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                                                           ABSTRACT 

This paper attempts fresh review techniques for solving constrained 

optimization problems with non-linear functions, emphasizing the 

Lagrange multipliers method. The paper reviews their solvability ability 

as employed in solving equality-constrained optimization problems. The 

first and second-order necessary conditions for obtaining optimal 

solutions are stated and discussed in this paper. The method of Lagrange 

multiplier was used to solve for optimal points. The work also 

demonstrates how the Borded Hessian Matrix can be used to determine 

the optimal solution to non-linear equality constraint problems with many 

constraints.  

 

 

 

 

1. Introduction  

The optimization problem can be seen as a problem of optimizing some functions relative to some 

set. The function of interest is called the objective function while the interest set is called the 

constraint set. It is the basis of establishing the best ways resources can be utilized to minimize 

cost and maximize profit. The optimization problem can be linear or Non-linear as the case may 

be and that results in linear programming (LP) and Non- linear programming (NLP) problems 

respectively. They are distinguished by the presence of linear or non-linear functions in either the 

objective function or constraints set and this problem can be unconstrained or constrained. These 

lead to different methods of solution.  
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In 2019, authors in [1] proposed a new hybrid algorithm consisting of two meta-heuristic 

algorithms; Differential Evolution (DE) and Monarch Butterfly Optimization (MBO) and it 

showed that their algorithms give better results for the majority of the nonlinear systems and 

unconstrained optimization problems when compared with other existing algorithms in the 

literature. Researchers in [2] considered a nonlinear constrained optimization model for selecting 

a pipe route with a minimum length that considers seabed topography, obstacles, and pipe 

curvature requirements. 

The authors in [3] also looked at a novel neural network-based model in a unified framework of 

zeroing neural networks (ZNN) to simultaneously solve multiple constraints for the time-

dependent non-linear optimization.  

In a work done by the authors in [4], they acknowledged the energy management systems in micro-

grids using an optimization-based approach, optimizing the operating cost related to the energy 

purchased from the utility grid, the operation cost of the energy storage system, and revenue from 

the selling of energy to the utility grid. They used a constrained Particle Swarm Optimization-

Based Model Predictive Control (CPSO-MPC) and a Linear Program-Based Optimization 

approach to solve the constrained optimization problem formulated in micro-grid energy 

management. 

In 2016, my paper in [5] considered optimality conditions for equality-constrained optimization 

problems, and in 2024, we looked at the Linear Programming problem, using a case study of Vegas 

Restaurant and Bakery in Abakaliki, Ebonyi state. The paper attempted to solve the model for the 

Profit Maximization of the company using the Simplex Method, [6].  

 In [7] and [8], the authors applied the method of Newton Raphson's Iterative method Algorithms 

to solve some constrained optimization problems. However, these methods are so cumbersome 

when there are many constraint sets.  This paper discussed the efficient method of solving the 

optimal points of a non-linear equality-constrained optimization problem.  

2 AIM AND OBJECTIVES  

The aim of this paper is to discuss the solvability of equality-constrained optimization problems 

involving nonlinear functions which is a fundamental aspect of mathematical optimization with 

broad applications in science and engineering. Understanding the conditions under which optimal 

solutions exist and can be efficiently determined is crucial for both theoretical advancements and 

practical implementations. To achieve this aim we consider the following objectives:  

i. Investigate the Necessary Conditions for Optimality – Establishing the fundamental 

conditions that must be satisfied for a solution to be optimal in equality-constrained 

optimization problems involving nonlinear functions. 

ii. Apply the Lagrange Multiplier Method – Demonstrating how the method of Lagrange 

multipliers can be used to identify optimal points in nonlinear optimization problems with 

equality constraints. 

iii. Utilize the Bordered Hessian Matrix – Exploring the role of the bordered Hessian matrix 

in verifying the optimality of solutions, particularly in cases involving multiple constraints. 
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3 METHODOLOGY 

In mathematical optimization, constrained optimization is a process of optimizing an objective 

function concerning some variables in the presence of constraints on those variables. The objective 

function is either a cost function or energy function which is to be minimized, or a reward function 

or utility function, which is to be maximized while constraint sets are functions. 

For constrained and unconstrained functions, optimization theory uses differential calculus to 

obtain minimum and maximum points. This paper uses the Lagrange multiplier method to solve 

equality-constrained problems with Non-linear Functions.  

