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ABSTRACT

In  this  paper,  two  step  implicit  hybrid  block  multistep  method,
incorporating  multi-derivatives  is  considered.  The  first  incorporated
second, third and fourth derivative, while the second incorporated second,
third, fourth derivative and fifth derivative. The schemes are generated for
the  numerical  solution  of  non-linear  dynamical  first  order  ordinary
differential  equations.  The  study  made  use  of  Bhaskara  cosine
approximation formula to generate hybrid points for the optimization of
the numerical schemes generated by using collocation and interpolation
technique. Power series is used as the basis function in approximating the
solution.   The  methods  are  self-starting,  of  higher  order,  zero-stable,
consistent and are A-stable. The methods are used to solve problems from
chaos theory, SIR-model and multi-dimension problem to demonstrate the
effectiveness of the method and its ability provide reliable solutions over
existing methods.

1. Introduction 

In this paper, we considered the method to approximate the solution of the first order initial value
problem of the form:

y '=f (x , y ) , y (x0 )= y0 (1.1)

Where:  xn, is the initial point,  yn is the solution at  xn.  f  is continuous within the interval of
integration. 
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Equation (1.1) is of interest to researchers because of its wide application in engineering control
theory, chaos theory, dynamical system, non-linear system and other real-life problem, hence the
study of the methods of its solution.

Numerical methods for Ordinary Differential Equations (ODEs) are essential tools in scientific
computation,  widely  used  to  solve  real-life  problems.  The  rise  of  nonlinear  problems  has
accompanied  advancements  in  science  and  technology.  Unlike  linear  problems,  nonlinear
problems cannot be tackled using standard linear techniques. Consequently, a new approach has
been developed over the years to understand complex systems. Nonlinear dynamic systems often
display complex behaviors such as population growth and chaos. While these systems can be
used to examine chaotic or disordered phenomena and uncover intricate laws, this is not the sole
focus of nonlinear problems [1,2].  To gain insights into a system's characteristics, it is crucial to
construct an appropriate nonlinear mathematical model that accurately represents the underlying
laws of the data. Nonlinear dynamics are diverse and vary in a more complicated manner based
on the  prior  state.  This  complexity presents  a  significant  challenge  in  practical  engineering.
Generally, finding an analytical solution is nearly impossible when a complex chaotic state is
present. Therefore, when describing an unknown system state, people tend to prioritize methods
that  offer  high  approximation  accuracy  and  ease  of  use  over  attempting  to  solve  the  exact
problem.

Over  the  years,  many approaches  have  been developed  to  solve  the  numerical  solutions  of
nonlinear dynamic systems. The major methods include the perturbation method [3], averaging
method [4], Runge-Kutta method [5], Euler method [6], gradient method [7], linear multistep
method, among others. While these methods have certain benefits for handling specific systems,
they often produce unsatisfactory results when applied to generic nonlinear dynamic systems.
Issues such as reduced accuracy, increased complexity, large computational requirements, and
Runge phenomena are common. Therefore, the current challenge is to find an effective approach
for studying nonlinear dynamic systems that offers both high approximation accuracy and avoids
the Runge phenomenon [8-14].

Considering the above discussion, we introduce two more direct methods for solving first-order
nonlinear ODEs, applicable to special, stiff, nonlinear, and general forms of these equations. The
proposed  methods  are  two-step  multi-derivative  hybrid  methods  that  utilizes  four  generated
Bhaskara  points  as  hybrid  points  to  optimize  the  methods.  These  methods  aim to  be  time-
efficient, provide a wider integration range, and be economically reliable. The objective of this
study is to develop two optimized multi-derivative methods with intra-step points for solving
nonlinear dynamical systems.

The method is implemented has an implicit two-step method using Bhaskara points as hybrid
points [15]. The order, zero stability, convergence and consistency of the method were studied.
Some numerical problem which are non-linear will be solved and compared to others in literature
to show the efficiency and accuracy.

