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ABSTRACT 

 

In this work, we establish the uniform asymptotic stability using a 

generalized concept (herein referred to as Caputo fractional delta 

derivative and Caputo fractional delta Dini derivative of order α ∈ (0,1) for 

Caputo fractional derivatives on an arbitrary time domain T, which is a 

closed subset of R. Combining the continuous and discrete time domains, 

we create a unified framework for uniform asymptotic stability analysis on 

time scales. This work also incorporates an illustrative example to 

demonstrate the relevance, effectiveness, and applicability of the 

established stability results over that of the integer order. 

 

 

 

1. Introduction  

In recent years, the study of fractional calculus has gained significant attention due to its ability to 

capture complex dynamics and model real-world problems more accurately and efficiently. As a 

generalization of integer order derivatives and integrals, also referred to as differentiation and 

integration to an arbitrary order ([23]), fractional calculus has proven to be a powerful tool in 

understanding intricate systems. Building on this foundation, numerous studies have utilized the 

Lyapunov second method, also known as the Lyapunov direct method, with remarkable outcomes 

in comprehending the qualitative and quantitative characteristics of dynamical systems. 
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One benefit of using the Lyapunov direct method is that it does not require knowledge of the 

solution to the differential equation under study ([25]). In [1, 2, 3, 5, 7], several types of fractional 

derivatives of Lyapunov functions used in stability investigations of differential equations, 

including Caputo fractional derivative, Dini fractional derivative, and Caputo fractional Dini 

derivative, were applied. However, the most preferred, as pointed out by the authors, is the Caputo 

Fractional derivative 

Dt
αV(t, x(t)) =

1

Γ(1 − α)
∫ (t − s)−α

d

ds
(V(s, x(s)))ds,          t ∈ [t0, T)

t

t0
t0
C  

because it is easier to handle and has a more realistic application. Still, the authors noted that the 

function V(t, x(t)) needs to be continuously differentiable which poses another challenge. This 

disadvantage does not affect the other Lyapunov function derivatives, so the authors obtained 

sufficient conditions for these derivatives using a continuous Lyapunov function that does not need 

to be continuously differentiable. In [2], it was noted that the Dini fractional derivative 

D+
αV(t, x; t0) = lim

h→0+
sup

1

hα

{
 

 

V(t, x) − ∑ (−1)r+1 (
α
r
)V(t − rh, x − hαf(t, x)) 

[
t−t0
h
]

r=1
}
 

 

 

where V:ℝ × ℝn → ℝ+, is continuous, f: [ℝ × ℝn, ℝn], h is a positive number and (
α
r
) =

α(α−1)…(α−r+1)

r!
, 

maintains the idea of fractional derivatives, since it depends not only on the present point (t), but 

also on the initial point (t0). Yet, it does not depend on the initial state V(t0, x0). So, a better 

definition 

D+
α

t0
C V(t, x(t)) = lim

h→0+
sup

1

hα
{V(t, x(t)) − V(t0, x(t0)) − ∑ (−1)r+1 (

α
r
) [V(t − rh, x(t) −

[
t−t0
h
]

r=1

hαf(t, x(t))) − V(t0, x(t0))] }              (1.1) 

was considered more suitable. (see [1]) 

The Caputo fractional Dini derivative (1.1) has been utilized to examine various types of stability 

in Caputo fractional differential equations with continuous domains, as seen in [1, 4]. As explained 

in [19] and [8], a more holistic and practicable examination of stability can be achieved if it is 

conducted across different time domains. In [1, 2, 3, 4, 5], stability results were obtained for a 

continuous time, which ignores discrete details, while in [9, 18, 20], the domains considered are 

discrete, ignoring the continuous time domains. However, in practice, some systems undergo 

smooth and abrupt changes almost simultaneously, while others may have more than one time 

scale or frequency. Modeling such phenomena is more realistically represented as a dynamic 

system that includes continuous and discrete times, that is, time as an arbitrary closed subset of 

real numbers known as the time scale or measure chain, denoted by T [12]. Dynamic equations on 

time scales are defined on discrete, continuous (connected), or a combination of both, serving as a 

foundation for a broader analysis of difference and differential systems [14]. This work focuses on 

the Lyapunov uniform asymptotic stability analysis of Caputo fractional dynamic equations on 
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time scales using a generalized definition for the delta derivative of a Lyapunov function 

introduced in our previous work [15]. The aim is to provide a unified and comprehensive 

understanding, extending the uniform asymptotic stability properties from the classical sense to 

the fractional-order sense. 

Recently, several authors have explored fractional dynamic systems on time scales due to their 

promising advantages in modeling, mechanics, and population dynamics (see [28]). As highlighted 

in [10, 11, 16, 21, 22, 24], much of the existing literature primarily focuses on the existence and 

uniqueness of solutions to fractional dynamic equations on time scales, with the Caputo derivative 

garnering significant attention. The most recent work on Lyapunov stability analysis of fractional 

dynamic equations on time scales, presented in [15], concentrates on stability and asymptotic 

stability, underscoring the need for research on uniform asymptotic stability. 

