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ABSTRACT
This  paper  aims  to  study  the  mathematical  modeling  of  control
systems  by  examining  the  dynamics  of  an  inverted  pendulum  and
analyzing  the  system of  nonlinear  differential  equations  associated
with it.  The objective is  to formulate a mathematical  model of  the
inverted  pendulum  system.  The  Euler-Lagrange  equations  were
utilized  to  derive  the  equations  of  motion.  Additionally,  the  paper
seeks to compute the controllability of the linearized system, obtain
the transfer functions, and analyze the state-space representation of
the  model.  Finally,  graphical  profiles  illustrating  the  system's
behavior are provided. This work stabilized the pendulum, enabling
precise and rapid control of the carriage's position on the track

. 

1. Introduction 

System theory is a trans-disciplinary study of systems and deals with making decisions because
of the uncertainty in both mechanical and human systems. A major challenge is the case where
the current outcome(s)/output(s) of a system depends on the history of the control inputs. For
example, when trying to maintain a submarine in motion to be at a constant or desirable depth
below the ocean surface. Here, the main desired output is the submarine depth below the ocean
surface, and it depends largely upon the submarine stern plane, the bow, and the position of the
submarine past control surfaces. Developing any theory for design or analysis usually entails the
abstraction of reality by using approximates and as well utilizing mathematical relations. 

*Corresponding author: EFOR, T. E.
E-mail address: tesyefor@gmail.com
 https://doi.org/10.60787/tnamp.v21.480
1115-1307 © 2025 TNAMP. All rights reserved

109

https://doi.org/10.60787/tnamp.v21.480
mailto:tesyefor@gmail.com


Efor et al.- Transactions of NAMP 21, (2025) 109-120
In cases of controlling dynamic systems, these mathematical relations usually take the form of
simple or complex equations, ordinary or partial differential equations, and linear or nonlinear
equations. The main system variable of interest is called the state variable, whereas the variables
that can be manually or automatically manipulated are usually called control variables.
The system control engineer has to deal with the issues of uncertainty and also complexities
associated with multi-variable dynamic systems which are described using complex differential
equations.

In  [1],  the  authors  considered  the  rigid  finite-dimensional  models  which  are  described  by
ordinary  differential  equations  (ODEs),  and,  derived  a  Mathematical  model  using  the
Hamiltonian principle and variational methods, which were formulated by the coupling of partial
differential equations (PDE) and ODE. In (2014), the researchers in [2] used  linear quadratic
regulator  (LQR)  and  proportional-integral-derivative  (PID)  control  methods  to  control  the
nonlinear dynamical system. They actually, modeled and simulated the optimal control design of
a nonlinear inverted pendulum-cart dynamic system using PID controller and LQR methods.

Fractional  calculus  was  used  by  the  authors  in  [3]  to  design  a  robust  fractional-order  PID
(PIλDμ) controller for stabilization and tracking control of an inverted pendulum (IP) system. In
their  work,  they used a  particle  swarm optimization (PSO) based direct  tuning technique to
design two PIλDμ controllers for the IP system without linearizing the actual nonlinear model. In
2019, the researchers in [4] in their paper titled Modeling and Analysis of an inverted pendulum
used Newton-Euler formulation and Lagrange-Euler formulation to obtain Equations of motion
(EOM) for the inverted pendulum system. They mounted an inverted pendulum on a cart and the
dynamic behavior of the modeled system is analyzed through simulation results. 

The researchers  present  an  overview of  the  IP control  system augmented  by a  comparative
analysis of multiple control strategies in [5]. They studied and analyzed the approaches based on
several  parameters.  The researchers  used  Non-linear  techniques  and AI-based approaches  to
mitigate IP nonlinearity and stabilize its unbalanced form.

In this paper, we attempted to study the mathematical modeling of control systems by examining
the  dynamics  of  an  inverted  pendulum  and  analyzing  the  system  of  nonlinear  differential
equations  associated  with  it.  The  work  utilized  the  Euler-Lagrange  equations  to  derive  the
equations  of  motion.  The  reasons  for  choosing  the  Inverted  Pendulum as  the  system to  be
modeled include; (i) It is the most easily available system for laboratory usage and, (ii) It is a
nonlinear system, which can be treated as linear, without much error, for quite a wide range of
variation.