1.1 Development of the methods.  
The power series of the form below is considered in deriving the methods:

y ( x )= ∑
j=0

I +MC

α j x
j (2.1)
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Where  I  is  the  interpolation  point,  C is  number  of  collocation  points  for  each  derivative
assuming  all  the  collocations  points  at  each  derivative  are  the  same,  M  is  the  number  of
derivatives.

y (xn )= yn

y ' (xn+v )=f n+v

y ' ' (xn+v )=gn+ v

y ' ' ' (xn+v )=pn+ v

y ' v (xn+v )=ϖn+v

yv (xn+v )=Hn+v

}
v= 5
37

, 1
2

,1, 3
2

, 69
37

,2

           (2.2)

The first derivative, second derivative, third derivative, fourth derivative and fifth derivative of
the methods are:

y ' ( x )= ∑
j=1

I+MC

jα j x
j−1 (2.3)

y ' ' ( x )= ∑
j=2

I+MC

j( j−1)α j x
j−2 (2.4)

y ' ' ' ( x )= ∑
j=3

I +MC

j( j−1)( j−2)α j x
j−3 (2.5)

y iv ( x )= ∑
j=4

I+MC

j ( j−1)( j−2)( j−3)α j x
j−4 (2.6)

 yv ( x )= ∑
j=5

I +MC

j ( j−1)( j−2)( j−3)( j−4)α j x
j−5 (2.7)

2.1 Derivation of the Fourth Derivative Method (FDM):

(2.1) is interpolated at x=xn+1 while (2.3), (2.4), (2.5) and (2.6) are collocated at 

x=xn+1 , i=0 , 5
37

, 1
2

,1 , 3
2

, 69
37

,2 (2.8)

The points i are the Bhaskara hybrid points that optimized the method, n represents the number
of iterations for a step number of 2. 

The system of equation gotten from (2.1), (2.3), (2.4), (2.5) and (2.6) can be written in the form
below 

yw=Dψw (2.9)

Where:
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yw=( yn , f n , f n+ 5
37

, f
n+1
2

, f n+1 , f n+3
2

, f
n+ 69
37

, f n+2 , gn , gn+ 5
37

, g
n+1
2

, gn+1 , gn+3
2

, g
n+ 69
37

, gn+2 ,

pn , p
n+

5
37

, p
n+
1
2
, pn+1 , p

n+
3
2
, p

n+
69
37

, pn+2 ,ϖn ,ϖ
n+
5
37

,ϖ
n+
1
2
,ϖn+1 ,ϖ

n+
3
2
,ϖ

n+
69
37

,ϖn+2)
T

And 

ϕw=(α0 , α1 , α2 , α 3 , α 4 , α5 , α 6, α 7 , α8 , α 9, α 10 , α 11 , α12 , α13 , α14 , α15 ,α16 , α17 , α 18 , α 19 , α20 , α 21 , α22 , α23 , α24 , α 25 , α26 , α 27 , α 28 )
T

The matrix D for (FDM) is shown in Appendix

Equation (2.9) is solved by matrix inversion technique which yield the continuous coefficients,
which are then substituted into (2.1) to obtain its equivalent continuous scheme:

y ( x )= yn+h(β0 ( x ) f n+ β 5
37

( x ) f
n+ 5
37

+β 1
2

( x ) f
n+1
2

+β1 ( x ) f n+1+β 3
2

( x ) f
n+ 3
2

+ β69
37

( x ) f
n+ 69
37

+β2 ( x ) f 2)+h2(γ 0 ( x ) gn+γ 5
37

( x ) g
n+ 5
37

+γ 1
2

( x ) g
n+1
2

+γ 1 ( x ) gn+1+γ 3
2

( x ) g
n+ 3
2

+γ 69
37

( x ) g
n+69
37

+γ 2 ( x ) g2)+h3(k 0 ( x ) pn+k 5
37

( x ) p
n+ 5
37

+k 1
2

( x ) p
n+1
2

+k1 ( x ) pn+1+k 3
2

( x ) p
n+ 3
2

+k 69
37

( x ) p
n+69
37

+k2 ( x ) p2)+h4(ω0 ( x ) ϖn+ω 5
37

( x ) ϖ
n+ 5
37

+ω1
2

( x ) ϖ
n+ 1
2

+ω1 ( x ) ϖn+1+ω 3
2

( x ) ϖ
n+3
2

+ω 69
37

( x ) ϖ
n+69
37

+ω2 ( x ) ϖ2)
(2.10)

Evaluating (2.10) at  x=0 , 5
37

, 1
2

, 3
2

, 69
37

,2gives the discrete schemes  which form the block for

the two-step fourth derivative block hybrid-points method with m=4.