 

3.1.  Equality constraints optimization problem 

The equality constraints optimization problem is of the form 

Optimize 𝐴(𝑥)                                                           (𝑃1)    

Subject to 𝑥 𝜖 𝐾 ≠  ∅ 

Where 𝐾 =  𝑃 ∩ {𝑥 ∈  ℝ𝑛 ∶  𝑔(𝑥) =  0}, 𝑃  is an open subset of  ℝ𝑛, 𝐴:𝐾 ⊂ ℝ𝑛 → ℝ 

3.2.  Lagrange multipliers method 

The method of Lagrange's multipliers is an interesting technique for finding the maximum or 

minimum of a function of the form 𝐴(𝑥, 𝑦, 𝑧) subject to equality constraints of the form 

𝑔(𝑥, 𝑦, 𝑧)  =  𝑏 or 𝑔(𝑥, 𝑦, 𝑧) = 0. 
The method of the lagrangian multiplier is based on the theorem of Lagrange.   

The theorem of Lagrange makes sense in characterizing optima of equality-constrained 

optimization problems in terms of objective function behavior and the constraint functions 'g' at 

these points. We define some terms that will help us present the first necessary optimality condition 

called Lagrange Theorem.   

Definition 3.1: In a matrix form, a point 𝑥∗ is a regular point of the equality constraint 

problem if the Jacobian matrix of 𝑔 at 𝑥∗, denoted by 

Definition 3.2:  𝐽 (𝑔(𝑥∗)  = [
𝜕𝑔𝑖

𝜕𝑥𝑗
] , 𝑖 = 1 , … ,𝑚 , 𝑗 =  1 , … , 𝑛 Jacobian matrix has a full 

rank (that is rank 𝑚), where 𝑔 = (𝑔1 , 𝑔2 , … , 𝑔𝑚). This means t, the rank of the Jacobian 

matrix of 𝑔 at 𝑥∗ is equal to the number of constraints.  
Definition 3.3: The constraint qualification under equality constraints is the condition in 

the Lagrangian theorem that, 𝑅𝑔(𝑥∗) = 𝑚, (number of constraints). It ensures that 

𝑔(𝑥∗) contains an invertible 𝑚 × 𝑚 submatrix which may be used to define the 

vector 𝜆∗. 𝑅𝑔(𝑥∗), denotes the rank  of  the constraints 

This means that if this constraint qualification is not meet, then, the conclusion of the theorem will 

also fail, that is, if 𝑥∗ is a local optimum for which, 𝑅𝑔(𝑥∗) < 𝑚, then, there will not be a vector 

 𝜆∗ such that the set of all critical point of Lagrange function, 𝐿 that contains the set of all local 

maxima and minima of 𝐴 on 𝐾 at which the constraint qualification is met. 

The consequence of this property is that, if a global minimizer, 𝑥∗ of the function, 𝐴 exists to the 

given problem (𝑃1) and the constraint qualification is met at 𝑥∗. Then there exists 𝜆∗ such 

that( 𝑥∗, 𝜆∗) is a critical point of 𝐿 then, we say that a pair (𝑥∗, 𝜆∗) meets the first order conditions 

of the equality constrained optimization problem if it satisfies 𝑔(𝑥∗) = 0 and ∇𝐴(𝑥∗)  +
 ∑ λ𝑖

∗∇𝑔𝑖 (𝑥
∗) = 0𝑚

𝑖=1 .  

The function associated with the equality-constrained optimization problem is called the 

Lagrangian function and is defined as follows: 

 



Efor et al.- Transactions of NAMP 21, (2025) 121-132 

124 

  𝐿: ℝ𝑛 × ℝ𝑚 →  ℝ,  

𝐿 (𝑥∗, 𝜆∗) = 𝐴(𝑥∗) + ∑𝜆𝑖
∗𝑔𝑖(𝑥

∗) = 0

𝑚

𝑖=1

, ∀ 𝑥 ∈  ℝ𝑛 , 𝜆 ∈  ℝ𝑚. 

