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ABSTRACT 

This research paper, the solution of stiff problems by non- hybrid 

continuous multistep method for block extended second derivative 

backward differentiation formula is presented. The scheme was 

constructed through interpolation and collocation concept. The derived 

method is tested and region of absolute stability is also verified. The 

approximate solution indicates that to be efficient with better accuracy 

when compared with other author’s results.  

 

 

 

 

 

1. Introduction  

 

Ordinary differentials are mathematical model of physical phenomena in science and engineering 

that contain derivatives of an unknown function of one or more several variable always leads to 

initial value problem of the form     𝑦′ = 𝑓(𝑥, 𝑦)  with 𝑦(𝛼) = 𝜂                          (1)  

In whatever manner, few of restricted sequence of numerical schemes are proposed for solution of 

stiff ordinary differential equations with set of additional constraints. Many authors have 

developed method to approximate solution to (1) relating to numbers by reducing it to system of 

first order stiff equations. The block schemes produce approximate results with less than 

computational work as to equate to non-block method [1].  
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The modification and extension show some superiority over the conventional Backward 

Differentiation formulae method in terms of accuracy and computational cost [2]. The 

construction of continuous scheme had been overpowered in increasing concern direct to the 

fact that it adored certain benefit [3]. Introduced a direct integration implicit variable steps 

method for solving higher order systems of ordinary differential equations (ODEs). [4] Have 

solved many stiff problems in (1) presently with hybrid at the function of continuous scheme 

and the discrete method at more than one grid point simultaneously. According [5] and [6] block 

method was firstly proposed by [7] who advocated the use of block as a means of getting a starting 

value for predictor-corrector algorithm and later adopted as a full method. Their work motivated 

us to develop the non-hybrid four step continuous multistep method for block extended second 

derivative backward differentiation formula. 

Derivation of the Method 

We consider a power series as a basic function for approximation of: 
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Where p and q are number of distinct interpolation and collocation respectively.  
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Differentiating equation (2) two times and substitute into equation (1) to give,  

Now interpolating (2) at point 32,1,0, andpx pn =+
 and collocating (3) at points

43, andqx qn =+
, at lead to a system of equation written below 

YAX =         (4) 

Where,  
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Using Gaussian elimination method on (4) to solved for the sa j ' . The values of the sa j '  obtained 

and after some manipulations, this gives a non-hybrid continuous linear multistep method of the 

form; 
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Where the continuous coefficient (5) of the method are given as: 
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On evaluating (5) at all point 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2 𝑎𝑛𝑑 𝑥𝑛+4 yields the following discrete methods are 

obtained 
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ANALYSIS OF THE BASIC PROPERTIES OF THE METHOD  

Consider the linear operator ( ) hxyL :  defined by 
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Using the Taylor series expansion of ( )mm YFandY  and comparing the coefficients of h  gives 
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The linear operator L  and the associate block method are said to be of order p  if 

22110 .00 +++ ===== pppp CCCCCC   is called the error constant and implies that the 

truncation error is given by ( ) 322

2 0 +++

++ += ppp

pkn hxyhCt  

Using the concept above, the non-hybrid block methods is constructed using MAPLE 18 

SOFTWARE gives the following uniform order and error constants. 

Comparing the coefficient of h , according to [8].  

Table 1 Order and Error constant of the Method 

 

 

 

 

 

 

 

 

 

 

 

𝒚(𝒙𝒏+𝒋) 
Order Error Constant 

𝑗 = 0 7 
−

171639

8683640
 

𝑗 = 1 7 21111

1309840
 

𝑗 = 2 7  1217

31080
 

𝑗 = 3 7 
−
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50645
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REGION OF ABSOLUTE STABILITY OF THE METHOD 

The hybrid block method is said to be absolutely stable, if for a given h , all roots of the 

characteristic polynomial ( ) ( ) ( )zhzhz  −=, , satisfied 1tz . 

Applying the boundary locus method, after some manipulation, then substituting the stability 

polynomial and obtain the region of absolute stability [9] 

 

Figure 1. Absolute Stability Region of Non-Hybrid block four step- method 

NUMERICAL EXPERIMENT AND RESULTS 

 The newly constructed continuous non-hybrid second derivative block backward 

differentiation formula are applied in block form for step numbers k = 4 to solve three problem 

and results were compared with results from existing methods. 

4SNHCMMBESDBDF:  Four- Step Non-Hybrid Continuous Multistep Method for Block 

Extended Second Derivative Backward Differentiation Formula  

Problem 1 

𝑦1
′ = −29998𝑦1 − 59994𝑦2 

𝑦2
′ = 9999𝑦1 + 19997𝑦2 

                        Exact    𝑦1(𝑥) = (
1

9999
) (29997𝑒−10000𝑥-19998𝑒−𝑥)𝑦1(0) = 1 

𝑦2(𝑥) =    -𝑒−10000𝑥+𝑒−𝑥𝑦2(0) = 0 
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  𝑤𝑖𝑡ℎ ℎ = 0.01 

Table 2: Absolute errors of numerical solutions of problem 1 solve with the method𝑘 = 4 

𝑥 4SNHCMMBESDBDF 𝑓(𝑦1) 4SNHCMMBESDBDF 𝑓(𝑦2) 