2.2 Derivation of the Fifth Derivative Method (FIDM):

(2.1) is interpolated at x=xn+1 while (2.3), (2.4), (2.5), (2.6) and (2.7) are collocated at 

x=xn+1 , i=0 , 5
37

, 1
2

,1 , 3
2

, 69
37

,2 (2.11)

The points i are the Bhaskara hybrid points that optimized the method, n represents the number
of iterations for a step number of 2. 

The system of equation gotten from (2.1), (2.3), (2.4), (2.5) and (2.6) can be written in the form
below 

yw=Dψw (2.12)
Where:

yw=(
yn , f n , f n+ 5

37

, f
n+1
2

, f n+1 , f n+ 3
2

, f
n+69
37

, f n+2 , gn , gn+ 5
37

, g
n+ 1
2

, gn+1 , gn+ 3
2

, g
n+ 69
37

, gn+2 ,

pn , pn+ 5
37

, p
n+1
2

, pn+1, pn+ 3
2

, p
n+ 69
37

, pn+2 ,ϖn ,ϖn+ 5
37

,ϖ
n+ 1
2

,ϖn+1 ,ϖn+3
2

,ϖ
n+69
37

,ϖn+2,

Hn ,H n+ 537
, H

n+ 12
, H n+1 , Hn+32

, H
n+ 6937

,H n+2 )
T

And 

ϕw=(α0 , α1 , α2 , α 3 , α 4 , α5 , α 6, α 7 , α8 , α 9, α 10 , α 11 , α12 , α13 , α14 , α15 ,α 16 ,α 17 , α18 , α19 ,α 20 , α21 , α 22 , α 23 , α 24 ,α 25 ,α 26 , α27 , α28 , α29
α 30 , α 31 , α 32 , α32 , α33 , α34 , α35 )

T
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The matrix D for (FIDM) is shown in Appendix

Equation (2.12) is solved by matrix inversion technique which yield the continuous coefficients,
which are then substituted into (2.1) to obtain its equivalent continuous scheme:

y ( x )= yn+h(β0 ( x ) f n+ β 5
37

( x ) f
n+ 5
37

+β 1
2

( x ) f
n+ 1
2

+β1 ( x ) f n+1+β 3
2

( x ) f
n+ 3
2

+ β69
37

( x ) f
n+ 69
37

+β2 ( x ) f 2)+h2(γ 0 ( x ) gn+γ 5
37

( x ) g
n+ 5
37

+γ 1
2

( x ) g
n+ 1
2

+γ 1 ( x ) gn+1+γ 3
2

( x ) g
n+ 3
2

+γ 69
37

( x ) g
n+ 69
37

+γ 2 ( x ) g2)+h3(k 0 ( x ) pn+k 5
37

( x ) p
n+ 5
37

+k 1
2

( x ) p
n+ 1
2

+k1 ( x ) pn+1+k 3
2

( x ) p
n+ 3
2

+k 69
37

( x ) p
n+ 69
37

+k2 ( x ) p2)+h4(ω0 ( x ) ϖn+ω 5
37

( x ) ϖ
n+ 5
37

+ω1
2

( x ) ϖ
n+ 1
2

+ω1 ( x ) ϖn+1+ω 3
2

( x ) ϖ
n+3
2

+ω 69
37

( x ) ϖ
n+69
37

+ω2 ( x ) ϖ2)+h5 (Υ 0 ( x ) H n+Υ 5
37

( x ) H
n+ 5
37

+Υ 1
2

( x ) H
n+1
2

+Υ 1 ( x ) H n+1+Υ 3
2

( x ) H
n+ 3
2

+Υ 69
37

( x ) H
n+ 69
37

+Υ 2 (x ) H 2)
(2.13)

Evaluating (2.13) at  x=0 , 5
37

, 1
2

, 3
2

, 69
37

,2gives the discrete schemes  which form the block for

the two-step fifth derivative block hybrid-points method with m=4.

2.3 Local Truncation Error:
2.3.1 Local Truncation Error of the Fourth Derivative Method:
The derived two-step methods are presented in this section. The linear operator is considered as:

L [ y (xn ) ;h ]=∑
i

[αi y (xn+ih )−h γi f (xn+ih)−h2 β i g (xn+ ih)−h3 k i p (xn+ih )−h4ωi ϖ (xn+ ih) ]
(2.14)

The function y ( x ) is an arbitrary test function that is continuously differentiable in the interval [a,
b]. Expanding  y (xn+ih) ,  f (xn+ih ) and  g(xn+ih) in Taylors series about  xn and factoring the
coefficients of h to get 

L [ y (xn ) ;h ]=C0 y (xn )+C1hy (xn )+C2h
2 y2 (xn )+C3h

3 y3 (xn)+C4h
4 y4 (xn )+…+C ph

p y p (xn )+…(2.15)

Where c i ,i=0,1,2,… are vectors.