1.1 Aim and Objectives of the Study

This study aims to study the Mathematical Modeling of Control Systems by considering the
dynamics of an inverted pendulum and analyzing the system of nonlinear differential equations
associated with an inverted pendulum, while the objectives of the study include:

i. Formulate the mathematical model of the Inverted Pendulum System.
ii. Compute the Controllability of the linearized system.
iii. Apply the Laplace transform to obtain the Transfer Functions.
iv. Obtain and analyze the state space form of the model.
v. Provide the necessary graphical profiles describing the system’s behavior
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1.2 Statement of the problem
This research is about the mathematical modeling and control of an inverted pendulum. In a most
basic manner, this is like trying to balance a rod on one's finger, though cases of the rod are
placed on top of a moving cart which can move left or right to keep the inverted pendulum
upright.  This is a classical or conventional control problem about an inherently unstable system.
The  concept  is  that  the  pendulum,  which  is  pivotally  hinged to  the  cart,  stays  upright  and
vertically inclined while the cart moves.
The inverted pendulum is a mechanical system which is usually unstable. Our study is mainly
geared toward controlling the inverted pendulum and, stabilizing it.

2 METHODOLOGY

The method used in this work is the Euler-Lagrange (EL) Method, generating  The Euler-
Lagrange (EL) equations. The EL-equations which involves the Lagrangian of the system, is a
significant mathematical tool for obtaining the equations of motion of any dynamical system.
The state-space formulas and transfer functions can be found using these equations. The system's
potential and kinetic energies were used to express the generic formula for the Lagrangian (L).
Thus;

                                                                                                                      (1)
Where, K = Kinetic Energy (KE), V = Potential Energy (PE).

                                                                                                 (2) 

                                                                                                        (3)

                                                                                 (4)

                                                                                        (5)

2.1 Kinetic Energy

The general formula to determine K becomes;

             

                 

                  

                                                    (6)
2.2 Potential Energy

The potential energy corresponding to the system is expressed by
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                                                                                                       (7)

3 RESULTS

In control  engineering,  the  inverted pendulum (IP)  is  regarded as  one  of  the  most  complex
systems  to  manage.  It  has  become  a  popular  topic  for  mathematical  modeling  due  to  its
importance in this sector, with attempts concentrated on analyzing its model and creating a linear
compensator based on the PID control law. Being an unstable system, an Inverted Pendulum is
an  important  control  problem  in  Control  System  Engineering,  and  the  main  interest  is  in
controlling its dynamics.

3.1 APPLICATIONS OF INVERTED PENDULUM

Some applications of inverted pendulum (IP):

3.1.1 Simulation of dynamics of a robotic arm
The control  mechanisms of  robotic  arms are comparable to  the inverted pendulum problem.
When the Centre of pressure is  placed below the Centre of gravity of the arm, the Inverted
Pendulum's dynamics resemble those of a robotic arm, leading to instability. The robotic arm
behaves similarly to an inverted pendulum in these circumstances.

3.1.2. Model of a human standing still
Maintaining balance while standing erect is crucial for everyday activities. Muscles are activated
to maintain balance by the central nervous system (CNS), which keeps an eye on posture and any
changes in it. The inverted pendulum is commonly recognized as an effective model for a person
who is motionless.

Feedback on its  condition is  crucial  for stabilization because an inverted pendulum (without
springs connected) is by nature unstable. Two primary models are often used to describe CNS
feedback control:
Time-invariant, linear feedback control.
Linear feedback is outside a defined threshold, with no sensory feedback within the threshold. 
Additionally,  passive mechanisms like muscle stiffness and supportive tissues,  which can be
represented as a combination of spring and damper systems, contribute to maintaining balance.

3.1.3   Problem Definition

Balancing a pendulum in the inverted position is nearly impossible without the application of a
third-party force. Providing this degree of force to the pendulum carriage is made possible by the
Carriage Balanced Inverted Pendulum (CBIP) system, which is depicted in Figure 10. In this
system, a DC servo motor, connected through a belt  drive mechanism, provides the required
control  force.  The  CBIP system can  output  various  parameters,  including  carriage  position,
velocity, pendulum angle, and angular velocity; however, only the pendulum angle is considered
in this case. This angle is fed into an Analog Controller that regulates the servo motor, ensuring
steady and continuous traction. 
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                                    Fig. 1 Carriage Balanced Inverted Pendulum

The study aims to stabilize a pendulum by making sure that the carriage position on the track can
be swiftly and precisely regulated while keeping the pendulum in a stable inverted posture while
moving. The system consists of a cart that can move forward and backward, with a pendulum
attached at its base, allowing it to swing in the same plane as the cart. This setup enables the
pendulum to freely fall along the cart's axis of motion. The objective is to control the system
such that the pendulum stays balanced and upright, even when subjected to sudden disturbances.
If the pendulum begins off-center, it tends to fall, prompting the cart to move in the opposite
direction to counterbalance it. Similarly, moving the cart can cause the pendulum to deviate from
its upright position.  This interdependence between the cart  and pendulum makes the control
system more complex than it initially appeared. Due to these intricacies, this problem is often
used to illustrate the principles of fuzzy control systems.The inverted pendulum cart moves along
a track and is driven by a belt connected to an electric motor. A potentiometer is used to measure
the cart's position through its rotation, while another potentiometer measures the angle of the
pendulum.  

