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ABSTRACT

This study aims to accurately model the behavior of hydrogen-like and
muonic  atoms  with  finite-sized  nuclei  in  quantum vacuum interactions,
addressing the need for precise spectroscopy and accurate interpretation
of experimental data across a wide temperature spectrum. The analysis
uncovers that both the quantum number, n and nuclear charge, Z have a
significant impact on the vacuum field and thermal effects. Muons, due to
their  greater  mass  and  proximity  to  the  nucleus,  experience  more
pronounced thermal and vacuum field effects than electrons. The study’s
findings emphasize the need to consider thermal contributions in quantum
vacuum-related calculations and suggest that accounting for nuclear size
differences can enhance the accuracy of muonic atom experiments. The
study draws intriguing parallels between black holes and hydrogen atoms,
offering  exciting  prospects  for  further  exploration.  The  theoretical
framework  developed in  this  study holds  promise  for  various  scientific
disciplines,  opening  new  avenues  for  experimental  investigations  and
deepening our understanding of fundamental physics.

1. Introduction 

Understanding the intricate interplay between the thermal and zero-point energy of the quantum
vacuum and its impact on the spectra of hydrogen-like atoms with finite-sized nuclei is a topic of
profound interest  in modern theoretical physics [1].  The vacuum, once thought  to be a  void
devoid of any physical significance, has emerged as a dynamic entity teeming with fluctuations
and quantum fields that shape the behaviour of fundamental particles and their interactions [2]. 
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Relic photons, also known as blackbody radiation, follow the distribution law established by
Planck in 1900 and 1901 [3,4]. Stochastic Electrodynamics, an approach using classical physics
in  the  presence  of  a  stochastic  electromagnetic  field,  models  zero-point  fluctuations  of  the
electromagnetic  field  as  quantum noise,  introducing a  stochastic  component  to  the  system's
dynamics. These successfully models phenomena like blackbody radiation, harmonic oscillators,
and the Casimir effect, which are due to quantum vacuum fields [5-8]. However, Planck derived
blackbody radiation based on the statistical analysis of oscillators within a blackbody and then
Einstein later modified the Planck formula from Bohr's atomic model, which considers discrete
energies of electrons and the energy of emitted photons determined by the Bohr formula [9]. On
the other hand, the field of Quantum Electrodynamics (QED) suggests that the vacuum state
contains an inherent energy of ½ℏω and linear momentum of ½ℏk for each field mode, where ℏ
represents the reduced Planck's constant, ω is the frequency of the field mode, and k is the wave
vector [10]. This energy is known as zero-point energy. It's important to note that the vacuum
state possesses not only linear momentum and energy but also fluctuating electromagnetic fields
and radiation pressure. These effects can be understood by considering the vibration of electrons
induced by a random field with fluctuating energy per mode [11-15], where the electric and
magnetic fields are considered fluctuating sources of energy. Quantum mechanics, a fundamental
theory  explaining  physical  phenomena  at  atomic  and  subatomic  scales  [16,17],  provides  a
powerful  framework  for  describing  the  behaviour  of  various  physical  systems:  elementary
particles, nuclei, atoms, and radiation. One of its key aspects is the concept of quanta, where
energy is absorbed and released in discrete quantities, and at the atomic and subatomic levels,
matter exhibits wave-like and particle-like properties [18,19].