With this 𝐿 −function, we get the equations as follows: 

𝜕𝐿(𝑥, 𝜆)

𝜕𝑥𝑗
= 0, 𝑗 = 1,… , 𝑛 

𝜕𝐿(𝑥, 𝜆)

𝜕𝜆𝑖
= 0, 𝑖 = 1,… ,𝑚 

Step 1: Construct the Lagrange function 

Introduce a new variable, 𝜆, and define a new function 𝐿 as follows: 

𝐿(𝑋, 𝜆) = 𝐴(𝑥) + ∑𝜆𝑖𝑔𝑖(𝑥)

𝑚

𝑖=1

 

This function 𝐿 is called the "Lagrange function" and the new variable 𝜆 is referred to as a 

"Lagrange multiplier" 

Step 2: Critical points 

Take the gradient of the Lagrange and set each component to zero(0). 
Step 3: Check for optimality 

Solve for each of the variables by solving the equations formed simultaneously. Remove the 𝜆0 

component, then plug it into the function, 𝐴, since 𝐴 does not have 𝜆 as an input. Whichever one 

gives the greatest (or smallest) value is the maximum (or minimum) point you are seeking 

3.3  BORDED HESSIAN MATRIX METHOD 

 Here, we discuss the method of solution when the candidates for optimal solution are many that 

it involves a lot of computations.  This method is called Borded Hessian Matrix dented by 𝐻𝐵  

and it uses the second partial of the 𝐿 −function concerning the decision variables and the first 

partial of the constraints functions.   

𝐻𝐵= [
0   𝑃
𝑃𝑇 𝑄

]
(𝑚+𝑛)×(𝑚+𝑛 ) 

 

Where 0 = 𝑛 × 𝑛 , zero matrix,          𝑃 =

[
 
 
 
 
∇g1(x)

.

.

.
∇g𝑚(x)]

 
 
 
 

𝑚×𝑛

 

And 

 𝑄 = [
∂2L(x,λ)

∂x𝑖x𝑗
]
𝑛×𝑛

 , ∀ 𝑖, 𝑗 

 

Here, if the critical points (𝑥∗, 𝜆∗)are compiled for the Lagrangian function 𝐿(𝑥∗, 𝜆∗) and 𝐻𝐵is 

evaluated at (𝑥∗, 𝜆∗)then 𝑥∗ is: 



Efor et al.- Transactions of NAMP 21, (2025) 121-132 

125 

i. A minimum point if starting with the principal minor determinant of order (2𝑚 + 1), he 

last(𝑛 − 𝑚) principal minor determinants of 𝐻𝐵  has the sign of(−1)𝑚 

ii. A maximum point if starting with the principal major determinants of order (2𝑚 + 1), the 

last (𝑛 − 𝑚) principal minor determinants of 𝐻𝐵   form an alternating sign pattern with 

(−1)𝑚+1 
To solve constrained optimization problems with non-linear functions using the 

Lagrangian multiplier method the following steps are necessary: 
• Construct the Lagrangian function. 

• Critical points 

• Check for optimality  

4  APPLICATIONS 

Here, we try to present the first-necessary and second-order necessary conditions that guarantee 

the optimum solution for the equality-constrained problem and use constructed examples to 

verify its effectiveness.  

 

4.1. First Order Conditions for Equality Constrained problem. 

 The main result here is the Theorem of Lagrange and is regarded as the first-order necessary 

optimality conditions for the equality-constrained optimization problem. 

Theorem 4.1.  Let 𝐴 ∶  ℝ𝑛 →  ℝ and 𝑔𝑖 ∶  ℝ𝑛  →  ℝ𝑚 be a continuous first differentiable, 𝐶1 

functions, 𝑖 = 1,… ,𝑚, suppose 𝑥∗ is a local optimum of  𝐴 on the set 

 𝐾 =  𝑃 ∩ {𝑥 ∈  ℝ𝑛 ∶  𝑔𝑖(𝑥) =  0, 𝑖  = 1,… ,m}, 𝑝 ⊂ ℝ𝑛, is open. 

Suppose also that 𝑅(∇𝑔(𝑥∗)) = 𝑚, then, there exists a vector  

𝜆∗ = (𝜆1
∗, 𝜆2

∗, … , 𝜆𝑚
∗) ∈ ℝ𝑚,  ∋  ∇𝑓(𝑥∗)  +  ∑ 𝜆𝑖

∗∇𝑔𝑖 (𝑥
∗) = 0𝑚

𝑖=1 , 

Where 𝜆𝑖
∗′
𝑠 are called the Lagrangian multipliers associated with the local optimum 𝑥∗ and 

𝑅∇𝑔 (𝑥∗) is the rank of ∇𝑔 (𝑥∗) =
𝜕𝑔𝑖

𝜕𝑥𝑗
 , 𝑗 = 1 , … , 𝑛 , 𝑖 =  1 , … ,𝑚.  