¿

(2.16)

A method is of order p if C1=C2=C3=C4…=C p=0 ,Cp+1≠0. The C p+1 is the error constant and
C p+1h

p+1 y p+1 (xn ) is the principal truncation error at the point xn. The local truncation error and
order analysis of the block methods are found below. 

From Eq . (1.28 ) , It was obtained for (1.15) that C1=C2=…=C28=0 and 
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C29=(
−116372283146502977820187073177166391803904

189272640309130679515797092785857700724791937439625962236717519794700623828125
−2248093146594674787119

4447985791298296417664309708431247370756911687270400000000
−9148763359953713

14846754331153905355286678294667592809342566400000000
2248093146594674787119

4447985791298296417664309708431247370756911687270400000000
116372283146502977820187073177166391803904

189272640309130679515797092785857700724791937439625962236717519794700623828125
9148763359953713

14846754331153905355286678294667592809342566400000000

)
(2.17)

 The details of C1=C2=…=C28=0 is given in the appendix. 

Therefore, the proposed method when m=4   Incorporating second, third and fourth is of order 28.

2.3.2 Local Truncation Error of the Fifth Derivative Method:
The derived two-step methods are presented in this section. The linear operator is considered as:

L [ y (xn ) ;h ]=∑
i

[αi y (xn+ih )−h γi f (xn+ih)−h2 β i g (xn+ ih)−h3 k i p (xn+ih )−h4ωi ϖ (xn+ ih)−h5Υ i H (xn+ih) ]
(2.18)

The function y ( x ) is an arbitrary test function that is continuously differentiable in the interval [a,
b]. Expanding  y (xn+ih) ,  f (xn+ih ) and  g(xn+ih) in Taylors series about  xn and factoring the
coefficients of h to get 

L [ y (xn ) ;h ]=C0 y (xn )+C1hy (xn )+C2h
2 y2 (xn )+C3h

3 y3 (xn)+C4h
4 y4 (xn )++C5h

5 y5 (xn )…+C p h
p y p (xn )+… (2.19)

Where c i ,i=0,1,2,… are vectors. 

¿

A method is of order p if C1=C2=C3=C4=C5…=Cp=0 ,Cp+1≠0. The C p+1 is the error constant
and C p+1h

p+1 y p+1 (xn ) is the principal truncation error at the point xn. The local truncation error
and order analysis of the block methods are found below. 

From Eq . (1.32 ) , It was obtained for (1.23) that C1=C2=…=C35=0 and 
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C36=(
−205287494052662540460060102845930483482624

600651150303337247355204132974328157764428577555967558590756690626853130368171423857859375
−−486194504201783800364047

1195300727586986831829597229956932470094877383035473011280130867200000000
−243746251580479

712454752675883073705194729540903848466204037091417915392000000
−486194504201783800364047

1195300727586986831829597229956932470094877383035473011280130867200000000
−205287494052662540460060102845930483482624

600651150303337247355204132974328157764428577555967558590756690626853130368171423857859375
−243746251580479

712454752675883073705194729540903848466204037091417915392000000

) .
(2.21)

The details of C1=C2=…=C35=0 is given in the appendix. 
Therefore, the proposed method when m=5   Incorporating second, third and fourth is of order 35.

2.4 Zero Stability:
2.4.1 Zero Stability of Fourth Derivative Method:
The two-step second, third and fourth derivative block methods can generally be written as a
matrix difference equation as follows 
A( 1)Y w=A(0)Y w−1+h [B( 0) Fw−1+B(1 ) Fw ]+h2 [C(0) Gw−1+C (1 )Gw ]+h3 [E (0 ) Iw−1+E (1 ) I ]+h4 [ J (0) Lw−1+J ( 1) L ]

(2.22)

And the matrices A( 1) , A (0 ) ,B (1) ,B(0) ,C(1 ) ,C (0 ) , E(0) E( 1) , J(0) and J (1 ) are matrices whose entries are
given by the coefficients of the methods, whose first characteristic polynomial is given as
ρ ( λ )=|λ A( 1)−A0| (2.23)

Definition (Zero-stability): The block method (1.37) is said to be zero stable if the roots of the
first characteristic polynomial ρ ( λ ) satisfies |λ j|≤1, j=1,2,3 ,.. . and for those roots with |λ j|=1,
the multiplicity must not exceed 1. 