The  presence  of  temperature  in  the  vacuum  state  further  expands  our  understanding  of  its
properties,  which  depend  on  the  existence  of  matter  and  boundary  conditions.  Temperature
influences the energy of the vacuum fields through the concept of thermal fluctuations. At non-
zero temperatures, the vacuum fields are subject to thermal excitation, causing the energy to
deviate from the zero-point energy. It also affects vacuum energy states differently depending on
the physical system and energy scales involved. Again, the contribution of virtual photons to the
zero-point energy follows Fermi-Dirac statistics, indicating a non-zero temperature associated
with the vacuum state. By introducing parameters in Fermi-Dirac statistics, it becomes possible
to mathematically define the non-zero temperature of the quantum vacuum state [20].  Thus,
Planck's law and Fermi-Dirac statistics provide a rigorous understanding of the interrelationship
between thermal and zero-point energy fluctuations [21,22]. Corrections accounting for vacuum
fluctuations have a quantum nature and arise from the non-zero mean square value of fields in
the vacuum [23]. Thermal fluctuations can modify the energy levels of the vacuum state even at
relatively low temperatures [24]. Excitation of quasiparticles, like phonons or magnons, due to
thermal fluctuations can affect the energy spectrum of the vacuum state in condensed matter
systems. Ultra-cold atomic gases require temperatures on the order of microkelvin or nanokelvin
to induce quantum effects and modify vacuum energy states. High-energy particle physics may
require  temperatures  of  billions  of  Kelvins  or  higher  to  observe  significant  deviations  from
vacuum energy states.  Experimental  verification of the effects  of electromagnetic fluctuating
fields in the vacuum includes phenomena like the Lamb shift and the Casimir effect [25-28]. It
also plays a crucial role in the spontaneous emission of radiation by nuclei, as without them,
nuclei would remain indefinitely in their stable state [29]. 

The relationship between temperature and the energy of vacuum fields is further explored in the
framework of QED and other field theories. Initially, vacuum fluctuations were found to cause
infinite energy shifts for free electrons [30], but the development of QED by Bethe resolved this
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issue by considering the vacuum field fluctuations and explains the Lamb shift in atomic energy
levels [31,32]. In quantum field theories, which serve as framework for particle interactions, the
concept of empty space is replaced by a vacuum state representing the lowest energy density
state  of  quantum fields,  exhibiting zero-point  fluctuations  everywhere,  leading to  significant
vacuum energy density. The energy of the vacuum fields at a given temperature is described
using the formalism of statistical mechanics. This involves calculating the average energy of the
fields over a range of possible configurations, taking into account the temperature-dependent
probabilities of these configurations [4,33-37].

The specific mathematical expressions and calculations depend on the field theory and context.
Ongoing  research  focuses  on  understanding  the  interplay  between  temperature,  zero-point
energy, and thermal fluctuations in the vacuum state. Equations describing the energy density of
the  vacuum state  considering  both  zero-point  energy  and  thermal  fluctuations  are  the  main
objectives of this study. Therefore, this work, considered the intriguing realm of hydrogen-like
atoms with finite-sized nuclei to investigate the influence of both thermal and zero-point energy
of the quantum vacuum on their spectral properties. The aim was to elucidate how the interplay
between these two distinct sources of vacuum energy affects the energy levels of the atomic
systems. Also, considered is the change in lepton energy states as caused by the interaction of the
lepton with the vacuum fields at different temperatures and perturb the lepton interaction by both
finite  temperature  and  vacuum  fields.  Based  on  this  model,  an  effective  nuclear-lepton
interaction that takes into account the effect of the quantum vacuum was derived. It is worth
noting that the precise mathematical expressions and calculations depend on the specific field
theory and the context in which it is applied. To accomplish this, a theoretical framework that
combines  concepts  from quantum electrodynamics,  statistical  mechanics,  and  quantum field
theory  were  employed.  Perturbation  theory,  as  an  approximation  method,  was  applied  to
determine the changes in the energy states of the perturbed leptons. The determination of lepton
interactions at finite temperature poses a fundamental problem in Quantum Field Theory [38].
However, Stochastic Electrodynamics has successfully modelled various phenomena, including
blackbody radiation,  harmonic oscillators,  and the Casimir effect [7,8].  The determination of
potentials at  finite temperature also poses a fundamental problem in Quantum Field Theory,
which is a framework for describing particle interactions and predicts phenomena like zero-point
vacuum fluctuations [33,34].

Contemporary  models  often  overlook  the  impact  of  thermal  effects  on  atomic  systems,
particularly hydrogen-like and muonic atoms with finite-sized nuclei. This study aims to bridge
this  gap by accurately modeling the behavior of these atoms within the context  of  quantum
vacuum interactions, addressing the need for precise spectroscopy and accurate interpretation of
experimental data across a wide temperature spectrum. Thus, the understanding of the interplay
between  the  thermal  and  zero-point  energy  of  the  quantum  vacuum  and  its  influence  on
hydrogen-like atoms with finite-sized nuclei  is  an ongoing area of research that  draws upon
multiple  branches of  physics and continues to  deepen our  understanding of  the fundamental
nature  of  the  universe  [39].  The  work  shed  light  on  the  intricate  interplay  and  reveals  its
consequences for the observed spectral lines of hydrogen-like atoms. Additionally, the study has
potential implications for precision spectroscopy and the interpretation of experimental data, as it
provides a theoretical framework that incorporates the effects of the quantum vacuum. Therefore,
this research will contribute to the advancement of fundamental atomic physics and paves the
way for new avenues of experimental investigation.

