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ABSTRACT
This work presents the mathematical model of the transmission dynamics
of  HIV/AIDS  infection  with  the  circumcision  of  the  susceptible  and
infected population.  It describes the interaction between the susceptible,
the infected and removed population which results in a system of ordinary
differential  equation  The  control u1 (t ) u2 ( t ),  u3 ( t )  representing   the
efficiency  of   circumcised/prevention  devices,  efficiency  of  the  vaccine
therapy in preventing HIV infection,  the efficiency of drug in inhibiting
the virus strain   and effort on infected human that are circumcised and
those  that  are  not  circumcised  to  increase  the  number  of  removed
individuals  respectively,  were  introduced,  resulting  in  a  system  of
differential  equation  with  optimal  control  The  control  efforts  for  the
reduction  of  transmission  dynamics  of  the  infection  were  established
using Pontryagin’s Maximum Principle and optimality condition.

1. Introduction 
Basically, male circumcision is the surgical removal of all or parts of the foreskin of the male
reproductive organ. It can be practiced as part of a religious inclination, medical procedure or
traditional /cultural ritual performed as an initiation into manhood.
Since  1980s  over  thirty  (30)  observational  studies  suggest  a  protective  effect  of  male
circumcision  on  HIV acquisition  in  heterosexual  men  [1].  The  primary  purpose  of  optimal
control in mathematical modelling of HIV transmission is to impose a control on the various
levels of circumcision administered to the different set of individuals in the population. It is also
meant to project population level outcome from individual level inputs [1]. 
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There are many possible outcomes that can be examined with a model, for example the incidence
of  infection,  the  prevalence  of  infection  of  the.  The  most  basic  outcome,  however  is  the
likelihood of the epidemic occurring. That is, whether there is sufficient transmission potential
for a chain of epidemic to be sustained.

For complex epidemic like HIV/AIDS there is no established medical cure, it is discovered that
HIV/AIDS may be eradicated provided that the net transmission rate of the infected individual is
sufficiently reduced [1,4,5,6,11,16]. 

Male circumcision has recently been shown to reduce annual susceptibility of infection with HIV
by approximately 60% [Joint United Nations Programme on HIV/AIDS (2007), [2,7,8].

According to [3,4,5.6.7,8], over 11 million voluntary medical male circumcisions (VMMC) have
been performed of  the projected 20.3 million needed to reach 80% adult  male circumcision
prevalence  in  priority  sub-Saharan  African  countries.  Striking  numbers  of  adolescent  males,
outside the 15-49-year-old age target, have been accessing VMMC services. They indicate that
mathematical  modeling  can  provide  further  insights  on  how  to  efficiently  reach  the  male
circumcision coverage levels needed to create and sustain further reductions in HIV incidence to
make  AIDS  no  longer  a  public  health  threat  by  2030.  They  also  considered  the  ease  of
implementation and cultural acceptability that decision makers may also value the estimates that
mathematical  models  can  generate  the  impact,  cost-effectiveness,  and  magnitude  of  impact
resulting from different policy choices. This supplement presents the results of mathematical
modeling using the Decision Makers’ Program Planning Tool Version 2.0 (DMPPT 2.0), the
Actuarial  Society  of  South  Africa  (ASSA2008)  model,  and the  age  structured  mathematical
(ASM) model. These models are helping countries examine the potential effects on program
impact and cost-effectiveness of prioritizing specific subpopulation. The modeling also examines
long-term sustainability strategies, such as adolescent and/or early infant male circumcision, to
preserve  VMMC  coverage  gains  achieved  during  rapid  scale-up.  The  2016–2021  UNAIDS
strategy target for VMMC is an additional 27 million VMMC in high HIV-prevalence settings by
2020, as part of access to integrated sexual and reproductive health services for men. To achieve
further scale-up, a combination of evidence, analysis, and impact estimates can usefully guide
strategic  planning and funding of VMMC services  and related demand-creation strategies  in
priority countries.

Public health challenges have been mitigated by mathematicians and epidemiologist through the
use Mathematical models in studying, understanding, describing and analysing the dynamics of
epidemic  outbreak  with  the  aim  of  preferring  solutions  to  real  life  problems  [7,
8,19,20,21,22,23,24,25,26,27,28,29,30]

Male  circumcision  has  been  proven  to  be  effective  in  enhancing  reduction  in  HIV/AIDS
transmission in the population. [3,7]. Optimal control strategy is an established veritable tool for
optimizing efforts in the reduction of disease transmission in epidemiology [10, 12, 13,15,21, 27]
In the most  recent  research in  this  area,  the researchers  did not  incorporate  optimal  control
strategy in the work. .In this work, we seek to formulate and analyse the optimal control for the
mathematical  model  of  male  circumcision in  HIV/AIDS preventions  resulting in  differential
equations  which  investigate  efficiency  of  circumcised/prevention  devices,  efficiency  of  the
vaccine therapy in preventing HIV infection, the efficiency of drug in inhibiting the virus strain
and effort on infected human that are circumcised and those that are not circumcised to increase
the number of removed individuals. 
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The motivation behind the introduction of an optimal condition in this work is to achieve the
most effective balance between maximizing the health benefits and minimizing potential risks,
costs, and unintended consequences.