Building on the existence and uniqueness results for Caputo-type fractional dynamic equations 

on time scales established in [7], and the comparison and stability results in [15], we extend the 

uniform asymptotic stability result in [17] to fractional orders and generalize the Lyapunov 

uniform asymptotic stability results for Caputo fractional differential equations in [1] to a broader 

(unified) domain, namely, time scales. By establishing criteria for uniform asymptotic stability in 

Caputo fractional dynamic equations, this research not only expands classical Lyapunov uniform 

asymptotic stability analysis to fractional-order systems but also contributes to the recent literature 

[15]. 

The investigation unfolds by delving into basic definitions of important terminologies, and 

remarks that sets the stage for our contributions. In section 3, we reintroduce some lemmas as 

given in [15], which are important in establishing the main result in section 4. In section 5, we give 

a example to show the advantage and effectiveness of our result. This result contributes not only 

to the theoretical advancements in fractional calculus but also extend the result on integer-order 

dynamic equations on time scales to fractional order. To emphasize the relevance and effectiveness 

of the derived stability criteria, we present a detailed example, illustrating the importance and 

applicability of our results. 

Preliminaries, Definitions, and Notations 

The foundational principles of dynamic equations, encompassing derivatives and integrals, can 

be extended to non-integer orders by applying fractional calculus. This generalization to non-

integer orders becomes particularly relevant when exploring dynamic equations on a time scale, 

allowing for a versatile and comprehensive analysis of system behavior across continuous and 

discrete time domains. In this section, we shall set the foundation, introduce notations, and give 

definitions that will be used in establishing the main results.  

Definition 2.1. ([8]). Fort ∈ 𝕋 , the forward jump operator σ: 𝕋 → 𝕋 is defined by 

σ(t) = inf {s ∈ 𝕋: s > t}, 

and the backward jump operator ρ: 𝕋 → 𝕋 is defined by 

ρ(t) = sup {s ∈ 𝕋: s < t}. 

The following conditions hold: 

(i) If σ(t) > t, then t is termed right-scattered.  

(ii)  If ρ(t) < t, then t is termed left-scattered. 
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(iii) If  t < max𝕋 and σ(t) = t, then t is called right-dense. 

(iv) If  t > min𝕋 and ρ(t) = t, then t is called left-dense. 

Definition 2.2. ([8]). The graininess function μ: 𝕋 → [0,∞) for t ∈ 𝕋 is defined by 

µ(t) = σ(t) − t, 

where σ(t) is the forward jump operator. 

The derivative is taken using the set 𝕋k, which is derived from the time scale 𝕋 as follows: 

• If T has a left-scattered maximum M, then 𝕋k = 𝕋\{M}. 

• Otherwise, 𝕋k = 𝕋 . ([8]). 

Definition 2.3. (Delta Derivative) ([8]). Let h: 𝕋 → ℝ  and  t ∈ 𝕋k. The delta derivative h∆ also 

known as the Hilger derivative is defined as: 

h∆(t) =
h(σ(t))−h(s)

σ(t)−s
,        s ≠ σ(t), 

provided the limit exist. 

If t is right dense, the delta derivative of h: 𝕋 → ℝ, becomes 

h∆(t) = lim
s→t

h(t) − h(s)

(t) − s
, 

and if t is right scattered, the Delta derivative becomes 

h∆(t) =
hσ(t) − h(t)

μ(t)
, 

where  hσ(t) = σ(t). 

Definition 2.4 ([13]). A function h: 𝕋 → ℝ is called right-dense continuous if it is continuous at 

every right-dense point in 𝕋 and has finite left-sided limits at left-dense points of  𝕋. The set of 

all right-dense continuous functions is denoted by 

Crd = Crd(𝕋). 

Definition 2.5 ([13]). Let [a, b] be a closed and bounded interval in 𝕋. A function H: [a, b] → ℝ 

is called a delta antiderivative of a function h: [a, b] → ℝ  if H is continuous on [a, b], delta 

differentiable on [a, b), and satisfies H∆(t) = h(t)  for all t ∈ [a, b). The delta integral is then 

defined as 

∫ h(t)∆t = H(b) − H(a)
b

a

,          ∀a, b ∈ 𝕋. 

Remark 2.1 ([13]). All right dense continuous functions are delta integrable. 

Remark 2.2. Let a ≤ b, 

[a, b]𝕋 = t ∈ 𝕋: a ≤ t ≤ b, 

(a, b)𝕋 = t ∈ 𝕋: a < t < b, 

[a, b)𝕋 = t ∈ 𝕋: a ≤ t < b, 

(a, b]𝕋 = t ∈ 𝕋: a < t ≤ b, 

are all intervals on a time scale 𝕋. 
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Definition 2.6. ([8]). Let a, b ∈ 𝕋 and h ∈ Crd then, integration on a time scale  𝕋 is defined as 

follows: 

(i) If  𝕋 = ℝ, then 

∫ h(t)∆t = ∫ h(t)dt
b

a

b

a

 

where ∫ h(t)dt
b

a
 is the usual Riemann integral from calculus. 