29



Bukar et al.- Transactions of NAMP 21, (2025) 27-40
2. Materials and Methods

2.1. The effective interaction

For  a  δr  change  in  lepton  quantum  orbit  due  to  vacuum  fields’  fluctuation,  the  effective
interaction between orbiting lepton and atomic nucleus takes the form

U eff (r , δr )= 1
V ∫U ( r⃗+δ r⃗ )d3 ε (1 )

whereU ( r⃗+δ r⃗ ) is the coulomb interaction which depends on the position  r⃗ of lepton from the
nucleus and the displacement δ r⃗ of lepton from its quantum orbit due to vacuum fields. For the
finite-size nuclear model the coulomb interaction is finite at origin and thus depends on both the
size  of  nucleus  R and  the  distance  r.  Therefore,  using  Taylor’s  series  around  the  average
position δ r⃗, the effective interaction to first order approximation takes the form [40-42]: 

U eff (R ,r , δr )=U (R ,r⃗ )+δ Ĥ eff

where

δ Ĥ eff=
1
6
δ r2∇2U (R ) δij (2)

is  the  perturbation  caused by  vacuum field’s  fluctuation.  Thus,  taking the  Laplacian  of  the
potential for the extended charge distribution [43-49], 

U (R , r )=−Z ke2

R [ 32−12 ( rR )
2] (3)

the relation (2) becomes 

δ Ĥ eff=
Zk e2

6R3
⟨δ r2 ⟩ t (4)

where⟨δ r2 ⟩t is mean square position of an orbiting lepton.

2.2. Mean square fluctuation in thermal bath

Classically, an orbiting lepton of mass ml executes harmonic oscillation induced by a single mode
of the vacuum electromagnetic field ℇ0 given by the equation

mlω
2δ r0=eℇ0

or the amplitude, 

δ r0=
e

mlω
2 ℇ0 (5)

taking the square of (5) gives the mean square amplitude as
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⟨δ r02 ⟩t= e2

2ml
2ω4 ⟨ℇ02 ⟩t (6)

and the zeroth energy level a harmonic oscillator is quantized as 

Eω=
ωℏ
2 (7)

where ħω is the quantum of energy [50-53]. However, the energy of fluctuating electric  ℇ and
magnetic fields H  is given by  

Eω=
1
8 π∫ (ℇ2+H 2 )dω=

ℇ0
2

4 π
Ω (8)

where for a set of plane waves, ⟨ ℇ2 ⟩t=⟨ H2 ⟩t[54]. By comparing (7) and (8), the fluctuating fields
take the value:

ℇ0
2=2π

Ω
ωℏ (9)

Now using (9), the mean square oscillation (6) becomes

⟨δ r02 ⟩= π
Ω

ħe2

ml
2ω3 (10)

The mean square fluctuation is the result of non-coherent action of all components of the field,
thus,

⟨δ r⃗2 ⟩t=∫ ⟨δ r 02 ⟩t ρT (ω )dω (11 )

where ρT (ω ), is the spectral density of the thermal radiation and is given by [55]: 

ρT (ω )= ℏω3

2π2 c3 ( 1
e ωβℏ −1 ) (12)

Therefore, 

ρT (ω )dω= ℏω2

π2 c3
(e ωβℏ −1 )−1dω (13)

where ω is the angular frequency, β=kBT , T is temperature and kB = 1.380662(44) × 10-23J/K is
the Boltzmann constant [24,56]. Now using (13) and (12), the full mean square fluctuation in
thermal vacuum fields takes the form:

⟨δ r⃗2 ⟩t=( e2m2 )( ℏ
π c3 )∫ω0

∞

(e ωβℏ −1 )−1 dω
ω
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¿( e
2

m2 )( ℏ
π c3 )[ ln(ω2ω1 )−ℏ (ω2−ω1 )β ] (14 )

with

ω1=ξ|E1|=ξ (Zα )2
ml c

2

2

and

ω2=ml c
2

where α = ke2/ћc is the fine structure constant and +Ze is the nuclear charge [57-59]. Now, the
perturbation (4) reads

δ Ĥ eff=
Zk e4ℏ

6 R3π ml
2 c3 {ln [ 2

ξ (Zα )2 ]− βℏ ml c
2[1− ξ (Zα )2

2 ]} (15)

The value of  the perturbation (15)  is  very small  compared to  Z/r lepton-nuclear interaction;
therefore, an approximate solution can be sought using perturbation theory.

2.3. Approximate solution of the energy shifts due to thermal contribution

The addition of the small perturbation term given in (15) to Z/r nuclear-lepton interaction gives
the Hamiltonian of the form, 

Ĥ pert .=Ĥ 0+λδ Ĥ eff

where

Ĥ 0=
−ℏ2

2ml
∇2−Zk e2

r

The Schrödinger equation can be written in terms of a new Hamiltonian as

Ĥ pert .ψn
' =Ên

' ψn
' (16)

with solution 

Ên
' ( λ )=∑

n=0

∞

λn Ên
(N )=Ên

(0 )+ λ Ên
(1 )+λ2 Ên

(2)+… (17 )

Or 

Ên
' ( λ )=⟨ψn|Ĥ 0|ψn ⟩+ λ ⟨ψn|δ Ĥ eff|ψn ⟩ +λ2∑

m≠n

|⟨ψn|δ Ĥ eff|ψm ⟩|2

Ên−Êm

+O (λ3 ) (18 )
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whereÊn
(0) is the 0th order correction to the nth eigenvalue, and ψn is the 0th order correction to the

nth  eigen functions;  Ên
(1) is the first order corrections;  Ên

(2) is the second order corrections  λ is
taken to be dimensionless small number, λ  ≪ 1 and  O (λ3 )is the Landau symbol [60-63]. The
second and higher order corrections to lepton energy states are always insignificant and mostly
ignored even for muonic atoms. Thus, this study considered applying the first order correction to
obtain  the  isotope  shifts  caused  by  the  effects  of  fluctuating  vacuum fields.  The  first-order
perturbation theory is the most important equation in quantum mechanics for determining  the
small changes due to vacuum fields’ effects and is given by: 

Ênlm
(1) =∫ψnlm

¿ δ Ĥ eff ψnlmdτ (19 )

where  the  ψnlm is  the  unperturbed  normalized  wave  function,  and  the  intensity  of  the
wavefunction corresponding to s states is given by [57-58;64]: 

|ψn00|
2={ Z3

π n3a0
3 ; l=0 ,m=0

¿0 l ≥1
(20)

where a0 = ћ2/kme2, is the Bohr radius. The shift in n00 energy states are determined using (19)
as, 

ΔEn00
(1) = 4 π Zk e4ℏ

6R3πm2c3 {ln [ 2
ξ (Zα )2 ]− βℏ ml c

2[1− ξ (Zα )2

2 ]}∫0
R

|ψn00|
2r2dr

¿ 4
9π

|En|
n

(Zα )2 {ln [ 2
ξ (Zα )2 ]− βℏ ml c

2 [1− ξ (Zα )2

2 ]}             (21)

Thus,

ΔEn00
(1) =δ En+δ ET (22)

where

δ En=
4
9π

|En|
n

(Zα )2 ln [ 1
9 (Zα )2 ] (23)

and the thermal contribution,

δ ET=
4 β ℏml c

2

9π k BT
|En|
n

(Zα )2[1− ξ (Zα )2

2 ] (24)

It can readily be observed that at zero-point temperature (T = 0), the contribution, δ En vanishes.
The analyses of equation (23) have been done by many authors (see for example, [31, 42, 62, 65-
68]). However, the results obtained from equation (22) as in most articles can only be true at
zero-point temperature. To justify for the thermal contribution to vacuum fields’ effects, equation
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(24) is used to compute the thermal contribution to the energy level shifts of electron and muonic
hydrogen-like atoms at different temperature, due to fluctuating vacuum fields and the results are
presented on Table 1 to Table 6.