If the pendulum's angle is taken as the output relative to the vertical axis (in its upright position),
in that case, it becomes evident that the system is inherently unstable, as the pendulum will tip
over if released at even a slight angle. To stabilize the system and maintain the pendulum in an
upright position, a feedback control system was required.  

The  overall  block  diagram  for  the  feedback  control  system  of  the  inverted
pendulum is shown below.

                                                Fig. 2 Feedback control system for the IP

In our implementation, feedback is utilized only from the pendulum's angle, meaning only one of
the four  states is  considered for feedback. The other states—cart position,  cart  velocity,  and
pendulum angular velocity—are not included. This setup could be improved by incorporating a
control loop for the cart's position.  
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Initially, the pendulum is manually positioned upright in an unstable equilibrium or given a small
initial  displacement.  Once  this  setup  is  in  place,  the  controller  is  activated  to  balance  the
pendulum and maintain stability despite disturbances. Simple disturbances might include a gentle
tap on the pendulum, while more complex disturbances could involve wind gusts generated by a
fan.  

This configuration serves as a platform to explore the control of an open-loop unstable system
and demonstrates how feedback control can stabilize such systems. Various control strategies,
from  simple  phase  advance  compensators  to  advanced  neural  network  controllers,  can  be
implemented and studied using this setup.

3.2 THE MATHEMATICAL MODEL

An inverted pendulum represents a fundamental problem in control systems. It is a nonlinear and
unstable system with a single input signal and multiple output signals. The primary objective is
to maintain the pendulum in its vertical position while mounted on a motor-driven cart.  

The diagram below illustrates an inverted pendulum. The goal is to move the cart along the x-
axis to a desired position without allowing the pendulum to tip over. A DC motor powers the
cart, and in this implementation, it is controlled using an analog controller. The cart's position
along  the  x-axis  and  the  pendulum's  angle(theta−θ) are  measured  and  fed  into  the  control
system.  Additionally,  an  external  force  (F)  can  be  applied  to  the  top  of  the  pendulum  to
introduce disturbances.

                                                   
                                                     Fig. 3 Inverted pendulum schematic

3.2.1 Inverted Pendulum System Equations
First,  mathematical  representations  must  be  used  to  comprehend  the  system's  behavior.  An
illustration of the cart and pendulum with the relevant forces is shown in Figure 3. A list of the
pertinent factors and their definitions is given below.

               
                                              

                                                    Fig. 4 Parameters of the Inverted Pendulum
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3.2.2  Derivation of the equations of motion

We will now derive the equations of motion using the Euler-Lagrange equations.  

The Lagrangian as given by equation (1) becomes

                               (8)

3.2.3 The Euler-Lagrange Equations
 

With  the  explicit  expression  for  the  Lagrangian  L,  the  Euler-Lagrange  equations  can  be
formulated. The general formula for the Euler-Lagrange is.

                                                                                           (9)

where are the generalized coordinates which are the coordinates chosen within the system.
For  our  system  for  horizontal  motion.  For  the  angular  motion;  however,

. Represents non-conservative external forces.
Thus, for the horizontal motion, our Euler-Lagrange equation reads.

                                                                                                            (10)
For the angular motion, the Euler-Lagrange equation reads.

                                                                                                                (11)
The generic version of the Euler-Lagrange equation is shown in equation (9). Equation (10) gives
the precise Euler-Lagrange equation about the position of the cart, whereas equation (11) gives
the details of the one referring to the angle of the pendulum.

                                 ,                                            (12)
Furthermore,

                                   ,           (13)
Hence

                                                                   (14)
and

                                                                  (15)
The equations of motion are then;
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                                                                     (16)

                                                                               (17)
3.2.4 Linearization of the system 
Equations (16) and (17), determine the transfer functions for the pendulum's angle and the cart's
location, which must first be linearized before the model is simulated in MathCAD 14 (2014). In
this instance, it is considered that the typical pendulum starts in its vertical downward position
and swings through tiny angles, we thus have the following approximations

                                                                              (18)
Furthermore, we make another simplifying assumption that the moment of inertia I and frictional
force are negligible. This results in the linearized equations of motion given by;

                                                                                                   (19)

                                                                                                   (20)
Dividing (20) by we get

                                                                                                                     (21)
Substituting (21) in (19) we get

                                                                                                     (22)
Substituting (22) into (21), we get

    

                                                                                   (23)
Thus equations (19) and (20) are simplified to

                                                                                                            (24)  

                                                                                           (25)
3.2.5   State-space 
A different method for expressing the input and output behavior of the system than the transfer
function is state-space. The position of the cart and the angle of the pendulum can be combined
into a single statement using the state-space model. The variables in the two linearized equations
of motion (24 and 25) need to be re-expressed using additional variables to be converted into
state-space form. Equation (26) provides the many variables that correspond to these in matrix
form.). It is thus possible to develop the equations of motion for the variables specified in (26).
We start by determining the variables.