 Assumptions and Parameters

1.1 Assumptions

1. We  assume  that  there  is  a  proportionate  recruitment  rate  of  individuals  into  the
heterosexual population.

2. There  is  proportionate  rate  of  circumcision  of  both  the  susceptible  and  infected
individuals.

1.2 PARAMETERS

Sc ( t )= Number of susceptible individuals that are circumcised at time t ,t>0

Snc ( t )= Number of susceptible individuals that are not circumcised at time t ,t>0

S ( t )=Sc ( t )+Snc ( t )=  Susceptible population at time t ,t>0

I c ( t )= Number of infected  individuals that are circumcised at time t ,t>0

I nc ( t )= Number of infected  individuals that are not circumcised at time t ,t>0

I (t )=I c (t )+ I nc (t )=  infected population at time t ,t>0

What is R ( t )?

N=S ( t )+ I ( t )=Sc ( t )+Snc ( t )+ I c ( t )+ I nc (t )= total population under the

b  = Recruitment rate into the population

µ  = Natural death rate of the population

V c=¿    Death rate of circumcised infected individuals

V nc=¿    Death rate of uncircumcised infected individuals

σ=Therate at whichsusceptible indiduals are beingcircumcised

ρ=Therate at which infected individualsare being circumcised .

β=The probability of transmissionby individuals∈class I nc

α=The probability of transmissionby individuals∈class I c

c=Average number of contact∨partners per unit time

cβ∧cα are net transmissionof individuals∈class I nc∧I c respectively

2.0 The Model  
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The  combination  of  the  above  assumptions  and  parameters  result  in  the  following  model
equation for male circumcision in HIV/AIDS preventions.

d Sc ( t )
dt

=σ Snc ( t )−B (t )Sc ( t )−μ Sc (t )…………………..…2.1

d Snc ( t )
dt

=bN−B (t )Snc (t )−σ Snc (t )−μ Snc ( t )………….2.2

d I c ( t )
dt

=B ( t )Sc ( t )−(μ+vc ) Ic+σ I nc ( t )……………….2.3

d I nc ( t )
dt

=B ( t )Snc (t )−(μ+vnc ) I nc−σ I nc (t )…………….2.4

d R (t )
dt

=vc I c+vnc I nc−μR (t )………………………………..2.5

Where  

B (t )=
cβ I nc ( t )+cα Ic (t )

N
=incidence rate of infection

3.0  FORMULATION OF THE OPTIMAL CONTROL PROBLEM FOR MODEL OF
MALE CIRCUMCISION IN HIV/AIDS PREVENTIONS

Given the initial population size  Sc (0 ) , Snc (0 ) , , I c (0 ) , I nc (0 ) , R (0 )of all the five classes of model
(2.1) – (2.5), the aim of this section is to find the best control strategy that would minimize the
number of individuals that die as a result of the disease, at the same time minimizing the cost of
the strategy. 
Introducing  the  controls  strategies  u1 (t ) u2 (t ) and   u3 ( t )   representing   the  efficiency  of
circumcised/prevention devices, efficiency of the vaccine therapy in preventing HIV infection,
the efficiency of  drug in  inhibiting the  virus  strain   and effort  on infected human that  are
circumcised and those that are not circumcised to increase the number of removed individuals
respectively,  the model (2.1) – (2.5) becomes Eq. (3.1) – (3.5)
u1 (t )is defined to be the prevention/isolation control, minimizing the contact among the healthy
and infected individuals. u2 ( t ), is the vaccination control, it represents the effort on the possible
vaccination of all the individuals in order to reduce the further spread of HIV, thereby reducing
the infection in the system. The control  u3 represents the treatment effort on the  I c .−¿ Number
of infected  individuals that  are  circumcised at  time  t ,t>0 and  I nc ( t )= Number of infected
individuals that are not circumcised at time t ,t>0. r1 , r2 , represent the rate of treatment of I c .−¿

Number of infected  individuals that are circumcised at time t , and I nc (t )= Number of infected
individuals that are not circumcised respectively. 