(ii) If [a, b]𝕋 consists of only isolated points, then  

∫ h(t)∆t =

{
 
 

 
 ∑ μ(t)h(t)

t∈[a,b]

  if a < b

0                              if  a = b

− ∑ μ(t)h(t)

t∈[a,b]

  if a > b

b

a

 

(iii)  If there exists a point σ(t) > t, then 

∫ h(s
σ(t)

t

)∆s = μ(t)f(t). 

Definition 2.7 ([13]). A function ϕ: [0, r] → [0,∞) is of class κ if it is continuousand strictly 

increasing on [0, r] with ϕ(0) = 0. 

Definition 2.8 ([13]). A continuous function ν:ℝn → ℝ with ν(0) = 0 is called positive definite 

(negative definite) on the domain D if there exists a function ϕ ∈ κ such that ϕ(|χ|) ≤
ν(χ)(ϕ(|χ|) ≤ −ν(χ))  for χ ∈ D. 

Definition 2.9 ([13]). A continuous function ν:ℝn → ℝ with ν(0) = 0 is called positive 

semidefinite (negative semi-definite) on D if ν(χ) ≥ 0 (ν(χ) ≤ 0) for all  χ ∈ D and it can also 

vanish for some for some χ ≠ 0. 

Definition 2.10 ([17]). Assume V ∈ Crd[𝕋 × ℝ
n, ℝ+], h ∈ Crd[𝕋 × ℝ

n, ℝn] and μ(t) is the 

graininess function, then the derivative of V(t, χ) is defined as; 

D−V
Δ(t, χ) = lim

μ(t)→0
inf

V(t,χ)−V(t−μ(t),χ−μ(t)h(t,χ))

μ(t)
    (2.1) 

D+VΔ(t, χ) = lim
μ(t)→0

sup
V(t+μ(t),χ+μ(t)h(t,χ))−V(t,χ)

μ(t)
    (2.2) 

If V is differentiable, then D−V
Δ(t, χ) = D+VΔ(t, χ) = VΔ(t, χ). 

Definition 2.11 (Fractional integral on Time Scale) ([7]). Let α ∈ (0,1), [a, b] be an interval 

on 𝕋 and h an integrable function on [a, b]. Then the fractional integral of order α of h is defined 

by  

Ia
𝕋
t
αhΔ(t) = ∫

(t − s)α−1

Γ(α)
h(s)Δs

t

a

. 

Definition 2.12. (Caputo Derivative on Time Scale) ([7]). Let 𝕋 be a time scale, t ∈ 𝕋, 0 <
α < 1, and h: 𝕋 → ℝ. The Caputo fractional derivative of order α of h is defined by 
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Da
𝕋

t
αhΔ(t) =

1

Γ(1 − α)
∫ (t − s)−αhΔ

n
(s

t

a

)Δs. 

Definition 2.13. Let h ∈ Crd
α [𝕋,ℝn], the Grunwald-Letnikov fractional delta derivative is 

given by  

D.
GL𝕋

0
αhΔ(t) = lim

μ→0+

1

μα
∑ (−1)rαCr[h(σ(t) − rμ)]
[
(t−t0)

μ
]

r=0      t ≥ t0   (2.3) 

and the the Grunwald-Letnikov fractional delta dini derivative is given by :  

D.
GL𝕋

0+
α hΔ(t) = lim

μ→0+
sup

1

μα
∑ (−1)rαCr[h(σ(t) − rμ)]
[
(t−t0)

μ
]

r=0      t ≥ t0   (2.4) 

where 0 < α < 1, C.
α

r =
q(q−1)⋯(q−r+1)

r!
,  and [

(t−t0)

μ
] denotes the integer part of the function 

(t−t0)

μ
.   

Observe that if the domain is ℝ, then (2.1) becomes 

D.
GL𝕋

0+
α hΔ(t) = lim

d→0+
sup

1

dα
∑ (−1)rαCr[h(t − rd)]

[
(t−t0)
d

]

r=0

     t ≥ t0 

Remark 2.3. It is necessary to note that the relationship between the Caputo fractional delta 

derivative and the Grunwald-Letnikov fractional delta derivative is given by 

D.
C𝕋

0+
α hΔ(t) = D.