                                                                                            (26)

116



Efor et al.- Transactions of NAMP 21, (2025) 109-120

                                                                                                                                 (27)

                                                                                                                                (28)

                                                                                                              (29)   

                                                                                              (30)
In matrix form, we have;

                                                             (31)

The above can now be written more concisely as;
                                                                                                                          (32)

This state-space representation can be simulated in MathCAD 14. 

3.3 Mathcad Simulation of the Linearized Inverted Pendulum Dynamics

We now consider the simulation of the equations (27) to (30) using the computational algebra

software MathCAD 14. The stabilizing force  F is represented as  where  a is the
amplitude. M=5 ,m=2 , g0=9.8 , I=0.9 ,w=10 , a=10
 
Define a function that determines a vector of derivative values of any point (t , x )

  D ( t , X )=[
x1

1
M
acos ⁡(ωt )+ m

M
x3

1
M
acos ⁡(ωt)+

g0
M

(M+m)x2

g0x2]
Define additional argument for the ODE solver

t 0=0      Initial value of independent variable
t 1=2.5   Final value of independent variable 
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X 0=[ 010.010 ], Vector of initial function values

N=1×103 Number of solution values on [ t0 , t1 ]

        S I=Rkadapt (x0 ,t0 , t1 ,N , D)       Runge-Kuta Numerical Algorithm
t=SI ⟨0 ⟩    Independent Variable values
x1=SI

⟨1⟩   First solution function values
x2=SI

⟨2 ⟩       Second solution function values
x3=SI

⟨3 ⟩     Third solution function values
x4=SI

⟨4 ⟩    Fourth Solution function values

Table 1: Solution Matrix, SI

0 1 2 3 4
0 0 0 1 0.01 0
1 2.5×10−3 2.506×10−3 1.005 0.01 5.025×10−3

2 5×10−3 5.025×10−3 1.01 0.01 0.012
3 7.5×10−3 7.557×10−3 1.015 0.01 0.018
4 0.01 0.01 1.02 0.01 0.024
5 0.013 0.013 1.025 0.01 0.03
6 0.015 0.015 1.03 0.01 0.036
7 0.018 0.018 1.036 0.01 0.041
8 0.02 0.02 1.041 0.01 0.047
9 0.023 0.023 1.046 0.011 0.053
10 0.025 0.026 1.05 0.011 0.059
11 0.028 0.028 1.055 0.011 0.065
12 0.03 0.031 1.06 0.011 0.07
13 0.033 0.034 1.065 0.011 0.076
14 0.035 0.036 1.07 0.011 0.082
15 0.038 0.039 1.075 0.012 ...

3.2.6 Graphical profiles of the solutions
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(b)

        
                                      (c)                                                                           (d)
                                            Fig. 14 Graphical profiles of the solutions
                                       

DISCUSSIONS

We discuss the major results from the paper. The inverted pendulum has an unstable equilibrium
point at the upright position. The Pendulum dynamics are non-linear exhibiting chaotic behavior.
This is depicted in Figure 14 -graphical profiles of the solutions (a, b, c, d). The graphs are all
asymptotic around t = 2 minutes. Remembering that;
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Thus  the  distance  traveled  by  the  mass  m in  the  process  of  stabilization  is  unbounded,
similarly,  for  the  velocity ,  the  angle  changes  repeatedly  many  times  and  so  is  also
unbounded, and the same for the angular velocity . Furthermore,  we assume  the stabilizing

force F is represented by , where a, is the amplitude.  This explains the profile of
the graphs.
Sensitivity to Initial Conditions: Small changes in initial conditions lead to significantly different
outcomes. 
Bifurcations: Changes in control parameters caused sudden shifts in pendulum behavior.

CONCLUSION

In conclusion, the work has been able to use the generalized Euler-Lagrange equation to derive
the equations of motion, and a powerful computational algebra software called MathCAD 14 was
used in this research to provide the solution efficiently. The graphical profiles of the solutions (a,
b, c, d) are all asymptotic around t = 2 minutes. Hence we were able to successfully stabilize the
pendulum, enabling precise and rapid control of the carriage's position on the track.
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