We verify this theorem using a constructed example: 

Consider the problem, with the function, 𝐴:ℝ2 → ℝ  

Minimize𝐴(𝑥) = 𝑥1
2 + 3𝑥2

2 

Subject to 𝑥1
2 + 𝑥2

2 = 1 [6] 

The constraint equation reduces to 𝑔(𝑥) = 0 and, 𝐾 =  𝑃 ∩ {𝑥 ∈  ℝ2 ∶  𝑔(𝑥) =  0} and write the 

above problem as, 

Minimize𝐴(𝑥) = 𝑥1
2 + 3𝑥2

2 

Subject to, 𝐾 =  𝑃 ∩ {𝑥 ∈  ℝ2 ∶  𝑔(𝑥) =  0}. 
 Let, 𝑃 ⊂ ℝ2, then 𝐾 = {𝑥 ∈  ℝ2: 𝑥1

2 + 𝑥2
2 = 1}. 

 Here, the objection function, 𝐴(𝑥)  is a nonlinear function and the constraint, 𝐾 is also a non-

linear function. 

Now, we verify the Lagrange theorem. 

 Applying the Lagrange multiplier method, we construct the Lagrange function,  

𝐿(�̅�, 𝜆) = 𝐴(𝑥) + ∑ 𝜆𝑖𝑔𝑖 (�̅�)𝑚
𝑖=1 = 𝐴(�̅�) + 𝜆1𝑔1(�̅�), ∀(𝑥, 𝜆) ∈ 𝐾 × ℝ  

𝐿(�̅�, 𝜆) = 𝑥1
2 + 3𝑥2

2 +  𝜆(𝑥1
2 + 𝑥2

2 − 1)  

We show, that the condition existence of the global minimizer, and the constraint qualification are 

met.   

First, since 𝐴 is a continuous function on 𝐾 and 𝐾 is a compact set, thus by the existence theorem, 

there exists a global minimizer of 𝐴 in 𝐾. This implies that the critical points of the Lagrange 

function 𝐿 will, contain the set of global minimizers. 
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Second, we check for the constraint qualification. The derivative of the constraint function 𝑔 at 

any point is given by (𝑥1
∗, 𝑥2

∗) ∈ ℝ2. 

Given by 

 ∇𝑔(𝑥1
∗, 𝑥2

∗) = (2𝑥1, 2𝑥2),∇𝑔(𝑥) = 0 ⇒ 2𝜆𝑥1 = 0,𝑜𝑟 2𝜆𝑥2 = 0, here, 𝑥1
∗ and 𝑥2

∗  cannot be zero 

simultaneously on 𝐾 otherwise, 𝑥1
2 + 𝑥2

2 ≠ 1. This implies that we must have 𝑅(∇𝑔(𝑥1
∗, 𝑥2

∗)) =

1 at (𝑥1
∗, 𝑥2

∗) ∈ 𝐾. Therefore, the constraint qualification is satisfied everywhere on 𝐾 

Since, 𝑅(∇𝑔(𝑥1
∗, 𝑥2

∗)) = 𝑚 = 1,  

Then, we can find 𝜆∗ ∈ ℝ such that for 𝑥∗ a minimizer, we have; 

∇𝐴(𝑥1
∗, 𝑥2

∗) + 𝜆∗∇𝑔(𝑥1
∗, 𝑥2

∗) = 0 and, (𝑔(𝑥1
∗, 𝑥2

∗)) = 0. 

The Lagrange equation reduces to:  
𝜕𝐿

𝜕𝑥1
(𝑥1

∗, 𝑥2
∗, 𝜆∗) = 2𝑥1 + 2𝜆𝑥1 = 0                         (1) 

𝜕𝐿

𝜕𝑥2
(𝑥1

∗, 𝑥2
∗, 𝜆∗) = 6𝑥2 + 2𝜆𝑥2 = 0                         (2) 

𝜕𝐿

𝜕𝜆
(𝑥1

∗, 𝑥2
∗, 𝜆∗) =  𝑥1

2 + 𝑥2
2 − 1                         (3) 

From, (1), 2𝑥1
∗(1 + 𝜆) = 0 

From,(2), 2𝑥2
∗(3 + 𝜆) = 0 

Therefore, (𝑥1
∗, 𝑥2

∗, 𝜆∗) ∈ ℝ3 is the critical points of 𝐿  

Hence, the candidates for minimizer are:  

(𝑥1
∗, 𝑥2

∗, 𝜆∗) = {

(0,1, −3)
(0,−1,−3)
(1,0, −1)

(−1,0, −1)

  

If we compute the 𝐴(𝑥1
∗, 𝑥2

∗) at these four points, we observe that the points (1,0) and (−1,0) 

are the global minimizers of 𝐴 on 𝐾  while the points (0,1) and (0, −1) are the global maximizers 

of 𝐴 on 𝐾. 