Using (1.38), we have 
ρ ( λ )=−λ3 ( λ+1 )=0 λ={0,0,0,0,0 ,−1 } 

(2.24)
Therefore, the method is zero stable since is satisfies |λ j|≤1

2.4.2 Zero Stability for Fifth Derivative Method:

The two-step second third and fourth derivative block methods can generally be written as a
matrix difference equation as follows 
A( 1)Y w=A(0)Y w−1+h [B( 0) Fw−1+B(1 ) Fw ]+h2 [C(0) Gw−1+C (1 )Gw ]+h3 [E (0 ) Iw−1+E (1 ) I ]+h4 [ J (0) Lw−1+J ( 1) L ]+h5 [Q(0 )W w−1+Q(1)W ]

(2.25)

And the matrices A( 1) , A (0 ) ,B (1) ,B(0) ,C(1 ) ,C (0 ) , E(0) E( 1) , J(0) and J (1 ) are matrices whose entries are
given by the coefficients of the methods, whose first characteristic polynomial is given as
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ρ ( λ )=|λ A( 1)−A0| (2.26)

Definition (Zero-stability): The block method (1.40) is said to be zero stable the roots of the first
characteristic polynomial  ρ ( λ ) satisfies |λ j|≤1, j=1,2,3 ,.. . and for those roots with |λ j|=1, the
multiplicity must not exceed 1. 
Using (3.38), we have 
ρ ( λ )=−λ3 ( λ+1 )=0 λ={0,0,0,0,0 ,−1 } 

(2.27)
Therefore, the method is zero stable since is satisfies |λ j|≤1

2.5 Consistency: 
A linear multistep method is said to be consistent if the order of accuracy p>1. Therefore, we
can infer from section 2.3.1 and section 2.3.2 that the two block methods are consistent.

2.6 Convergence
The necessary and sufficient condition for linear multistep method to be convergent is for it to be
consistent and zero stable (Lambert, 1973). Following this theorem, each of the block methods
developed are convergent.

2.7 Region of Absolute Stability:
Following Akinfenwa et al [16] the region of absolute stability is determined by obtaining the
stability polynomial of the form:
σ ( z )=( A (1 )−z B(1 )−z2C (1 ))−1 ( A (0 )+z B (0 )+z2C (0 ) ) (2.28)
Where  z=λ h 
The  matrix  σ ( z ) has  eigenvalues  {0,0,0 , ... , λk },  and  the  dominant  eigenvalue  λk :C→C is  a
rational function (called the stability function) with real coefficients given by 

λk=
P ( z )

P (−z )
 (2.29)

The stability functions show that for ℜ ( z )<0 ,|λk|≤1. 

Figure 1 shows the stability region for the two stability polynomials and found to be an A-stable 
method since its region of absolute stability contains the left half-plane C−¿¿.

3.       Numerical Experiments
First-order  dynamical  systems  are  applied  in  various  fields  such  as  population  dynamics,
chemical equations, and vibration theory. They are implemented at  this point. The resulting
iterative methods are discretized into the following form:

yn+ j
' =f (xn+ j , yn+ j ) , yn+ j

' ' =g (xn+ j
' , f n+ j ) , j=0 , 5

37
, 1
2

,1 , 3
2

, 29
37

,2 (3.1)
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And implemented as a block, it needs no starting values nor predictors. Using the known initial
condition, y (xn) for n=0,1 ,…,N−2 , the first order IVPs are solved in the N  mon-overlapping
block points [ x0 , xn ] …. , [ xN−2 , xn ] ,with the step size defined in the usual way as h=xn+1−xn.

3.1 One dimensional non-linear Equations
Problem 1:  The Mathieu equation is  essential  in the study of  periodic linear vibrations or
oscillations in  various physical  systems, including mechanical  and electrical  systems,  crystal
physics,  quantum  mechanics,  and  more.  It  arises  when  examining  the  behavior  of  systems
subject to periodic forces or exhibiting periodic structures.