GL𝕋
0+
α [h(t) − h(t0)]

Δ 

Substituting (2.3) into (2.5) we have that the Caputo fractional delta derivative becomes 

D.
C𝕋

0
αhΔ(t) = lim

μ→0+

1

μα
∑ (−1)rαCr[h(σ(t) − rμ) − h(t0)]

[
(t−t0)
μ

]

r=0

     t ≥ t0  

D.
C𝕋

0
αhΔ(t) = lim

μ→0+

1

μα
{h(σ(t)) − h(t0) + ∑ (−1)rαCr[h(σ(t) − rμ) − h(t0)]

[
(t−t0)

μ
]

r=0  }  (2.6) 

And the Caputo fractional delta Dini derivative becomes 

D.
C𝕋

0+
α hΔ(t) = lim

μ→0+
sup

1

μα
∑ (−1)rαCr[h(σ(t) − rμ) − h(t0)]
[
(t−t0)

μ
]

r=0      t ≥ t0  (2.7) 

which is equivalent to 

D.
C𝕋

0
αhΔ(t) = lim

μ→0+
sup

1

μα
{h(σ(t)) − h(t0) + ∑ (−1)rαCr[h(σ(t) − rμ) − h(t0)]

[
(t−t0)

μ
]

r=0  } ,   t >

t0            (2.8) 

For notation simplicity, we shall represent the Caputo fractional derivative of order α as DC𝕋 α  

and the Caputo fractional delta dini derivative of order α as DC𝕋
+
α . 
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Definition 2.14. The trivial solution x =  0 of (3.1) is uniformly asymptotically stable if it is 

uniformly stable and locally attractive, that is there exists a δ0 > 0 such that ||x(t0)|| = δ0 implies 

lim
t→∞

||x(t0)|| = 0 for t0, t ∈ 𝕋. 

Now, we introduce the derivative of the Lyapunov function using the Caputo fractional delta 

Dini derivative of h(t) given in (2.7). 

Definition 2.15. We define the Caputo fractional delta Dini derivative of the Lyapunov function 

V(t, x) ∈ Crd[𝕋 × ℝ
n, ℝ+] (which is locally Lipschitzian with respect to its second argument and 

V(t, 0) ≡ 0) along the trajectories of solutions of the system (3.1) as: 

D`
C𝕋

+
αVΔ(t, x) = lim

μ→0+
sup

1

μα
∑ (−1)r(αCr)[V(σ(t) − rμ, x(σ(t)) − μ

αf(t, x(t)) − V(t0, x0)]

[
(t−t0)
μ

]

r=0

 

And can be expanded as 

.C𝕋 D+
αVΔ(t, x) = lim

μ→0+
sup

1

μα
{V(σ(t), x(σ(t)) − V(t0, x0) + ∑ (−1)r+1(αCr)[V(σ(t) −

[
(t−t0)

μ
]

r=0

rμ, x(σ(t)) − μαf(t, x(t) − V(t0, x_0)] }       (2.9) 

Where t ∈ 𝕋, x, x0 ∈ ℝ
n, μ = σ(t) − t and x(σ(t) − μαf(t, x) ∈ ℝn. 

If 𝕋 is discrete and V (t, x(t)) is continuous at t, the Caputo fractional delta Dini derivative of 

the Lyapunov function in discrete times, is given by: 

.C𝕋 D+
αVΔ(t, x) =

1

μα
[∑ (−1)r+1(αCr)[V(σ(t), x(σ(t)) − V(t0, x0))]

[
(t−t0)

μ
]

r=0    (2.10) 

and if 𝕋 is continuous, that is 𝕋 = ℝ, and V(t, x(t)) is continuous at t, we have that 

.C𝕋 D+
αVΔ(t, x) = lim

d→0+
sup

1

dα
{V(t, x(t)) − V(t0, x0) − ∑ (−1)r+1(αCr)[V(t − rd, x(t)) −

[
(t−t0)

μ
]

r=0

dαf(t, x(t) − V(t0, x_0)] }       (2.11) 

Notice that (2.11) is the same in [1] where d > 0 

Given that lim
N→∞

∑ (−1)rαCr = 0
N
r=0  where α ∈ (0,1), and lim

μ→0+
[
(t−t0)

μ
] = ∞, then it is easy to see 

that 

lim
μ→0+

∑ (−1)rαCr = −1N
r=0      (2.12) 

Also from (2.7) and since the Caputo and Riemann-Liouville formulations coincide when 

h(t0) = 0, ([1]) then we have that 

D`
C𝕋

+
αhΔ(t) = D`

RL𝕋
+
αhΔ(t) = lim

μ→0+
sup

1

μα
[∑ (−1)r+1(αCr)[h(σ(t) − rμ)], t ≥ t0

[
(t−t0)

μ
]

r=0    (2.13) 

So that 

lim
μ→0+ 

sup
1

μα
∑ (−1)rαCr = Dα(1) =

(t−t0)
−α

Γ(1−α)
, t ≥ t0.

RL𝕋
[
(t−t0)

μ
]

r=0 .    (2.14) 
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INEQUALITIES ON FRACTIONAL DYNAMIC EQUATIONS ON TIME SCALE AND 

COMPARISON RESULTS. 

For the purpose of this work, we consider the Caputo fractional dynamic system of order α 

with 0 < α < 1 

D.
C𝕋 αxΔ = f(t, x), t ∈ 𝕋,      (3.1) 
x(t0) = x0,   t0 ≥ 0  

where f ∈ Crd[𝕋 × ℝ
N, ℝN], f(t, 0) ≡ 0 and D.