 

4.2 Second-Order Necessary Optimality Conditions of Lagrange 

 

Theorem 4.2. Let 𝐴 ∶  ℝ𝑛 →  ℝ and 𝑔𝑖 ∶  ℝ𝑛  →  ℝ𝑘  be a twice continuous differentiable, 𝐶2 

functions, 𝑖 = 1,… , 𝑘, suppose there 𝑥∗ ∈ ℝ𝑛, and 𝜆∗ ∈ ℝ𝑘  such that 𝑅(∇𝑔(𝑥∗)) = 𝑘 and  

∇𝑓(𝑥∗)  +  ∑ 𝜆𝑖
∗∇𝑔𝑖 (𝑥

∗) = 0𝑚
𝑖=1 , 

Define 𝑍(𝑥∗) =   {𝑧 ∈  ℝ𝑛 ∶  ∇𝑔𝑖 (𝑥
∗)𝑧 =  0, 𝑖  = 1,… ,m}, and let  

∇2𝐿(𝑥∗, 𝜆∗) = ∇2𝐴(𝑥∗) + ∑ 𝜆𝑖
∗∇2𝑔𝑖 (𝑥

∗)𝑚
𝑖=1 , denote the 𝑛 × 𝑛 symmetric matrix of 𝐿(𝑥∗, 𝜆∗),  if 

𝐴  has a local minimum on 𝐾at𝑥∗, then 𝑧2∇2𝑔𝑖 (𝑥
∗)𝑧 ≥ 0 for all  

z ∈ 𝑧 (𝑥∗) and, if  𝐴  has a local maximum on 𝐾at𝑥∗, then 𝑧2∇2𝑔𝑖 (𝑥
∗)𝑧 ≤ 0 for all  

z ∈ 𝑧 (𝑥∗). [6]  

Observe that, Theorem 4.2 above theorem can be characterized in terms of the definiteness of a 

symmetric 𝑛 × 𝑛 matrix 𝑄  on the set {𝑧 ≠ 0 ∶  𝐵𝑧 =  0 }, where 𝐵 is an 𝑚 × 𝑛 matrix of rank 𝑚. 

Because of this characterization, we use an alternative way to verify Theorem 4.2. The alternative 

way is called the Borded Hessian matrix denoted by𝐻𝐵, which is discussed in section 3.2 

Here, we apply this matrix in some examples to check for the optima of the solution.  

Example 3.1  

Consider the problem  

Minimize𝑓(𝑥) = 2𝑥1
2 + 𝑥2

2 + 3𝑥3
2 + 10𝑥1 + 8𝑥2 + 6𝑥3 − 100 

Subject to 𝑥1 + 𝑥2 + 𝑥3 = 20 

                 𝑥1, 𝑥2, 𝑥3  ≥ 0 

Solution 
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We construct the Lagrange function; 

𝐿(𝑋, 𝜆) = 𝐴(𝑥)  + ∑𝜆𝑖𝑔𝑖 (𝑥)

𝑚

𝑖=1

= 2𝑥1
2 + 𝑥2

2 + 3𝑥3
2 + 10𝑥1 + 8𝑥2 + 6𝑥3 − 100 + 𝜆(𝑥1  + 𝑥2 + 𝑥3 − 20 

The necessary conditions for a stationary point are: 
𝜕𝐿

𝜕𝑥1
= 4𝑥1 + 10 +  λ = 0                   (𝑖) 

𝜕𝐿

𝜕𝑥2
= 2𝑥2 + 8 +  λ = 0                    (𝑖𝑖) 

𝜕𝐿

𝜕𝑥3
= 6𝑥3 + 6 +  λ = 0                   (𝑖𝑖𝑖) 

𝜕𝐿

𝜕λ
= 𝑥1 + 𝑥2 + 𝑥3 − 20 = 0          (𝑖𝑣) 

Solving (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) and (𝑖𝑣) simultaneously, 

From(𝑖); 𝑥1 =
−(10+λ)

4
                    (𝑣) 

From (𝑖𝑖); 𝑥2 =
−(8+λ)

2
                    (𝑣𝑖) 

From (𝑖𝑖𝑖); 𝑥3 =
−(6+λ)

6
                  (𝑣𝑖𝑖) 

Put (𝑣), (𝑣𝑖) and (𝑣𝑖𝑖) in (𝑖𝑣), 

⇒
−(10 + λ)

4
− 

(8 + λ)

2
−

(6 + λ)

