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ABSTRACT
This research paper, the solution of stiff problems by non- hybrid
continuous multistep method for block extended second derivative
backward differentiation formula is presented. The scheme was
constructed through interpolation and collocation concept. The derived
method is tested and region of absolute stability is also verified. The
approximate solution indicates that to be efficient with better accuracy

when compared with other author’s results.
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1. Introduction

Ordinary differentials are mathematical model of physical phenomena in science and engineering
that contain derivatives of an unknown function of one or more several variable always leads to
initial value problem of the form  y' = f(x,y) with y(a) =1 1)

In whatever manner, few of restricted sequence of numerical schemes are proposed for solution of
stiff ordinary differential equations with set of additional constraints. Many authors have
developed method to approximate solution to (1) relating to numbers by reducing it to system of
first order stiff equations. The block schemes produce approximate results with less than
computational work as to equate to non-block method [1].
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The modification and extension show some superiority over the conventional Backward
Differentiation formulae method in terms of accuracy and computational cost [2]. The
construction of continuous scheme had been overpowered in increasing concern direct to the
fact that it adored certain benefit [3]. Introduced a direct integration implicit variable steps
method for solving higher order systems of ordinary differential equations (ODESs). [4] Have
solved many stiff problems in (1) presently with hybrid at the function of continuous scheme
and the discrete method at more than one grid point simultaneously. According [5] and [6] block
method was firstly proposed by [7] who advocated the use of block as a means of getting a starting
value for predictor-corrector algorithm and later adopted as a full method. Their work motivated
us to develop the non-hybrid four step continuous multistep method for block extended second
derivative backward differentiation formula.

Derivation of the Method

We consider a power series as a basic function for approximation of:
p+g-1

X)= > a,x %)
=0

Where pand gare number of distinct interpolation and collocation respectively.

f(x v,y ZJJl a; x'” @)

Differentiating equation (2) two times and substitute into equation (1) to give,

Now interpolating (2) at point x,,,, p=0,,2and 3 and collocating (3) at points
g=3and 4, at lead to a system of equation written below

n+q ’

AX =Y 4)
Where
X)X X X; Xp Xp Xp Xq 1(a Yo
Xr?+1 Xﬁ+1 X§+1 Xr31+l X:+1 Xr?+1 Xr?+1 Xr:+l 1 Yna
Xoo Xo2 Xeo Xmoo Xano Xpoo Xon o X 2 || Yoo
Xr(1J+3 Xi+3 X§+3 Xr?+3 X:+3 Xr?+3 Xr?+3 XZ+3 a5 Ynis
0 Xr?+3 2Xi+3 3X§+3 4Xr?+3 5X:+3 6X§+3 7Xr?+3 a, _ fn+3
0 Xr(1)+4 2Xi+4 3X§+4 4X3+4 5X:+4 6Xr?+4 7Xr?+4 5 fn+4
O 0 2 6Xi+3 12Xr?+3 15Xr?+3 30X:+3 42Xr?+3 a6 gn+3
0 0 2 6Xi+4 12X§+4 15Xr?+4 30X:+4 42Xr?+4 a, Onia

Using Gaussian elimination method on (4) to solved for thea;'s. The values of the a;'s obtained

and after some manipulations, this gives a non-hybrid continuous linear multistep method of the
form;
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y(X) = 0{0 (X) yn + al (X) yn+1 + aZ (X) yn+2 + a3 (X) yn+3 + h[z ﬂj (X)fn+j ] + hz {Z }/v (X)g n+v]i .l = 314Vi = 3’4

(5)
Where the continuous coefficient (5) of the method are given as:
4302x 31013x? 712991x3® 131867x* 1579x° 3319x°

@@ =1-7p + 8682h7  312552h° ' 156276h* 8682 & 156276h°
325x

312552k

(x) = 16740x 33021x? 4 107019x3 91279x* 4 21627x5  2701x® 4 139x7
T = 1447h 1447h? 5788h3 11576h* ~ 11576h5 11576h% = 11576h7