C𝕋 αxΔ is the Caputo fractional delta derivative of 

x ∈ ℝN of order α with respect to t ∈ 𝕋. Let x(t) = x(t, t0, x0) ∈ Crd
α [𝕋,ℝN] (the fractional 

derivative of order alpha of x(t) exist and it is rd-continuous) be a solution of (3.1) and assume 

the solution exists and is unique (results on existence and uniqueness of (3.1) is contained in [7]), 

this work aims to investigate the uniform asymptotic stability of the system (3.1). 

To do this, we shall use the Caputo fractional dynamic system of the form 

D.
C𝕋 αuΔ = g(t, u), u(t0) = u0 > 0       (3.2) 

where u ∈ ℝ+, g: 𝕋 × ℝ+ → ℝ+ and g(t, 0) ≡ 0. (3.2) is called the comparison system. For this 

work, we will assume that the function g ∈ [𝕋 × ℝ+ → ℝ+], is such that for any initial data 
(t0, u0) ∈ 𝕋 × ℝ+, the system (3.2) with u(t0) = u0 has a unique solution u(t) = u(t; t0, u0) ∈
Crd
α [𝕋,ℝ+] see [7]. 

Definition 3.1. The zero solution of (3.1) is said to be: 

(S1)  Uniformly stable if for every ϵ > 0 and t0 ∈ ℝ+, there exist δ = δ(ϵ) > 0 such that 

for any x0 ∈ ℝ
N, the inequality ||x0|| < δ implies x(t; t0, x0) < ϵ for t ≥ t0 

(S1)  Uniformly asymptotically stable if it uniformly stable and there exist numbers δ0 =
δ0(ϵ) and T = T(ϵ) such that for t ≥  t0 + T, the inequality ||x_0||  ≤ δ implies 

x(t; t_0, x_0) < ϵ. 

Lemma 3.1. ([15]) Assume that 

(i) g ∈ Crd[𝕋 × ℝ+] and g(t, u)μ is non-decreasing in u. 

(ii) V ∈ Crd[𝕋 × ℝ
N, ℝ+] be locally Lipschitz in the second variable such that 

D.
C𝕋 αVΔ(t, x) = g(t, V(t, x)), (t, x) ∈ 𝕋 × ℝN      (3.3) 

(iii) z(t) = z(t; t0, u0) is the maximal solution of (3.2) existing on 𝕋. 

Then  

V(t, x(t)) ≤ z(t), t ≥ t0        (3.4) 

provided that 

V(t0, x0) ≤ u0        (3.5) 

where x(t) = x(t; t0x0)  is any solution of (3.1), t ∈ 𝕋 t ≥ t0 

Lemma 3.2 (Uniform Stability). [[15]] Assume the following 

(1) g ∈ Crd[𝕋 × ℝ+, ℝ+] and g(t, u) is non-decreasing in u with g(t, u) ≡ 0.  

(2)  V(t, x(t)) ∈ C[𝕋 × ℝN, ℝ+] be such that 

(i) V is locally Lipschitz in x with V(t, 0) ≡ 0 

(ii) b(||x||) ≤ V(t, x) ≤ a(||x||) where a, b ∈ K  

(iii) For any points t, t0 ∈ 𝕋 and x, x0 ∈ ℝ
N, the inequality 
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holds. 

(3) The zero solution of FrDE (3.2) is uniformly stable Then the zero solution of the FrDE 

(3.1) is uniformly stable. 

Main Results 

In this section, we will obtain sufficient conditions for the uniform asymptotic stability of the 

system (2.9) 

Theorem 4.1 (Uniform asymptotic Stability). Assume the following 

(1)  V(t, x(t)) ∈ C[𝕋 × ℝN, ℝ+] and locally Lipschitz in x such that V(t, 0) ≡
0. 

(2)  g ∈ Crd[𝕋 × ℝ+, ℝ+] and g(t, u) is non-decreasing in u with g(t, u) ≡ 0.  

(3)  For (t, x) ∈ 𝕋 × ℝN, 

 

where c ∈ K. 

4. b(||x||) ≤ V(t, x) ≤ a(||x||) where a, b ∈ K. 

Then the zero solution x = 0 of the FrDE (3.1) is uniformly asymptotically stable. 

Proof. Let x∗(t) be any solution of (3.1). Then x∗ = 0 is uniformly asymptotically stable, if it is 

uniformly stable and uniformly attractive. By Theorem 3.2, x∗ = 0 is uniformly stable. 

