2 0 cos ,0

2 2 2 2
2

,

1 1 1
sin 2 0 cos , 0

2 2 2 2

T l r
M M N

b b

w r

Q h r
M M N

b b


   







   



−

− − +

−

− − +

  
          − + − − −                    

  
= 

           − + − − + −                    
 

 

              

( )

( )

1 1

2 2

1 1

2 2

1 1
sin 2 0 sin ,0

2 2 2 2
2

(23)

1 1
sin 2 0 sin , 0

2 2 2 2

T l r
M M N

b b

Q h r
M M N

b b

 
 




 

 


−

− − +

−

− − +

  
          − + − −                    

  
= 

           − + − − −                    
 
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( )

( )

( )

1
1

2
2

1
1

2
2

1 1
2 0 sin ,0

2 2 2
1

, (24)

1 1
2 0 sin , 0

2 2 2

rz

T l
M M N r

b

r
b

Q h r
M M N r

b b


 



 



 



−
−

− − +

−

− − +

  
        − + − − −                

  
= 

            − − − −                    
 

 

( )

( )

( )

1
1

2
2

1
1

2
2

1 1
2 0 cos ,0

2 2 2
1

, (25)

1 1
2 0 cos , 0

2 2 2

r

T l
M M N r

b

r
b

Q h r
M M N r

b b




 



 



 



−
−

− − +

−

− − +

  
        − + − −                

  
= 

            − − − −                    
 

 

4.1 Stress field at the inner inhomogeneity tip 

Since we are interested in the displacement ( ),w r   at the inner inhomogeneity tip, we use the 

local coordinate system ( ),   as shown in Fig. 1. Noting that

2

2
1 cos 0

r

b b b

 


  
= + +   
   

 

 Employing the methods introduced by choi and Earmme [9] we obtain the displacement as 

( ) ( )

1

2

0

2
, 0 cos

2
w c M

b

 
 


−

 
= −  

 
                                                              (26) 

Where 0c  is a constant representing a rigid body motion 

The stresses at near the inner inhomogeneity tip are given as 

( ) ( )

1

21
, 0 sin

2
z M

b


 
  


−

 
= −  

 
                                                                 (27a) 

( ) ( )
1

2
1

, 0 cos
2

z M
b




  


−= −                                                                (27b) 

4.2 Stress intensity factor at the infinite crack tip (or outer tip of the inhomogeneity) 
outer

IIIk  

At the infinite crack tip, it can be shown that the displacement and stress fields are as follows 

( )

1 1 1 1

2 2 2 2

1 1 1

2 2 2

2 2
1 1 sin , 0 (28 )

2
2

,

2 2
1 1

T l l T h Q r
a

b b b b

w r

Q l l T h Q r

b b b b


 

   




   

−

      
             + − − +                     

       
=

      
             − − − +                 

       

1

2

sin , 0
2


 







 −  
 


 

( )

1 1 1 1

2 2 2 2

1 1 1

2 2 2

2 2
1 1 sin , 0 (28 )

2
1

,

2 2
1 1

rz

T l l T h Q r
b

b b b b

r

Q h l T h Q r

b b b


 

   

 
 

   

−

−

      
             + − − +                     

       
=

      
           − − − +               

       

1

2

sin , 0
2b


 

−








 
 −   
  

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( )

1 1 1
1

2 2 2
2

1 1 1
1

2 2 2
2

2 2
1 1 cos , 0 (28 )

2
1

,

2 2
1 1 cos

2

z

T l l T h Q
r c

b b b

r

Q h l T h Q
r

b b b




 

   

 
 



   

−
−

      
           + − − +                 

       
=

      
           − − − +               

       

, 0 







 −  



 

The stress intensity factor at the outer inhomogeneity tip 
outer

IIIk is given as 
1 1 1

2 2 2

1 1 1

2 2 2

2 2
1 1 , 0 (29)

2

2 2
1 1 , 0

outer

III

l l h
T T Q

b b b

k
b

h l h
Q T Q

b b b

 
 



 
 

−

       
           + + − − +                  

        
= 

      
          − − − − + −                  

       

 

For self -equilibrated loading Q T= −  and l h=  

1

2

1

2

4 2
, 0

2

4 2
, 0

outer

III

l
T

b

k
b

l
T

b

 
 


 

 

−

 
  +     

 
= 

     + −   
  
 

                                 (30) 

Denote by 
ou

IIIk , the stress intensity factor for the case of 0b = , the main crack without 

inhomogeneity, it is given by Tada and Paris [ 10] as 

2ou

III

T
k

l
=                                                                                                              (31) 

For the case defined 
outer

IIInor

III ou

III

k
k

k
=

1

2

1

2

3

2

4 2 2

4 2

2

l
T

b l
l l

b b
T

l

 




 
+ 

 
 

= = +  
 

                         (32) 

Similarly, the stress intensity factor at the inner tip of the inhomogeneity is obtained as 
1

22 2inner

III

l
k T l

bb

 
=  

 

                                                                                        (33) 

Conclusion  

The existence of 
outer

IIIk  and  
inner

IIIk implies that crack initiation can start either at the outer tip or at 

the inner tip depending on the strength of the stresses at the tip of inhomogeneity. 

Let 
0

IIIk  denote the stress intensity factor at the crack tip for the case of an infinite plane with an 

infinite crack that goes beyond the origin with an extension of length b  whose value was given by 

Choi and Earmme as  

2ou

III

T
k

l
=                                                                                                              (34) 

Then we define the non-dimensional quantity 
normal nor

III IIIk k=  where  

2
inner

nor III
III o

III

k l
k

k b
= =                                                                                                  (35) 
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Fig.2. Normalized stress intensity factor at the outer tip of the inhomogeneity. 

 
Fig.3. Normalized stress intensity factor at the inner tip of the inhomogeneity. 