69714x 344601x% 1300707x3> 309731x* 39891x> 10635x°

14470 T 28942 11576k | 5788n*  2894h° | 5788he
1153x7

~ 11576h7

57276x 433345x% 15026527x3 14524675x* 420127x°> 508001x°®

%0)=Taa7n ~ a341h? T 156276h° | 312552h* | 34728h°  312552K8
27703x7

+312552h7
37784x 94846x? 1628897x% 1547693x* 43601x> 50947x°

Bs(x) = = 1447 | 1447h 26046h2 | 52002h%  5788h% ' 52002k
2669x7

~ 52092h6

(x) = 9909x 4 26919x% 113949x3 + 30569x* 4428x° N 1321x%  159x7
hul2) = 1447 1447h 5788h? 2894h3  1447h* = 2894h5 5788h°

ay(x) = —

() = 23496th  61882x? 4 377521x® 386641x* 4 35473x> 15047x° 4 859x’
Yl = 1447 1447 8682h 17364h? 5788h3  17364h* = 17364h5

2808th 61882x% 32823x% 8911x* 1310x> 199x° 49x7

o) =097 " 2894 ' 5788h  2829K% T 1447h3  T4a7hi T 5788R3

On evaluating (5) at all point x,,, X;,,4+1, Xn+2 and x, ., Yields the following discrete methods are
obtained

198126 1033803 866690
Yn T 731031 Yt T 31031 U2 T 31031 O3

[94846f,,5 + 26919f,,,] +

2

—_[144g, + 12376475

~ 31031 31031
+ 15363 gp44]
N 13419 80811 4 143525
h
= 5 16039,y + 4086 ] + 522= (14476, — 9870g,42 — 1150g,,,4]
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7038 9171 15950
Yn = Seg Ynti + Scg Ytz T 5eg Vnts

h 6
== [2062f15 + 783fnsa] — oo [1447 gy, + 2038045 + 214G p14]

259 259
1 16 216 1648
yn+4+1447y 1447yn+1+1447yn+2_1447yn+3
84h 3h?
1447 = [8fn+3 + 7fnsal + 2339 om0 [49n — Inal

ANALYSIS OF THE BASIC PROPERTIES OF THE METHOD

Consider the linear operator L{y(x):h} defined by

hd, f(y, )+ biF(Y,)] ©)
Using the Taylor series expansion of Y, and F(Y,,) and comparing the coefficients of h gives

L{y (x): hj=Coy(x)+ Cyy ' (x)+ -+ C,hPyP(x)+ C, h " yP(x)+ C, 0 PPy P 2 (x) +-- (7)

The linear operator L and the associate block method are said to be of order p if
C,=C=-=C,=C,,,=0 C,,#0. C_, is called the error constant and implies that the

truncation error is given byt,,, =C_,h P2y P2 (x) 4 Oh P+

Using the concept above, the non-hybrid block methods is constructed using MAPLE 18
SOFTWARE gives the following uniform order and error constants.

Comparing the coefficient ofh, according to [8].

Table 1 Order and Error constant of the Method

Order Error Constant
y(xn+j)
j=0 7 171639
8683640
j=1 7 21111
1309840
j=2 7 1217
31080
j=3 7 3
50645
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REGION OF ABSOLUTE STABILITY OF THE METHOD

The hybrid block method is said to be absolutely stable, if for a givenh, all roots of the
characteristic polynomial z(z, h) = p(z) - ho(z), satisfied |z, | <1.

Applying the boundary locus method, after some manipulation, then substituting the stability
polynomial and obtain the region of absolute stability [9]

2.5 \ \ I

1.5 }

25 i ‘ j |
05 0 05 1 15 2 25

Re(z)

Figure 1. Absolute Stability Region of Non-Hybrid block four step- method

NUMERICAL EXPERIMENT AND RESULTS

The newly constructed continuous non-hybrid second derivative block backward
differentiation formula are applied in block form for step numbers k = 4 to solve three problem
and results were compared with results from existing methods.

4ASNHCMMBESDBDF: Four- Step Non-Hybrid Continuous Multistep Method for Block
Extended Second Derivative Backward Differentiation Formula

Problem 1
y; = —29998y; — 59994y,

Y4 = 9999y, + 19997y,
Exact y;(x) = (s) (29997 ~1900%-19998¢ )y, (0) = 1
ya(x) = 71000 4e 3y, (0) = 0
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with h = 0.01