3. Results

Tables (1 to 6) present the computed thermal contribution to the vacuum fields' effect using
equation (23). These tables display the results for the thermal contribution at various energy
states of hydrogen-like electron and muon atoms. The calculations were performed considering
three different temperatures: cosmological temperature (T = 2.7 K), room temperature (T = 300
K), and a temperature shortly after the Big Bang (T = 1010K). The tables provide insights into the
impact of thermal fluctuations on the vacuum field effect for these atomic systems at different
temperature regimes.

Table 1: The Thermal Contribution, log 𝛿ℰ𝑇 for hydrogen-like atoms at a minute after the big bang (T =
1010K)

Quantum
Number, n

Thermal Contribution, log 𝛿ℰ𝑇 (eV)
1H1

6Li3 21Na11
39K19

85Rb37
137Sc55

223Fr87

1 -19.7290 -16.8662 -13.4806 -12.0564 -10.3198 -9.2868 -8.0918
2 -20.6321 -17.7693 -14.3837 -12.9595 -11.2228 -10.1899 -8.9949
3 -21.1603 -18.2976 -14.9120 -13.4878 -11.7511 -10.7181 -9.5232
4 -21.5351 -18.6724 -15.2868 -13.8626 -12.1259 -11.0930 -9.8980
5 -21.8259 -18.9631 -15.5775 -14.1533 -12.4167 -11.3837 -10.1888
6 -22.0634 -19.2007 -15.8151 -14.3909 -12.6542 -11.6212 -10.4263
7 -22.2643 -19.4015 -16.0159 -14.5917 -12.8550 -11.8221 -10.6271
8 -22.4382 -19.5755 -16.1899 -14.7657 -13.0290 -11.9961 -10.8011
9 -22.5917 -19.7290 -16.3433 -14.9192 -13.1825 -12.1495 -10.9546
10 -22.7290 -19.8662 -16.4806 -15.0564 -13.3198 -12.2868 -11.0918
11 -22.8531 -19.9904 -16.6048 -15.1806 -13.4439 -12.4110 -11.2160
12 -22.9665 -20.1038 -16.7181 -15.2940 -13.5573 -12.5243 -11.3294
13 -23.0708 -20.2081 -16.8224 -15.3983 -13.6616 -12.6286 -11.4337
14 -23.1673 -20.3046 -16.9190 -15.4948 -13.7581 -12.7252 -11.5302
15 -23.2572 -20.3945 -17.0089 -15.5847 -13.8480 -12.8151 -11.6201

Table 2: The Thermal Contribution, log 𝛿ℰ𝑇 for muonic hydrogen-like atoms at a minute after the big
bang (T = 1010K)

Quantum
Number, n

Thermal Contribution, log 𝛿ℰ𝑇 (eV)
1H1

6Li3 21Na11
39K19

85Rb37
137Sc55

223Fr87

1 -15.0970 -12.2343 -8.8487 -7.4245 -5.6878 -4.6548 -3.4599
2 -16.0001 -13.1374 -9.7518 -8.3276 -6.5909 -5.5579 -4.3630
3 -16.5284 -13.6657 -10.2800 -8.8559 -7.1192 -6.0862 -4.8913
4 -16.9032 -14.0405 -10.6548 -9.2307 -7.4940 -6.4610 -5.2661
5 -17.1939 -14.3312 -10.9456 -9.5214 -7.7847 -6.7518 -5.5568
6 -17.4315 -14.5687 -11.1831 -9.7590 -8.0223 -6.9893 -5.7944
7 -17.6323 -14.7696 -11.3840 -9.9598 -8.2231 -7.1901 -5.9952
8 -17.8063 -14.9436 -11.5579 -10.1338 -8.3971 -7.3641 -6.1692
9 -17.9597 -15.0970 -11.7114 -10.2872 -8.5505 -7.5176 -6.3226
10 -18.0970 -15.2343 -11.8487 -10.4245 -8.6878 -7.6548 -6.4599
11 -18.2212 -15.3585 -11.9728 -10.5487 -8.8120 -7.7790 -6.5841
12 -18.3346 -15.4718 -12.0862 -10.6620 -8.9254 -7.8924 -6.6974
13 -18.4388 -15.5761 -12.1905 -10.7663 -9.0296 -7.9967 -6.8017
14 -18.5354 -15.6727 -12.2870 -10.8629 -9.1262 -8.0932 -6.8983
15 -18.6253 -15.7626 -12.3769 -10.9528 -9.2161 -8.1831 -6.9882
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Table 3: The Thermal Contribution, log 𝛿ℰ𝑇 for hydrogen-like atoms at room temperature (T = 300