We now show that x∗ = 0 is uniformly attractive. That is, for any η > 0, there exist  T =
T(η)  >  0 such that for any t0 ∈ 𝕋, x0 ∈ ℝ

N with ‖x0‖ ≤ δ, the inequality ‖x∗(t; t0, x0)‖ <  η 

holds for t ≥ t0 + T. Let λ ∈ (0, δ) be a constant such that 

a(λ) < b(δ), with ‖x0‖ < λ    (4.1) 

Combining condition (4) and (4.1) at (t0, x0), we have that 

b(‖x0‖) ≤ V (t0, x0) ≤ a(‖x0‖) < a(λ) < b(δ)  (4.2) 

We can see clearly from (4.2) that ∥ x0 ∥< δ. 

Let η = η(ϵ),   η ∈ (0, ϵ). 

We claim that 
‖x0‖  <  δ ⟹ ‖x∗(t)‖  <  η, for     t ≥  t0 + T   (4.3) 

Assume (4.3) is not true, then there exists at least one t ≥  t0 + T,  such that 

‖x0‖ < δ ⟹ ‖x∗(t)‖ ≥ η     (4.4) 

Since c ∈ K, condition (2) of the theorem can be written as 

    (4.5) 

which is equivalent to the Volterra integral equation  

    V(t, x∗(t)) ≤ V(t0, x0) −
c(η)

Γ(α)
∫ (t − s)α−1
t

t0
Δs         for   t ≥ t0 + T                     (4.6) 

if 𝕋 = ℝ, then (4.6) becomes 
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                    V(t, x∗(t)) ≤ V(t0, x0) −
c(η)(t−t0)

αΓ(α)
     (4.7)  

and for sufficiently large t, (4.7) contradicts the condition (4) of the Theorem so (4.3) holds 

when 𝕋 = ℝ. 

If 𝕋 consists of only isolated points, then (4.6) becomes 

V(t, x∗(t)) ≤ V(t0, x0) −
c(η)

Γ(α)
∑ μ(tj)r(tj)
i
j=1    (4.8)  

for all ti, tj ∈ 𝕋 and r(t) = (t − s)α−1. As i → ∞, the right-hand side of (4.8) tends to −∞ 

which is also a contradiction. 

If T consists of ti such that σ(t) > t, then (4.6) becomes 

V(t, x∗(t)) ≤ V(t0, x0) −
c(η)

Γ(α)
μ(ti)r(ti)     (4.9)  

where r(t) = (t − s)α−1. As i → ∞, the right-hand side of (4.9) approaches −∞. Which is 

another contradiction, implying that (4.3) holds across different time scales. 

Therefore, the zero solution of (3.1) is uniformly asymptotically stable. □ 

and for sufficiently large t, (4.7) contradicts the condition (4) of the Theorem and in-fact 

definition of V(t, x(t))  and so (4.3) holds when T = ℝ. 

If T consists of only isolated points, then (4.6) becomes 

V(t, x∗(t)) ≤ V(t0, x0) −
c(η)

Γ(α)
∑ μ(tj)r(tj)
i
j=1    (4.8)  

for all ti, tj ϵ T and r(t) = (t − s)α−1,  as i → ∞,  the right-hand side of (4.8) tends to −∞ which 

is also a contradiction.  

If T consists of ti such that σ(t) > t,  then (4.6) becomes 

V(t, x∗(t)) ≤ V(t0, x0) −
c(η)

Γ(α)
μ(ti)r(ti)   (4.9)  

Where r(t) = (t − s)α−1. As i → ∞, the right-hand side of (4.9) approaches −∞.  Which is 

another contradiction, implying that (4.3) holds across different time scales. 

Therefore, the zero solution of (3.1) is uniformly asymptotically stable.  

Application 

Consider the system of dynamic equations 

CTDαχ1(t) = g1(t)χ1 − g2(t)χ2 

                                                   CTDαχ1(t) = g1(t)χ2 + g2(t)χ1     (5.1) 

For t ≥ t0, with initial conditions 

             χ1(t0) = χ10 and χ2(t0) = χ20 

where χ = (χ1, χ2)ℝ
2 and g = (g1, g2)ϵℝ

2 

Consider V(t, χ1, χ2) = χ1
2 + χ2

2, for tϵT, (χ1, χ2)ϵℝ
2 and choose α = 1, so that (5.1) becomes an 

integer (first) order system. Then we compute the delta Dini derivative of 
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 V(t, χ1, χ2) = χ1
2 + χ2

2 along the solution path of (5.1) as follows: 

From (2.2) we have that 

D+VΔ(t, χ) = lim sup
μ(t)→0

V(t+μ(t),χ+μ(t)f(t,χ))−V(t,χ)

μ(t)
  

                    = lim sup
μ(t)→0

(χ1+μ(t)f1(t,χ1,χ2))
2+(χ2+μ(t)f2(t,χ1,χ2))

2−[χ1
2+χ2

2]

μ(t)
 

                    = lim sup
μ(t)→0

(χ1
2+2χ1μ(t)f1+μ

2(t)f1
2+χ2

2+2χ2μ(t)f2+μ
2(t)f2

2−[χ1
2+χ2

2]

μ(t)
 

                    = lim sup
μ(t)→0

2χ1μ(t)f1+μ
2(t)f1

2+2χ2μ(t)f2+μ
2(t)f2

2

μ(t)
  