6
− 20 = 0 

      
−30 − 3𝜆 − 48 − 6𝜆 − 12 − 2𝜆 − 240

12
= 0 

      −11𝜆 − 330 = 0 

       11𝜆 = −330 

     ⇒  𝜆 = −30 

Put 𝜆 = −30 in (𝑣), (𝑣𝑖) and (𝑣𝑖𝑖); 

⇒ 𝑥1 =
−(10 − 30)

4
= 5     𝑥2 =

−(8 − 30)

2
= 11 

 

      𝑥3 =
−(6−30)

6
= 4 ⇒ 𝑥∗ = (5,11,4), 𝜆∗ = −30 

 

Therefore, (𝑥1
∗, 𝑥2

∗, 𝑥3,
∗ 𝜆∗) = (5,11,4 − 30) 

To determine whether the point, (𝑥1
∗, 𝑥2

∗, 𝑥3
∗) = (5,11,4) is the solution is optimal, we 

construct the 𝐻𝐵; 

𝐻𝐵 = [
0   𝑃
𝑃𝑇 𝑄

], where,          𝑃 = [

∇g1(x)

∇g2(x)

∇g3(x)
] =

[
 
 
 
 

𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2

𝜕𝑔

𝜕𝑥3]
 
 
 
 

= [
1
1
1
] 
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and 𝑄 = [
∂2L(x,λ)

∂x𝑖x𝑗
]
3×3

 , ∀ 𝑖 = 1,2,3;  𝑗 = 1,2,3 

𝑄 =

[
 
 
 
 
 
 

𝜕2𝐿

𝜕𝑥1
2

𝜕2𝐿

𝜕𝑥1𝜕𝑥2

𝜕2𝐿

𝜕𝑥1𝜕𝑥3

𝜕2𝐿

𝜕𝑥2𝜕𝑥1

𝜕2𝐿

𝜕𝑥2
2

𝜕2𝐿

𝜕𝑥2𝜕𝑥3

𝜕2𝐿

𝜕𝑥3𝜕𝑥1

𝜕2𝐿

𝜕𝑥3𝜕𝑥2

𝜕2𝐿

𝜕𝑥3
2 ]

 
 
 
 
 
 

= [
4 0 0
0 2 0
0 0 6

] 

⇒ 𝐻𝐵 = [

0 1 1 1
1 4 0 0
1 0 2 0
1 0 0 6

] 

Let 𝑛 = number of variables = 3 

      𝑚 = number of constraints = 1, 

Checking the principal minor determinant of 𝐻𝐵 of order (2𝑚 + 1) = (2 + 1) = 3 

Let ∆3= |
0 1 1
1 0 0
1 0 6

| = −6 

       ∆4= |

0 1 1 1
1 4 0 0
1 0 2 0
1 0 0 6

| = −44  

 

Since ∆3 and ∆4 are both negative and have the sign of (−1)𝑚, then from the condition (𝑖) in 

section 3.2 , 𝑥∗ = (5,11,4) is a minimum point, and 𝐴(𝑥∗) = 𝐴(5,11,4) = 281.  
Hence, the condition in theorem 4.2 is verified since 𝐻𝐵  is a positive semi definite. 

Example 3.2  

Consider this problem, now with more than one constraint:  

Optimize 𝑍 = 4𝑥1
2 + 2𝑥2

2 + 𝑥3
2 − 4𝑥1𝑥2 

Subject to 𝑥1 + 𝑥2 + 𝑥3 = 15 

                 2𝑥1 − 𝑥2 + 2𝑥3 = 20  

                 𝑥1, 𝑥2, 𝑥3  ≥ 0 

Solution 

We construct the Lagrange function; 

𝐿(𝑋, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖 (𝑥)𝑚
𝑖=1     

             = 4𝑥1
2 + 2𝑥2

2 + 𝑥3
2 − 4𝑥1𝑥2 + 𝜆1(𝑥1 + 𝑥2 + 𝑥3 −  15) + 𝜆2( 2𝑥1 − 𝑥2 + 2𝑥3 − 20 ) 

The necessary conditions for stationary point are: 
𝜕𝐿

𝜕𝑥1
= 8𝑥1 − 4𝑥2 + 𝜆1 + 2𝜆2 = 0                    (𝑖) 

𝜕𝐿

𝜕𝑥2
= 4𝑥2 − 4𝑥1 + 𝜆1 − 𝜆2 = 0                   (𝑖𝑖) 