K)
Quantum

Number, n
Thermal Contribution, log 𝛿ℰ𝑇 (eV)

1H1
6Li3 21Na11

39K19
85Rb37

137Sc55
223Fr87

1 -13.2061 -10.3434 -6.9577 -5.5336 -3.7969 -2.7639 -1.5690
2 -14.1092 -11.2464 -7.8608 -6.4367 -4.7000 -3.6670 -2.4721
3 -14.6374 -11.7747 -8.3891 -6.9649 -5.2282 -4.1953 -3.0003
4 -15.0123 -12.1495 -8.7639 -7.3397 -5.6031 -4.5701 -3.3751
5 -15.3030 -12.4403 -9.0546 -7.6305 -5.8938 -4.8608 -3.6659
6 -15.5405 -12.6778 -9.2922 -7.8680 -6.1313 -5.0984 -3.9034
7 -15.7414 -12.8786 -9.4930 -8.0689 -6.3322 -5.2992 -4.1043
8 -15.9154 -13.0526 -9.6670 -8.2428 -6.5061 -5.4732 -4.2782
9 -16.0688 -13.2061 -9.8205 -8.3963 -6.6596 -5.6266 -4.4317
10 -16.2061 -13.3434 -9.9577 -8.5336 -6.7969 -5.7639 -4.5690
11 -16.3303 -13.4675 -10.0819 -8.6577 -6.9210 -5.8881 -4.6931
12 -16.4436 -13.5809 -10.1953 -8.7711 -7.0344 -6.0014 -4.8065
13 -16.5479 -13.6852 -10.2996 -8.8754 -7.1387 -6.1057 -4.9108
14 -16.6445 -13.7817 -10.3961 -8.9719 -7.2353 -6.2023 -5.0074
15 -16.7344 -13.8716 -10.4860 -9.0618 -7.3251 -6.2922 -5.0972

Table 4: The Thermal Contribution, log 𝛿ℰ𝑇 for muonic hydrogen-like atoms at room temperature (T =
300 K)

Quantum
Number, n

Thermal Contribution, log 𝛿ℰ𝑇 (eV)
1H1

6Li3 21Na11
39K19

85Rb37
137Sc55

223Fr87

1 -19.7290 -16.8662 -13.4806 -12.0564 -10.3198 -9.2868 -8.0918
2 -20.6321 -17.7693 -14.3837 -12.9595 -11.2228 -10.1899 -8.9949
3 -21.1603 -18.2976 -14.9120 -13.4878 -11.7511 -10.7181 -9.5232
4 -21.5351 -18.6724 -15.2868 -13.8626 -12.1259 -11.0930 -9.8980
5 -21.8259 -18.9631 -15.5775 -14.1533 -12.4167 -11.3837 -10.1888
6 -22.0634 -19.2007 -15.8151 -14.3909 -12.6542 -11.6212 -10.4263
7 -22.2643 -19.4015 -16.0159 -14.5917 -12.8550 -11.8221 -10.6271
8 -22.4382 -19.5755 -16.1899 -14.7657 -13.0290 -11.9961 -10.8011
9 -22.5917 -19.7290 -16.3433 -14.9192 -13.1825 -12.1495 -10.9546