The Mathieu equation expressed as a system of two first order equations:

y1
' = y2 (3.2)

y2
' =− (δ+ϵ cos2 t ) y1 (3.3)

The problem is subjected to initial conditions x0=0.1 , y0=0.

Fig 2: Comparison of Numerical Solutions for y1 of Problem 1

21

Fig 3: Comparison of Numerical Solutions for y2 of Problem 1
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Fig 4: Comparison of Numerical Solutions for y1 and y2 of Problem 1

Fig 4.6:  Phase portrait for Problem 1

3.3 Examples from Population Dynamics

Problem 2:  Consider the Lotka-Volterra equations.
The Lotka-Volterra equations are a classic mathematical model used to describe the dynamics of
predator-prey interactions in ecology. 

y1
' = y1− y1 y2 , (3.4)

y2
' =−1

5
y2+ y1 y2 (3.5)

Where the initial conditions y1 (0 )=1, y2 (0 )=1.  

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

y(
t)

t

 m=2 (y1)
 m=2 (y2)
 m=3 (y1)
 m=3 (y2)
 m=4 (y1)
 m=4 (y2)
 m=5 (y1)
 m=5 (y2)
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Fig 4.9:  Comparison of Numerical Solutions foy y1 of example 2

Fig 4.10:  y2 against y1 for example 2

The plot shows the phase portrait of the Lotka-Volterra model, which describes the dynamics of
predator-prey  interactions.  The  phase  portrait  is  a  graphical  representation  of  the  system's
behavior,  where  the  horizontal  axis  represents  the  prey  population  y1 and  the  vertical  axis
represents the predator population  y2. The closed curve in the phase portrait indicates a stable
limit cycle, which means that the system exhibits periodic oscillations.

3.4 Examples from Chaos Theory
Problem 3

The Lorenz system is known for its chaotic solutions, displaying sensitivity to initial conditions.
Its behavior is often visualized in phase space diagrams or attractor plots, revealing intricate and
seemingly unpredictable patterns. 

y1
' =a ( y2− y1 ) . (3.6)

y2
' =− y1 y2−b y1− y2 (3.7)

y3
' = y1 y2−c y3 (3.8)

Subject to y1 (0 )=1 , y2 (0 )=5 , y3 (0 )=10 and the constants are a=10 , b=28 and c=83
These values are chosen specifically for the Lorenz system to exhibit chaotic behavior, wherein
small differences in initial conditions lead to significantly different trajectories over time.
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Fig 7: Numerical solution of y1 against tof problem 3              Fig 8: Numerical solution of y2 against t  of problem 3

Fig 9: Numerical solution of y3 against t problem 3 Fig 10: Phase portrait of y2 against y1 problem 3

Fig 11: Phase portrait of y3 against y1 of problem 3 Fig 12: Phase portrait of y3 against y2 of problem 3
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Fig 13: Phase portrait of Problem 3

Problem 4

Next, we consider the Rossler system governed by 

y1
' =− y2− y3 ,  (3.9)

y2
' = y1+a y2 , (3.10)

y3
' =b+ y3 ( y1−c ) , (3.11)

A chaotic attractor with a=0.2 , b=0.2,and c=5.7. The Rossler system's attractor resulting from
these equations with the given parameters forms a distinctive shape often referred to as the
Rossler attractor. 
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Fig 14: Numerical solutions of y (t ) against t  of problem 4 Fig 15: Phase portrait of y2 against y1 of problem 4
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Fig 16: Phase portrait of y3 against y1 of problem 3 Fig 17: Phase portrait of y3 against y2 of problem 3

Fig 18: Phase portrait of Problem 4

Conclusion:
In  conclusion,  this  paper  presents  two  innovative  two-step  implicit  hybrid  block  multistep
methods incorporating multi-derivatives for the numerical solution of nonlinear dynamical first-
order ordinary differential equations. By leveraging the Bhaskara cosine approximation formula
to generate hybrid points and using power series as the basis function, these methods achieve
higher  order,  zero-stability,  consistency,  and A-stability.  The  effectiveness  and reliability  of
these methods are demonstrated through their application to problems from chaos theory, the SIR
model, and multi-dimensional problems. The results indicate that these methods provide superior
solutions  compared  to  existing  techniques,  highlighting  their  potential  for  broader  use  in
complex nonlinear systems.
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