𝜕𝐿

𝜕𝑥3
= 2𝑥3 + 𝜆1 + 2𝜆2 = 0                            (𝑖𝑖𝑖) 

𝜕𝐿

𝜕𝜆1
= 𝑥1 + 𝑥2 + 𝑥3 − 15 = 0                        (𝑖𝑣) 

𝜕𝐿

𝜕𝜆2
= 2𝑥1 − 𝑥2 + 2𝑥3 − 20 = 0                    (𝑣) 
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Solving (𝑖), (𝑖𝑖), (𝑖𝑖𝑖), (𝑖𝑣) and (𝑣) simultaneously, 

From (𝑖𝑖𝑖); 𝜆1 + 2𝜆2 = −2𝑥3                         (𝑣𝑖) 

Put (𝑣𝑖) in (𝑖); 8𝑥1 − 4𝑥2 − 2𝑥3 = 0         (𝑣𝑖𝑖) 

From (𝑖𝑣); 𝑥1 + 𝑥3 = 15 − 𝑥2        
From (𝑣);  2(𝑥1 + 𝑥3) − 𝑥2 − 20 = 0 

                ⇒2(15 − 𝑥2) − 𝑥2 − 20 = 0 

                    30 − 2𝑥2 − 𝑥2 − 20 = 0  

10 − 3𝑥2 = 0,𝑥2 =
10

3
 

Put 𝑥2 =
10

3
  in (𝑣𝑖𝑖); 8𝑥1 − 4(

10

3
) − 2𝑥3 = 0 

Multiplying through by 3;   24𝑥1 − 40 − 6𝑥3 = 0 

                                        ⇒ 24𝑥1 − 6𝑥3 = 40           (𝑣𝑖𝑖𝑖) 

Put 𝑥2 =
10

3
  in (𝑖𝑣);  𝑥1 +

10

3
+ 𝑥3 − 15 = 0      

Multiplying through by 3; 3𝑥1 + 10 + 3𝑥3 − 45 = 0      

     ⇒ 3𝑥1 + 3𝑥3 = 35 

Solving (𝑣𝑖𝑖𝑖) and (𝑖𝑥) simultaneously, 
(𝑣𝑖𝑖𝑖)  × 3;      72𝑥1 − 18𝑥3 = 120          ⋯ (𝑥)  
(𝑖𝑥)  × −6;    −18𝑥1 + −18𝑥3 = −210       ⋯(𝑥𝑖) 

Subtract (𝑥𝑖) from (𝑥);    90𝑥1 = 330 

                                               𝑥1 =
11

3
  

Put 𝑥1 =
11

3
 and 𝑥2 =

10

3
  in (𝑖𝑖); 4 (

10

3
) − 4 (

11

3
) + 𝜆1 − 𝜆2 = 0  

                                                      𝜆1 − 𝜆2 = 4(
11

3
) − 4 (

10

3
)     

                                                      𝜆1 − 𝜆2 =
44

3
−

40

3
     

                                                      𝜆1 − 𝜆2 =
4

3
       ⋯(𝑥𝑖𝑖) 

Also put 𝑥3 = 8 in (𝑣𝑖); 𝜆1 + 2𝜆2 = −2(8) 

𝜆1 + 2𝜆2 = −16       ⋯ (𝑥𝑖𝑖𝑖) 

Solving (𝑥𝑖𝑖) and (𝑥𝑖𝑖𝑖)simultaneously, 

Subtract (𝑥𝑖𝑖) from (𝑥𝑖𝑖𝑖); 3𝜆2 =
−52

3
 

                                            𝜆2 =
−52

9
 

Put 𝜆2 =
−52

9
 in (𝑥𝑖𝑖); 𝜆1 +

52

9
=

4

3
 

                                             𝜆1 =
4

3
−

52

9
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                                              𝜆1 =
12−52

9
 

                                              𝜆1 =
−40

9
 

⇒𝑥∗ = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗) = (

11

3
,
10

3
, 8)  

and 𝜆∗ = (𝜆1
∗, 𝜆2

∗) = (
−40

9
,
−52

9
) 

To determine whether the point (𝑥1
∗, 𝑥2

∗, 𝑥3
∗) = (

11

3
,
10

3
, 8) is maximum or minimum, we 

construct the Borded Hessian matrix, 𝐻𝐵; 

𝐻𝐵 = [
0   𝑃
𝑃𝑇 𝑄

]  

where , 𝑃 = [

∇g1(𝑥)

∇g2(𝑥)

