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ABSTRACT 

Diffusion processes have been used for describing nonlinear dynamical 

systems and the geometric Brownian motion has long served as a 

foundational model for capturing stochastic nature of processes 

characterized by the continuous random fluctuations. This study developed 

a modification to Lévy process for the Nigeria exchange rate to the US 

dollar using Ito stochastic differential equation by considering the case 

where the price movement involves sudden jumps, while capturing 

statistical features present in the time series. The developed extended 

xMJNID model, assumes that the market model has no arbitrage 

opportunities and the exchange rate follows a Merton model. The extension 

was a jump composed of Poisson process with nonconstant intensity 

function. Through simulation study and application to real data, the 

xMJNID model was shown to perform better than existing diffusion models 

including the Merton model and ARIMA. Comparisons were made using 

accuracy measures and Akaike and Bayesian information criteria.  

1. Introduction  

Recently there is a growing interest in the use of diffusion for describing nonlinear dynamics 

system such as financial indices since the variances changes through time. In particular, security 

prices in itself is a random process because of the actions of many different factors, both human 

and materials, which give rise to uncertainties in the system. Diffusion processes are important in 

several areas of science for modelling real life phenomena and can be characterized in terms of its 

infinitesimal generator [1]. The geometric Brownian motion (GBM) has long served as a 

foundational model for capturing stochastic nature of processes characterized by the continuous 

random fluctuations.  
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In particular, this model has been argued to be well suited for forecasting diffusion processes [2], 

population dynamics [3] or most notably stock prices [4]. However, central to GBM is the 

assumption that logarithm of its solutions result in a normal distribution, which in real life may not 

fully encapsulate the complexities inherent in realistic systems. For instance, real data distributions 

often exhibit characteristics such as non-zero skewness, excess kurtosis or fluctuating volatility, 

notably deviating from the idealized bell curve [5. These deviations have significant implications 

for the accuracy of traditional GBM, by challenging its abilities to properly portray extreme events 

or interpret underlying dynamics of considered data [6].  

Not many recent researches have tried to extend and improve the classical geometric Brownian 

motion model in various directions. Some authors try to provide a more realistic stochastic process 

for the underlying process by introducing a stochastic process for the volatility, but most of the 

application in the far past have focused on stock prices. One of such works is [7] who replaced 

Brownian motions by fractional Brownian motions in the diffusion model and added a compound 

Poisson jump and assuming that the variance of the stock return follows a fractional stochastic 

process. [8] presented a brief historical review of diffusions in Finance, followed by an even briefer 

discussion of jump-diffusions that involve Poisson or Lévy jumps. [9] considered the problem of 

computing the moment-generating function of the first exit time from the interval (a, b) for a time-

homogeneous jump-diffusion process. Also on modelling stock prices, [10] investigated the 

fractional Brownian motion model with jump using Taylor expansion to deal with the control items 

in the model. [11] examined an optimal stopping problem for a GBM with random jumps. [12] 

gave a presentation of Black-Scholes-Merton logistic Brownian motion differential equation with 

jump diffusion. In order to deal with the sudden change of stock price and simplify the empirical 

research, [13] modified the jump-diffusion process factor of the fractional Brownian motion jump-

diffusion process. [14] presented the logistic Brownian motion with jumps, but just like [15], the 

paper was also without practicality with real or simulated datasets. [16] looked at incorporating 

jumps and mean - reversion to forecast on logistic Brownian motion that could be used to predict 

prices of energy commodities.  

The assumption that exchange rate is continuously modelled, is the basis for the use of Brownian 

motion. While this provides an interesting analysis used in the literature, it is however rather 

unrealistic. In real life, it has been observed that the dynamics of exchange rates contains 

discontinuities, hence the need for study of an extension that can cover the discontinuities. This 

study sought to develop a modification to Levy process for the exchange rate of Naira/US dollar, 

using Ito stochastic differential equation (SDE) by considering the case where the price movement 

involves sudden jumps, in the presence of seasonality, mean reversion and dependencies among 

exchange rates. Here the market model has no arbitrage opportunities and the exchange rate 

follows a Merton model [17]. An added innovation within this research is the inclusion of jumps 

composed of Poisson processes with nonconstant intensity function. 
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2 Methods 

2.1 The Lévy Processes 

Before we proceed in our proposed stochastic model for exchange rate of naira/dollar, we want to 

consider the Lévy processes. Lévy processes constitute an important family of stochastic 

processes, which includes Brownian motion as the only one that is continuous. 