10 -22.7290 -19.8662 -16.4806 -15.0564 -13.3198 -12.2868 -11.0918
11 -22.8531 -19.9904 -16.6048 -15.1806 -13.4439 -12.4110 -11.2160
12 -22.9665 -20.1038 -16.7181 -15.2940 -13.5573 -12.5243 -11.3294
13 -23.0708 -20.2081 -16.8224 -15.3983 -13.6616 -12.6286 -11.4337
14 -23.1673 -20.3046 -16.9190 -15.4948 -13.7581 -12.7252 -11.5302
15 -23.2572 -20.3945 -17.0089 -15.5847 -13.8480 -12.8151 -11.6201

Table 5: The Thermal Contribution, 𝛿ℰ𝑇 for hydrogen-like atoms at cosmological temperature (T = 2.7
K)

Quantum
Number, n

Thermal Contribution, log 𝛿ℰ𝑇 (eV)
1H1

6Li3 21Na11
39K19

85Rb37
137Sc55

223Fr87

1 -11.1603 -8.2976 -4.912 -3.4878 -1.7511 -0.7181 0.4768
2 -12.0634 -9.2007 -5.8151 -4.3909 -2.6542 -1.6212 -0.4263
3 -12.5917 -9.729 -6.3433 -4.9192 -3.1825 -2.1495 -0.9546
4 -12.9665 -10.1038 -6.7181 -5.294 -3.5573 -2.5243 -1.3294
5 -13.2572 -10.3945 -7.0089 -5.5847 -3.848 -2.8151 -1.6201
6 -13.4948 -10.6321 -7.2464 -5.8223 -4.0856 -3.0526 -1.8577
7 -13.6956 -10.8329 -7.4473 -6.0231 -4.2864 -3.2534 -2.0585
8 -13.8696 -11.0069 -7.6212 -6.1971 -4.4604 -3.4274 -2.2325
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9 -14.0231 -11.1603 -7.7747 -6.3505 -4.6138 -3.5809 -2.3859
10 -14.1603 -11.2976 -7.912 -6.4878 -4.7511 -3.7181 -2.5232
11 -14.2845 -11.4218 -8.0361 -6.612 -4.8753 -3.8423 -2.6474
12 -14.3979 -11.5351 -8.1495 -6.7253 -4.9887 -3.9557 -2.7608
13 -14.5022 -11.6394 -8.2538 -6.8296 -5.0929 -4.06 -2.865
14 -14.5987 -11.736 -8.3504 -6.9262 -5.1895 -4.1565 -2.9616
15 -14.6886 -11.8259 -8.4402 -7.0161 -5.2794 -4.2464 -3.0515

Table 6: The Thermal Contribution, 𝛿ℰ𝑇 for muonic hydrogen-like atoms at cosmological temperature
(T = 2.7 K)

Quantum
Number, n

Thermal Contribution, log 𝛿ℰ𝑇 (eV)
1H1

6Li3 21Na11
39K19

85Rb37
137Sc55

223Fr87

1 -6.5284 -3.6657 -0.2800 1.1441 2.8808 3.9138 5.1087
2 -7.4315 -4.5687 -1.1831 0.2410 1.9777 3.0107 4.2056
3 -7.9597 -5.0970 -1.7114 -0.2872 1.4495 2.4824 3.6774
4 -8.3346 -5.4718 -2.0862 -0.6620 1.0746 2.1076 3.3026
5 -8.6253 -5.7626 -2.3769 -0.9528 0.7839 1.8169 3.0118
6 -8.8628 -6.0001 -2.6145 -1.1903 0.5464 1.5793 2.7743
7 -9.0637 -6.2010 -2.8153 -1.3912 0.3455 1.3785 2.5734
8 -9.2377 -6.3749 -2.9893 -1.5651 0.1716 1.2045 2.3995
9 -9.3911 -6.5284 -3.1428 -1.7186 0.0181 1.0511 2.2460
10 -9.5284 -6.6657 -3.2800 -1.8559 -0.1192 0.9138 2.1087
11 -9.6526 -6.7898 -3.4042 -1.9800 -0.2434 0.7896 1.9846
12 -9.7659 -6.9032 -3.5176 -2.0934 -0.3567 0.6762 1.8712
13 -9.8702 -7.0075 -3.6219 -2.1977 -0.4610 0.5720 1.7669
14 -9.9668 -7.1040 -3.7184 -2.2942 -0.5576 0.4754 1.6703
15 -10.0567 -7.1939 -3.8083 -2.3841 -0.6474 0.3855 1.5805
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Figure 1: The Thermal Contribution, log 𝛿ℰ𝑇 for hydrogen-like and muonic hydrogen-like atoms at a
minute after the big bang (T = 1010K)
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Figure 2: The Thermal Contribution, log 𝛿ℰ𝑇 for hydrogen-like and muonic hydrogen-like atoms at