The above illustrations and parameters leads to the following optimal control problem for male 
circumcision in HIV/AIDS prevention
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d Sc (t )
dt

=σ Snc (t )(1−u2)−B ( t )Sc (t )(1−u1)−μ Sc ( t )………………3.1

d Snc (t )
dt

=bN−B (t )Snc (t )−σ Snc (t )(1−u2)−μ Snc (t )……………...3.2

d I c ( t )
dt

=B ( t )Sc ( t )(1−u1)−(μ+vc ) r1 I c (1−u3)+σ I nc ( t )………..3.3

d I nc ( t )
dt

=B ( t )Snc (t )−(μ+vnc ) I nc r2(1−u3)−σ I nc (t )………………3.4

d R (t )
dt

=vc I c r1 (1−u3 )+vnc Inc r2(1−u3)−μR ( t )…………………….....3.5

The control functions  u1 (t ) u2 ( t ) and  u3 ( t ),  are bounded lebesgue integrable functions. 
The control u1 ( t ) is the time  dependent effort on prevention/isolation control on the circumcised,
minimizing  the  contact  among  the  healthy  and  infected  individuals., practiced  on  the  time
interval [0 ,t ¿¿ f ]¿ to reduce the number of individuals  that may become fully infected.
The control  u2 ( t ) is the time dependent effort on  the efficiency of the vaccine therapy on the
non-circumcised  individuals  in  preventing  new  HIV/AIDS, practiced  on  the  time  interval
[0 ,t ¿¿ f ]¿ to reduce the number of individuals  that may become fully infected
The control  u3 ( t ) is the time dependent effort on  the treatment effort on the  actively infected
individuals  (  I c . I nc), practiced  on  the  time  interval  [0 ,t ¿¿ f ]¿ to  increase  the  number  of
removed individuals

The  optimal control problem in this work,  involves that in which the number of  circumcised
and  non-circumcised  susceptible  individuals,  active  HIV/AIDS   infections  and  the  cost  of
treatment  controls  u1 (t ) u2 ( t ),  u3 ( t ),  ,  are  minimized  subject  to  the  differential  Equations
(3.1 )− (3.5 ).  This  involves  the  number  of  individuals  with  circumcised  and  non-circumcised
HIV/AIDS infection respectively as well as the cost of carrying out circumcision exercise and
vaccine therapy in preventing new HIV/AIDS, the efficiency of drug in inhibiting the virus strain
and effort on infected human to increase the number of removed individuals.
The objective functional is defined as 

J=∫
0

tf

{A1 I c+A2 I nc+
A3
2

u1
2+

A4
2

u2
2+

A5
2

u3
2 }dt………………. (3.6 )  

Where t f  is the final time and the coefficient A1>0 , A2>0 , A3>0 , A4>0 , A5>0 ,are the balancing
cost factors.  

We seek to minimize the objective functional 

J=∫
0

tf

{A1 I c+A2 I nc+
A3
2

u1
2+

A4
2

u2
2+

A5
2

u3
2 }dt  

Subject to the optimal control system (3.1) – (3.5)
Hence minimizing the  number of  infected  individuals  but  keeping the  cost  of  circumcision,
treatment/drugs low. That is, to find the optimal control u1

0 , u2
0 ,u3

0 , such that  J (u10 , u20 , u30 )=Min¿
u2 (t ), u3 ( t ) ¿ /u1 ( t ) , u2 (t ), u3 ( t )ϵ Ω ¿
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Where Ω={¿ u2 ( t ), u3 ( t )  ¿ /u1 ( t ) u2 (t ), u3 ( t ) aremeasurable }
a i<u1 ( t ) u2 (t ), u3 (t ) ¿bi , i=1,2,3 t ϵ [0 , t f ] is the control set. Also   a i .∧bi are constant∈[0 ,1]
We use the quadratic control functions in this problem because the controls cost of intervention
is nonlinear. It means that there is
no linear relationship among the cost of intervention among infected individuals and the cost of
intervention.

3.5 Characterization of an Optimal Control
We shall apply the Pontryagin’s Maximum Principle [9,10,12,13,14,17,18,19], to convert the
system (3.1) – (3.5) and (3.6) to a problem of minimizing a pointwise  Hamiltonian functional
with respect to the controls ui . And also establish necessary conditions for the optimal control of
the system.
We take  λk , ∀k=Sc , Snc I c , I nc , R to  be the adjoint  variable  associated with the state  variable
Sc , Snc Ic , I nc , R.  
Theorem 3.3: Given  the optimal control  u j

0 and solutions   Sc
0 , Snc

0 , I c
0 , I nc

0 , ,R0 of the control

system (3.1) – (3.5) that minimizes J
(u j
0 )
Ω

. Then there exist adjoint variables λk satisfying  

∂ λk
∂ t

=−∂ H
∂i

…………… ..(3.7)

With transversality conditions
 λk (t f )=0 ,where k=Sc , Snc I c , I nc , R….(3.8)
The optimality condition is given by 
∂H
∂u j

=0 ,∀ j=1 ,2,3(3.9)