                        ≤ 2χ1f1 + 2χ2f2  

          = 2χ1(g1(t)χ1 − g2(t)χ2) + 2χ2(g1(t)χ2 + g2(t)χ1)  

          = 2[g1(t)χ1
2 − g2(t)χ1χ2] + 2[g1(t)χ2

2 + g2(t)χ1χ2]  

          = 2g1(t)[χ1
2 + χ2

2]  

D+VΔ(t, χ) ≤ 2g(t, V(t, χ1, χ2))  

Now consider the consider the comparison equation 

                   D+uΔ = 2u > 0,        u(0) = u0      (5.2) 

Even though conditions (i)-(iii) of [17] are satisfied that is VϵCrd[T × ℝ
n, ℝ+],  

D+V∆(t, χ) ≤ g(t, V(t, χ)) and √χ1
2 + χ2

2 ≤ χ1
2 + χ2

2 ≤ 2(χ1
2 + χ2

2), for b||χ|| = r and a(||χ||) =

2r2,  it is obvious to see that the solution of the comparison system (5.2) is not uniformly 

asymptotically stable, so we cannot deduce the uniform asymptotic stability properties of the 

system (5.1) by applying the basic definition of the Dini-derivative of a Lyapunov function of 

dynamic equation on time scale to the Lyapunov function 

V(t, χ1, χ2) = χ1
2 + χ2

2.  

Let us consider (5.1) with αϵ(0,1) and apply the new definition (2.9). 

For V(t, χ1, χ2) = χ1
2 + χ2

2, for tϵT and (χ1, χ2)ϵℝ
2. Then condition 1 of Theorem (4.1) is 

satisfied, for b(||χ||) ≤ V(t, χ) ≤ a(||χ||), with b(r) = r, a(r) = 2r2, a, b ϵ K, so that the 

associated norm ||χ|| = √χ1
2 + χ2

2.  

Since 

V(t, χ1, χ2) = χ1
2 + χ2

2 

then √χ1
2 + χ2

2 ≤ χ1
2 + χ2

2 ≤ 2(χ1
2 + χ2

2). From (2.9), we compute the Caputo fractional Dini 

derivative for V(t, χ1, χ2) = χ1
2 + χ2

2 as follows 
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D+
α

.
𝐶𝕋 VΔ(t, χ) = lim sup

μ→0+

1

μα
 

{
 
 

 
 

V(σ(t), χ(σ(t)) − V(t0, χ0))

− ∑ (−1)r+1

[
t−t0
μ
]

r=1

(αCr) [V (σ(t) − rμ, χ(σ(t)) − μ
αf(t, χ(t))) − V(t0, χ0)]

}
 
 

 
 

  

= lim sup
μ→0+

1

μα
{[(χ1(σ(t)))

2 + (χ2
2(σ(t)))2] − [(χ10)

2 + (χ20)
2]

+ ∑ (−1)r

[
t−t0
μ
]

r=1

(αCr)[(χ1(σ(t)) − μ
αf1(t, χ1, χ2))

2 + (χ2(σ(t))

− μαf2(t, χ1, χ2))
2((χ10)

2 + (χ20)
2)]} 

= lim sup
μ→0+

1

μα
{[(χ1(σ(t)))

2 + (χ2
2(σ(t)))2] − [(χ10)

2 + (χ20)
2]

+ ∑ (−1)r

[
t−t0
μ
]

r=1

(αCr)[(χ1(σ(t)))
2 − 2χ1(σ(t))μ

αf1(t, χ1, χ2) + μ
2α(f1(t, χ1, χ2))

2

+ (χ2(σ(t)))
2 − 2χ2(σ(t))μ

αf2(t, χ1, χ2)

+ μ2α(f2(t, χ1, χ2))
2 − ((χ10)

2 + (χ20)
2)]} 

= lim sup
μ→0+

1

μα
{− ∑ (−1)r

[
t−t0
μ
]

r=0

(αCr)[(χ10)
2 + (χ20)

2] + ∑ (−1)r

[
t−t0
μ
]

r=0

(αCr)[(χ1(σ(t)))
2

+ (χ2(σ(t)))
2]

− ∑ (−1)r

[
t−t0
μ
]

r=1

(αCr[2χ1(σ(t))μ
αf1(t, χ1, χ2) + 2χ2(σ(t))μ

αf2(t, χ1, χ2)]

+ ∑ (−1)r

[
t−t0
μ
]

r=1

(αCr)[μ
2α(f1(t, χ1, χ2))

2 + μ2α(f2(t, χ1, χ2))
2]} 
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= − lim sup
μ→0+

1

μα
{ ∑ (−1)r

[
t−t0
μ
]

r=0

(αCr)[(χ10)
2 + (χ20)

2]}

+ lim sup
μ→0+

1

μα
{ ∑ (−1)r

[
t−t0
μ
]

r=0

(αCr)[(χ1(σ(t)))
2 + (χ2(σ(t)))