∇g3(𝑥)
] = [

𝜕𝑔1

𝜕𝑥1
  

𝜕𝑔1

𝜕𝑥2

𝜕𝑔1

𝜕𝑥3

𝜕𝑔2

𝜕𝑥1
 

𝜕𝑔2

𝜕𝑥2

𝜕𝑔2

𝜕𝑥3

] = [
1  1 1
2 −1 2

] 

and 𝑄 = [
∂2L(x,λ)

∂x𝑖x𝑗
]
3×3

 , ∀ 𝑖 = 1,2,3;  𝑗 = 1,2,3 

𝑄 =

[
 
 
 
 
 
 

𝜕2𝐿

𝜕𝑥1
2

𝜕2𝐿

𝜕𝑥1𝜕𝑥2

𝜕2𝐿

𝜕𝑥1𝜕𝑥3

𝜕2𝐿

𝜕𝑥2𝜕𝑥1

𝜕2𝐿

𝜕𝑥2
2

𝜕2𝐿

𝜕𝑥2𝜕𝑥3

𝜕2𝐿

𝜕𝑥3𝜕𝑥1

𝜕2𝐿

𝜕𝑥3𝜕𝑥2

𝜕2𝐿

𝜕𝑥3
2 ]

 
 
 
 
 
 

= [
8 −4 0

−4 4 0
0 0 2

] 

⇒ 𝐻𝐵 =

[
 
 
 
 
0 0 1 1 1
0 0 2 −1 2
1 2 8 −4 0
1 −1 −4 4 0
1 2 0 0 2]

 
 
 
 

 

Let 𝑛 = number of variables = 3 

      𝑚 = number of constraints = 2, 

Checking the principal minor determinant of 𝐻𝐵 starting from order (2𝑚 + 1) = (2(2) + 1) =
5 

|𝐻𝐵| = |
|

0 0 1 1 1
0 0 2 −1 2
1 2 8 −4 0
1 −1 −4 4 0
1 2 0 0 2

|
| 

To find the determinant, we transform 𝐻𝐵 into a triangular matrix using row reduction, noting 

that the signs beside the matrices below changes when a row exchange is made, that is, doing 

row exchanges changes the sign of the determinant. 

Performing the operations, where 𝑅(𝑂) = old row 

                                                           𝑅(𝑁) = new row:  

𝑅1(𝑂) ↔ 𝑅3(𝑂): |
|

1 2 8 −4 0
0 0 2 −1 2
0 0 1 1 1
1 −1 −4 4 0
1 2 0 0 2

|
| (−), 
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𝑅4(𝑁) → 𝑅4(𝑂) − 𝑅1(𝑂): |
|

1 2 8 −4 0
0 0 2 −1 2
0 0 1 1 1
0 −3 −12 8 0
1 2 0 0 2

|
| (−) 

𝑅5(𝑁) → 𝑅5(𝑂) − 𝑅1(𝑂): |
|

1 2 8 −4 0
0 0 2 −1 2
0 0 1 1 1
0 −3 −12 8 0
0 0 −8 4 2

|
| (– ) 

𝑅2(𝑂) ↔ 𝑅4(𝑂): |
|

1 2 8 −4 0
0 −3 −12 8 0
0 0 1 1 1
0 0 2 −1 2
0 0 −8 4 2

|
| (+) 

𝑅4(𝑁) → 𝑅4(𝑂) − 2𝑅3(𝑂)

𝑅5(𝑁) → 𝑅5(𝑂) + 8𝑅3(𝑂)
: |
|

1 2 8 −4 0
0 −3 −12 8 0
0 0 1 1 1
0 0 2 −1 2
0 0 −8 4 2

|
| (+) 

Now it is an upper triangular matrix, multiply the entries in the leading diagonal. 

⇒ |𝐻𝐵| = 1 × (−3) × 1 × (−3) × 10 

             = 90 > 0   

Since |𝐻𝐵| has the sign of (−1)𝑚, then from the condition (𝑖) in section 3.2.  

Hence, ( 𝑥1
∗, 𝑥2

∗, 𝑥3
∗) = (

11

3
,
10

3
, 8) is a minimum point, and the minimum value, 𝐴(𝑥)∗ =

𝐴 (
11

3
,
10

3
, 8) =

820

9
. 

 

CONCLUSION 

In conclusion, this paper has been able to present the first and second-order necessary conditions, 

a non-linear equality constraint problem must satisfy to have an optimal solution. The paper 

applied the Lagrange method to solve for optimal points of equality constraint problem in a 

constructed example. The work also demonstrated how the Borded matrix can be used to determine 

the optimal point.   
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