0.1 

5.51156E-10 

2.75566E-10 

0.2 7.26110E-11 3.63010E-11 

0.3 

5.17330E-11 2.58680.E-11 

0.4 

5.11580E-11 2.55800E-11 

0.5 

2.77330.E-11 1.38670E-11 

0.6 

1.45410E-11 7.27000E-12 

0.7 

626800E-12 3.13400E-12 

0.8 

2.80800E-12 1.40400E-12 

0.9 

1.20500E-12 6.02000E-13 

1.0 

4.99000E-13 2.50000E-13 

   Problem 2 

𝑦1
′ = −2𝑦1 + 𝑦2 + 2𝑠𝑖𝑛𝑥 

                                       𝑦2
′ = 998𝑦1 − 999𝑦2 + 999(𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥)  𝑤𝑖𝑡ℎ ℎ = 0.01 

                                       Exact    𝑦1(𝑥) = 2𝑒−𝑥 + 𝑠𝑖𝑛𝑥𝑦1(0) = 2 

𝑦2(𝑥) = 2𝑒−𝑥 + 𝑐𝑜𝑠𝑥𝑦2(0) = 3 

Table 3: Absolute errors of numerical solutions of problem 2 solve with the method𝑘 = 4 

𝑥 4SNHCMMBESDBDF 𝑓(𝑦1) 4SNHCMMBESDBDF 𝑓(𝑦2) 

0.1 

4.73966E-03 

3.21930E-03 

0.2 1.61452E-02 1.66972E-02 

0.3 

3.01153E-02 2.91914E-02 
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0.4 

1.93145E-02 1.77641E-02 

0.5 

8.17097E-03 8.2233E-03 

0.6 

2.77493E-02 2.70109E-02 

0.7 

2.16698E-02 2.01205E-02 

0.8 

4.38621E-02 5.32198E-02 

0.9 

2.64292E-02 2.58911E-02 

1.0 

2.41806E-02 2.26633E-02 

Problem 3 

𝑦1
′ = 0.01𝑦1 − 𝑦2 + 𝑦3 

𝑦2
′ = 𝑦1 − 100.005𝑦2 + 99.995𝑦3 

𝑦3
′ = 2𝑦1 + 99.995𝑦2 − 100.005𝑦3 

                   Exact    𝑦1(𝑥) = 𝑒−0.01𝑥(𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥) 𝑦1(0) = 1 

𝑦2(𝑥) = 𝑒−0.01𝑥(𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥)  +𝑒−200𝑥     𝑦2(0) = 1 

 𝑦2(𝑥) = 𝑒−0.01𝑥(𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥) -𝑒−200𝑥      𝑦3(0) = 1 

  𝑤𝑖𝑡ℎ ℎ = 0.1 

Table 4: Absolute errors of numerical solutions of problem 3 solve with the method 𝑘 =4 

𝑥 4SNHCMMBESDBD

F (𝑦1) 

4SNHCMMBESDB

DF (𝑦2) 

4SNHCMMBESDBD

F (𝑦3) 

0.1 
2.00200E-12 5.92751E-03 0.00000E-00 

0.2 
5.45000E-13 2.37626E-04 0.00000E+00 

0.3 
1.11000E-10 3.81694E-06 0.00000E+00 

0.4 
2.00000E-11 1.35361E-08 0.00000E+00 
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0.5 

3.00000E-15 9.497435-10 0.00000E+00 

0.6 
1.00000E-15 2.77430E-11 0.00000E+00 

0.7 
0.00000E+00 3.59000E-13 0.00000E+00 

0.8 
0.00000E+00 1.00000E-15 0.00000E+00 

0.9 

0.00000E+00 0.00000E+00 0.00000E+00 

1.0 
0.00000E+00 0.00000E+00 0.00000E+00 

 

Figure 2: Curve Solution of Problem 3 Solved with 4SNHCMMBESDBDF 

 

Table 5: Comparison of 4SNHCMMBESDBDF for problem 1 
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𝑥 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑁𝑒𝑤 𝑀𝑒𝑡ℎ𝑜𝑑 

 (𝑦1) 

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑁𝑒𝑤 𝑀𝑒𝑡ℎ𝑜𝑑 

 (𝑦2) 

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 [10] 

) 

 (𝑦1) 

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 [10]  

 (𝑦2) 

0.1 
5.51156E-10 

2.75566E-7 3.61E-07 3.60E-07 

0.2 7.26110E-11 3.63010E-11 3.21E-07 3.30E-07 

0.3 
5.17330E-11 2.58680.E-11 6.28E-07 3.27E-07 

0.4 
5.11580E-11 2.55800E-11 5.65E-07 5.65E-07 

0.5 
2.77330.E-11 1.38670E-11 6.69E-07 6.68E-07 

0.6 
1.45410E-11 7.27000E-12 6.03E-07 6.02E-07 

0.7 
626800E-12 3.13400E-12 5.92E-07 5.92E-07 

0.8 
2.80800E-12 1.40400E-12 5.36E-07 5.37E-07 

0.9 
1.20500E-12 6.02000E-13 7.38E-07 7.38E-07 

1.0 
4.99000E-13 2.50000E-13 6.70E-07 6.70E-07 

 

CONCLUSION 

In this paper, we have proposed a new block numerical scheme for the solution of first-order stiff 

ordinary differential equations. The method was applied to solve three stiff problems. Maple and 

Matlab were used to generate the scheme and numerical solutions. Three numerical problem have 

been used to test the accuracy and efficiency of the developed method. The region of absolute 

stability analysis of newly developed method to be zero stable, consistent and convergent. Finally, 

we conclude that our method gave better accuracy than existing method compared in Table 5 and 

numerical Curve solutions compared with exact solutions is successful.  
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