With controls u1
0=min {1 ,max [0 , B Sc

0 {λ3¿−λ1
¿ }

A3 ]}
u2
0=min {1 ,max [0 , σ Snc

0 {λ1¿−λ2
¿ }

A4 ]}
u3
0=min ¿

PROOF:

Since we have five state variables,Sc , Snc Ic , I nc ,R, we shall have five corresponding adjoint 
variables  λ1, λ2 , λ3 , λ4 , λ5. Then we obtain the Hamiltonian functional:

H=A1 I c+A2 I nc+
A3
2
u1
2+

A4
2

u2
2+

A5
2

u3
2+λ1 {σ Snc ( t )(1−u2)−B ( t )Sc (t )(1−u1)−μSc (t ) }+ λ2 {bN−B ( t )Snc (t )−σ Snc (t ) (1−u2 )−μ Snc (t ) }+ λ3 {B ( t )Sc ( t )(1−u1)−(μ+vc ) r1 I c (1−u3)+σ I nc (t ) }+ λ4 {B (t )Snc ( t )−(μ+vnc ) Inc r2(1−u3)−σ I nc (t ) }+λ5 {vc I cr 1 (1−u3 )+vnc I nc r2(1−u3)−μR (t ) }

The system of adjoint equation is obtained by taking the appropriate partial derivative of H with 
respect to the respective state variables.

∂ λS c

∂ t
=
∂ λ1
∂ t

=−∂ H
∂Sc

=λ1 {B ( t ) (1−u1 )+μ }− λ3B ( t ) (1−u1 )

λSc
(t f )=0
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∂ λS nc

∂ t
=
∂ λ2
∂ t

=−∂ H
∂Snc

=−λ1σ (1−u2 )−λ2 {−B ( t )−σ (1−u2 )−μ }−λ4B ( t )

λSnc
( tf )=0

∂ λ Ic

∂ t
=−∂ H

∂ I c
=−A1+λ3 (μ+vc ) r1 (1−u3 )− λ5vc r1 (1−u3 )

λ I c (t f )=0

∂ λ Inc

∂ t
=−∂ H

∂I nc
=−A2− λ2σ+λ4 {(μ+vnc ) r2 (1−u3 )−σ }−λ5 vnc r2(1−u3)

λ Inc ( t f )=0
∂ λR

∂t
=−∂H

∂ R
= λ5μ

                                                                        λ IR (t f )=0 
The optimal control u1

0 , u2
0 ,u3

0  can be solved from optimality conditions
∂H
∂u1

=A3u1+ λ1B (t )Sc (t )−λ3B (t )Sc (t )=0

A3u1+λ1B (t )Sc (t )−λ3B (t )Sc (t )=0 

u1
0=

BSc
0 {λ3¿−λ1

¿ }
A3

∂H
∂u2

=A4u2−λ1σ Snc ( t )+λ2σ Snc (t )=0

A4u2−λ1σ Snc (t )+λ2σ Snc ( t )=0

u2
0=

σ Snc
0 {λ1¿−λ2

¿ }
A4

∂H
∂u3

=A5u3+ λ3 (μ+vc ) r1 I c+λ4 (μ+vnc ) I nc r2−λ5 vc I c r1−λ5 vnc I nc r 2=0

u3
0=

λ5
¿ (v¿¿nc Inc

0 r2+vc I c
0 r1)−λ4

¿ (μ+vnc ) I nc0 r2− λ3
¿ (μ+vc ) r1 I c

A5
¿

SUMMARY AND CONCLUSION 

In this study, we present the mathematical model of the transmission dynamics of HIV/AIDS
infection  with  the  circumcision  of  the  susceptible  and infected  population.   It  describes  the
interaction between the  susceptible,  the infected  and removed population which results  in  a
system of ordinary differential equation (2.1) -(2.5).  The control u1 (t ) u2 (t ), u3 ( t )  representing
the efficiency of  circumcised/prevention devices, efficiency of the vaccine therapy in preventing
HIV infection,  the efficiency of drug in inhibiting the virus strain   and effort on infected human
that  are  circumcised and those that  are  not  circumcised to  increase the number of  removed
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individuals  respectively,  were introduced,  resulting in  a  system of  differential  equation with
optimal control (3.1)-(3.5). The system (3.1) -(3.5) were analysed using Pontryagin’s Maximum
Principle and optimality condition. The controls 

u1
0=

BSc
0 {λ3¿−λ1

¿ }
A3

u2
0=

σ Snc
0 {λ1¿−λ2

¿ }
A4

u3
0=

λ5
¿ (v¿¿nc Inc

0 r2+vc I c
0 r1)−λ4

¿ (μ+vnc) I nc0 r2− λ3
¿ (μ+vc ) r1 I c

A5
¿

Are aim at reducing the rate of transmission
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