Definition of Lévy Process: [18] 

A Lévy process 𝐿(𝑡) is a stochastic process on (Ω, ℱ, 𝑃) with the following properties: 

1. 𝐿(0) = 0, P –a.s. 

2. 𝐿(𝑡) has independent increments, that is, for 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ we have that the random 

variables 𝐿(𝑡0), 𝐿(𝑡1) − 𝐿(𝑡0), 𝐿(𝑡2) − 𝐿(𝑡1), ⋯ are independent. 

3. 𝐿(𝑡) has stationary increments, i.e., for all 𝑠 < 𝑡 we have that 𝐿(𝑡) − 𝐿(𝑠) has the same 

distribution as 𝐿(𝑡 − 𝑠). 
4. 𝐿(𝑡) is stochastically continues, i.e., for all 𝜖 < 0, lim

ℎ→0
𝑃(|𝐿(𝑡 + ℎ) − 𝐿(𝑡)| ≥ 𝜖) = 0. 

5. 𝐿(𝑡) has càdlàg paths, i.e., the trajectories are right-continuous with left limits.  

Unlike with Brownian motion, there is no property of normal increments with the Lévy process. 

Property 4 implies that at any time 𝑡, the probability of a jump equals zero, i.e. we cannot have 

jumps at given times. Another example of Lévy process is the Poisson process 𝑃(𝑡) given by 

𝒫(𝑃(𝑡) = 𝑛) =
𝑒−𝜆𝑡(𝜆𝑡)𝑛 

𝑛!
,            𝑡 ≥ 0 

where 𝜆 > 0 is the intensity of the process. Moreover, a compound Poisson process 𝐶𝑃(𝑡) is a 

process that sums a number of i.i.d. jumps sizes 𝑌(𝑖) over a Poisson process 𝑃(𝑡), 

𝐶𝑃(𝑡) = ∑ 𝑌(𝑖)

𝑃(𝑡)

𝑖=1

,           𝑡 ≥ 0 

where 𝜆 > 0 is the intensity and 𝐶𝑃(𝑡) is independent of 𝑌(𝑖). The compound Poisson process is 

e.g. widely used in property insurance to model the total claim amount in a portfolio, with the 

𝑌(𝑖)’s representing the individual claim amounts and 𝐶𝑃(𝑡) the number of claims in the portfolio. 

Lévy measure [19] 

Let (𝐿(𝑡))
𝑡≥0

 be a Lévy process on ℝ. The measure v on ℝ defined by 

𝑣(𝐴) = 𝐸[#𝑡 ∈ [0,1]: ∆𝐿𝑡 ≠ 0,   ∆𝐿(𝑡) ∈ 𝐴], 𝐴 ∈ 𝔅(ℝ) 

is called the Lévy measure of L. That is, the Lévy measure denotes the expected number of jumps, 

per unit time, that belongs to A. 

Next, we state the Itô-Lévy decomposition Theorem without proof, for which proof can be found 

in [19]. 

Itô-Lévy decomposition [20] 

If (𝐿(𝑡))
𝑡≥0

 is a Lévy process, then it has the decomposition 

𝐿(𝑡) = 𝛼𝑡 + 𝜎𝑊(𝑡) + ∫ 𝑧𝑁̃(𝑡, 𝑑𝑧)

|𝑧|<𝑅

+ ∫ 𝑧𝑁(𝑡, 𝑑𝑧)

|𝑧|<𝑅

                        (2) 

for some constants 𝛼, 𝜎 ∈ ℝ and 𝑅 ∈ [0, ∞]. Moreover, 𝑁̃(𝑡, 𝑑𝑧) = 𝑁(𝑡, 𝑑𝑧) − 𝑣(𝑑𝑧)𝑑𝑡 is the 

compensated Poisson random measure of 𝐿(𝑡) and 𝑊(𝑡) is a Brownian motion which is 

independent of 𝑁(𝑡, 𝑑𝑧). 
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The Itô-Lévy decomposition states that every Lévy process can be decomposed into a continuous 

Brownian motion with drift, a term incorporating the jumps that are smaller than some constant R 

and a term representing the jumps that are bigger or equal to R. The constant R can be chosen as 

small as we want, but since the case of infinitely many small jumps, i.e. ∫ |𝑧|𝑑𝑧
|𝑧|<𝑅

= ∞, could 

occur we need to compensate the Poisson random measure 𝑁(𝑑𝑡, 𝑑𝑧) around 0.  