Table 2: Absolute errors of numerical solutions of problem 1 solve with the methodk = 4

x 4SNHCMMBESDBDF f (y;) 4SNHCMMBESDBDF f (y,)
0.1 2.75566E-10
5.51156E-10
0.2 7.26110E-11 3.63010E-11
0.3
5.17330E-11 2.58680.E-11
0.4
5.11580E-11 2.55800E-11
0.5
2.77330.E-11 1.38670E-11
0.6
1.45410E-11 7.27000E-12
0.7
626800E-12 3.13400E-12
0.8
2.80800E-12 1.40400E-12
0.9
1.20500E-12 6.02000E-13
1.0
4,99000E-13 2.50000E-13
Problem 2

y1 = =2y, + y, + 2sinx
Y3 = 998y; — 999y, + 999(cosx — sinx) with h = 0.01
Exact yj) = 2e7* + sinxy;(0) = 2
y2(x) = 2e ™™ + cosxy,(0) =3

Table 3: Absolute errors of numerical solutions of problem 2 solve with the methodk = 4

x 4SNHCMMBESDBDF £ (y;) 4SNHCMMBESDBDF f(y,)
0.1 3.21930E-03
4.73966E-03
0.2 1.61452E-02 1.66972E-02
0.3
3.01153E-02 2.91914E-02
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0.4

1.93145E-02 1.77641E-02
0.5

8.17097E-03 8.2233E-03
0.6

2.77493E-02 2.70109E-02
0.7

2.16698E-02 2.01205E-02
0.8

4.38621E-02 5.32198E-02
0.9

2.64292E-02 2.58911E-02
1.0

2.41806E-02 2.26633E-02

Problem 3

y; = 0.01y; —y, +y3
y5 = y; — 100.005y, + 99.995y,

y4 = 2y, + 99.995y, — 100.005y,

Exact yi(x = e~ %% (cos2x + sin2x) y,(0) = 1

Yo (x) = e 90 (cos2x + sin2x) +e200*

Y2 (%) = 7% (cos2x + sin2x) -e

with h = 0.1

v2(0) =1
“200¥ y.(0) =1

Table 4: Absolute errors of numerical solutions of problem 3 solve with the method k =4

x 4ASNHCMMBESDBD 4SNHCMMBESDB 4SNHCMMBESDBD
FOu) DF (y2) F(3)

0.1
2.00200E-12 5.92751E-03 0.00000E-00

0.2
5.45000E-13 2.37626E-04 0.00000E+00

0.3
1.11000E-10 3.81694E-06 0.00000E+00

0.4
2.00000E-11 1.35361E-08 0.00000E+00
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0.5
3.00000E-15 0.497435-10 0.00000E+00
0.6
1.00000E-15 2.77430E-11 0.00000E+00
0.7
0.00000E+00 3.59000E-13 0.00000E+00
0.8
0.00000E+00 1.00000E-15 0.00000E+00
0.9
0.00000E+00 0.00000E+00 0.00000E+00
1.0
0.00000E+00 0.00000E+00 0.00000E+00
6
x10
25 T T T
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Figure 2: Curve Solution of Problem 3 Solved with 4ASNHCMMBESDBDF

Table 5: Comparison of ASNHCMMBESDBDF for problem 1
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x Error in New Metho« Error in New Methoc Error in [10] Error in [10]
629) (v2) ) (v2)
(1)

0.1 2.75566E-7 3.61E-07 3.60E-07

5.51156E-10
0.2 7.26110E-11 3.63010E-11 3.21E-07 3.30E-07
0.3

5.17330E-11 2.58680.E-11 6.28E-07 3.27E-07
0.4

5.11580E-11 2.55800E-11 5.65E-07 5.65E-07
0.5

2.77330.E-11 1.38670E-11 6.69E-07 6.68E-07
0.6

1.45410E-11 7.27000E-12 6.03E-07 6.02E-07
0.7

626800E-12 3.13400E-12 5.92E-07 5.92E-07
0.8

2.80800E-12 1.40400E-12 5.36E-07 5.37E-07
0.9

1.20500E-12 6.02000E-13 7.38E-07 7.38E-07
1.0

4.99000E-13 2.50000E-13 6.70E-07 6.70E-07

CONCLUSION

In this paper, we have proposed a new block numerical scheme for the solution of first-order stiff
ordinary differential equations. The method was applied to solve three stiff problems. Maple and
Matlab were used to generate the scheme and numerical solutions. Three numerical problem have
been used to test the accuracy and efficiency of the developed method. The region of absolute
stability analysis of newly developed method to be zero stable, consistent and convergent. Finally,
we conclude that our method gave better accuracy than existing method compared in Table 5 and
numerical Curve solutions compared with exact solutions is successful.
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