2]}

− lim sup
μ→0+

1

μα
{ ∑ (−1)r

[
t−t0
μ
]

r=0

(αCr)[2χ1(σ(t))μ
αf1(t, χ1, χ2)

+ 2χ2(σ(t))μ
αf2(t, χ1, χ2)]} 

Applying (2.12) and (2.14) we have 

= −
(t − t0)

−∝

Γ(1 − α)
((χ10)

2 + (χ20)
2 +

(t − t0)
−∝

Γ(1 − α)
((χ1(σ(t)))

2 + (χ2(σ(t)))
2)

− [2χ1(σ(t))f1(t, χ1, χ2) + 2χ2(σ(t))f2(t, χ1, χ2)]

≤
(t − t0)

−∝

Γ(1 − α)
((χ1(σ(t)))

2 + (χ2(σ(t)))
2) − [2χ1(σ(t))f1(t, χ1, χ2)

+ 2χ2(σ(t))f2(t, χ1, χ2)] 

As t → ∞, 
(t−t0)

−∝

Γ(1−α)
((χ1(σ(t)))

2 + (χ2(σ(t)))
2) → 0, then 

                                   D+
α

.
𝐶𝕋 VΔ(t, χ1, χ2) ≤ 2[χ1(σ(t))f1(t, χ1, χ2) + χ2(σ(t))f2(t, χ1, χ2)] 

applying 

χ(σ(t)) ≤ μCTDαχ(t) + χ(t)  

              = −2[μ(t)f1
2(t, χ1, χ2) + χ1(t)f1(t, χ1, χ2) + μ(t)f2

2(t, χ1, χ2) + χ2(t)f2(t, χ1, χ2)] 

= −2[g1(t)χ1
2 + g2(t)χ2

2] − 2μ(t)[(g1(t)χ1 − g2(t)χ2)
2 + (g1(t)χ2 + g2(t)χ1)

2]        (5.3) 

If 𝕋 = ℝ we have that μ = 0, so that (5.3) becomes; 

= −2g1(t)[χ1
2 + χ2

2] 

Therefore, 
                                   D+

α
.

𝐶𝕋 VΔ(t, χ1, χ2) ≤ −2g(t, V(t, χ1, χ2)) 
Consider the comparison system 

(5.4)   D+
α

.
𝐶𝕋 uΔ =  g(t, u)  ≤  −2u 

   D+
α

.
𝐶𝕋 uΔ + 2u = 0 

Applying the Laplace transform method, we obtain 

(5.5) u(t)  =  u0Eα,1(−2t
∝),   for α ∈  (0,1). 

Now, let u0 < δ, then from (5.5), we have lim
t→∞

u(t) = lim
t→∞

u0Eα,1(−2t
α) = 0 whenever 

u0 < δ =
ϵ

2Eα,1
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If T = ℕ0 we have that μ =  1, so that (5.3) becomes; 

                         = −2[g1(t)χ1
2 + g2(t)χ2

2] − 2[(g1(t)χ1 − g2(t)χ2)
2 + (g1(t)χ2 + g2(t)χ1)

2] 

D+
α

.
𝐶𝕋 VΔ(t; χ1, χ2) ≤ −2g1(t)[χ1

2 + χ2
2] 

we can also consider same comparison system as (5.4) leading to the same conclusion as (5.5) 

Since all the conditions of Theorem 4.1 are satisfied, and trivial solution of the comparison system 

(5.4) is uniformly asymptotically stable, then we conclude that the trivial solution of system (5.1) 

is uniformly asymptotically stable. 

α= 0.2 α= 0.4 α= 0.6 α= 0.9 

Figure 1. Graph of u(t) = Eα,1(−2tα) against t 

Figure 1 above shows the behaviour of u(t) with respect to time for different values of α. It is 

obvious to see that u(t) → 0 as t → ∞. 

CONCLUSION 

In this paper, we have introduced a generalized approach to establishing uniform asymptotic 

stability criteria for Caputo fractional dynamic equations on arbitrary time domains. By 

establishing uniform asymptotic stability criteria based on the Caputo fractional delta derivative 

and Caputo fractional delta Dini derivative, we have created a unified framework for uniform 

asymptotic stability analysis on time scales. This framework effectively bridges the gap between 

continuous and discrete time domains, providing a powerful tool for predicting long-term stable 

behavior in complex dynamic systems.The significance of this research lies in its potential to 

ensure reliable and consistent outcomes in various applications, including control theory, signal 

processing, and engineering. By providing a unified framework for asymptotic stability analysis, 

we have paved the way for further research into the long-term stability of fractional dynamic 

systems. Our results demonstrate the effectiveness and applicability of the established uniform 

asymptotic stability criteria, showcasing their relevance in understanding and predicting the 

behavior of complex systems over time. We have also shown the theoretical applicability of this 

definition in Theorem 4.1 and its practical effectiveness in system (5.1). 
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