room temperature (T = 300 K)
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Figure 3:The Thermal Contribution, 𝛿ℰ𝑇 for hydrogen-like and muonic hydrogen-like atoms at
cosmological temperature (T = 2.7 K)

Discussion 
From Table 1 to Table 6, it is evident that both the quantum number, n, and the nuclear charge,
Z, play significant roles in determining the vacuum field effect and thermal effects. Due to its
heavier mass and closer proximity to the nucleus, the muon experiences thermal and vacuum
field  effects  more  prominently  than  the  electron.  The  influence  of  temperature  changes  on
orbiting leptons under the influence of vacuum fields can be vividly seen in all the calculated
values  in  the  tables,  highlighting  the  dependence  of  the  fluctuating  vacuum  fields  on
temperature.  The thermal contribution to the vacuum field effect increases significantly with
nuclear (proton) charge. For instance, while the thermal contribution for different quantum states
of the lightest  nuclide (hydrogen atom) is very small  (~10-24 to 10-9eV),  there are substantial
differences of about an order of 106 observed between different states of the lightest and heaviest
nuclide (francium atom).  To aid in  visualizing the thermal  contribution to  the vacuum field
effects  for various nuclides,  Figure 1 is  plotted.  The figure illustrates that hydrogen has the
lowest thermal contribution, while the difference in thermal contribution between lithium and
sodium nuclides is significant compared to other nuclides. The francium nuclide experiences the
greatest thermal and vacuum fields' effect. 
The exploration of temperature dependence in thermal and zero-point energy effects on atomic
spectra  across  a  wider  temperature  range  presents  an  exciting  opportunity  to  gain  a
comprehensive  understanding  of  their  interplay  and  discover  new phenomena.  Additionally,
delving  into  the  implications  of  vacuum  fields  and  thermal  contributions  in  cosmological
contexts has the potential to deepen our comprehension of early universe dynamics, structure
formation, and cosmological observables, bridging the gap between quantum field theory and
cosmology. Consequently, this research has far-reaching implications, extending to theoretical
frameworks,  experimental  techniques,  and  practical  applications  in  various  fields,  including
fundamental physics, cosmology, and quantum technologies.

Conclusion
This  study  explores  the  complex  interplay  between  thermal  and  zero-point  energy  of  the
quantum vacuum and its effects on the spectra of hydrogen-like atoms with finite-sized nuclei
and  muonic  atoms.  By  employing  a  theoretical  framework  that  combines  quantum
electrodynamics, statistical mechanics, and quantum field theory, the modified energy levels of
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these atomic systems are calculated. The analysis reveals that the quantum number and nuclear
charge play significant roles in influencing the vacuum field effects and thermal effects. The
muon experiences greater thermal and vacuum field effects due to its heavier mass and proximity
to the nucleus compared to the electron. Moreover, temperature plays a crucial role in affecting
the fluctuating vacuum fields and the behaviour of the orbiting particles. The study emphasizes
the necessity to consider the thermal contribution in calculations related to the quantum vacuum
and  highlights  how  differences  in  nuclear  size  can  enhance  the  accuracy  of  muonic  atom
experiments. Furthermore, intriguing connections between black holes and hydrogen atoms are
discovered, offering exciting prospects for further exploration of fundamental phenomena. The
findings have far-reaching implications and provide valuable insights for precision spectroscopy,
experimental  atomic  physics,  and the  broader  field of  quantum field theory.  The theoretical
framework proposed in this research opens up new avenues for experimental investigation in
various  scientific  disciplines  and  enhances  our  understanding  of  fundamental  physics.  By
shedding light on the intricate nature of the vacuum and its impact on atomic systems, this study
contributes to advancing our knowledge in this field and paves the way for future breakthroughs
in theoretical and experimental physics.
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