2.2 The Merton Jump Process Model 

Let 𝑋(𝑡) be the asset price at time 𝑡, the log-return of 𝑋(𝑡), ln (
𝑋(𝑡)

𝑋(0)
) is modelled as an exponential 

Lévy process 𝐿(𝑡) according to [17] such that 

ln (
𝑋(𝑡)

𝑋(0)
) = 𝐿(𝑡) = (𝛼 −

𝜎2

2
− 𝜆𝑘̅) 𝑡 + 𝜎𝑊(𝑡) + ∑ 𝐾𝑖

𝑃(𝑡)

𝑖=1

.                                      (3) 

where 𝑊(𝑡) is a standard Brownian motion process, the term (𝛼 −
𝜎2

2
− 𝜆𝑘̅) 𝑡 + 𝜎𝑊(𝑡) is a 

Brownian motion with drift process and ∑ 𝐾𝑖
𝐿𝑡
𝑖=1  is a compound Poisson jump process, the Poisson 

process 𝑑𝑃(𝑡) with constant intensity 𝜆 causes the price to jump randomly and the mean of the 

relative price jump is 𝑘̅ ≡ 𝐸(𝑘𝑖 − 1) = 𝑒𝛾+
𝛿2

2 − 1 with variance 𝐸([𝑘𝑖 − 1 − 𝐸(𝑘𝑖 − 1)2]) =

𝑒2𝛾+𝛿2
(𝑒𝛿2

− 1), [21]. 

The model defined in equation (3) is the Merton Jump process is an extension of the Black-Scholes 

model to cater for real life assumptions including market returns do not follow a constant variance 

log-normal distribution. The model comprises two parts. The first part is a diffusion part with a 

standard wiener process W(t), while the second part is made up of jump with a compound Poisson 

process ∑ 𝐾𝑖
𝐿𝑡
𝑖=1 . The addition of a compound Poisson process is what differentiates the Merton 

model [17] from Black-Scholes model [4]. A compound Poisson process is a stochastic process 

with jumps, since occurrence of events and random arrival time are taken as jumps, which are 

random, hence they follow a Poisson process.  

2.3 Proposed Jump Process Model 

Our proposed model extends the Merton specification in equation (3) by adding compound Poisson 

process with nonconstant intensity, that is, we posit that the average number of jumps per unit time 

is a function of time and this is from the argument that in real life application, a dynamical system 

is influenced by time because a lot of factors would influence the system in the course of time. In 

addition to capturing the negative skewness and excess kurtosis of the log return density [17], we 

assume that the random jumps follow a Poisson process characterized by its intensity function 

𝜂(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠
𝑡

0
 and which we note to have the distribution 

𝒫(𝑃(𝑡) = 𝑟) = 𝑒−𝜂(𝑡) 𝜂(𝑡)𝑟

𝑟!
,             𝑟 = 0,1,2, … 

where the intensity is function of time 𝜆 = 𝜆(𝑡).  

For the sake of reference, we shall refer to our proposed model as extended Merton jump 

nonconstant intensity diffusion (xMJNID) model. We proceed thus, suppose in the small time 

interval the asset price jumps from 𝑋(𝑡) to 𝑘𝑋(𝑡). So the percentage change in the asset price 

caused by the jump is 
𝑑𝑋(𝑡)

𝑋(𝑡)
=

𝑘𝑋(𝑡) − 𝑋(𝑡)

𝑋(𝑡)
= 𝑘 − 1 

where ln(𝑘) ~𝑖. 𝑖. 𝑑. 𝑁(𝛾, 𝛿2) and means that  
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𝐸(𝑘) = 𝑒𝛾+
𝛿2

2        and       𝐸([𝑘 − 𝐸(𝑘)2]) = 𝑒2𝛾+𝛿2
(𝑒𝛿2

− 1) 

Since if ln 𝑥 ~𝑁(𝑎, 𝑏), then 𝑥~ log normal (𝑒𝑎+
𝑏2

2 , 𝑒2𝑎+𝑏2
(𝑒𝑏2

− 1)). 

So the SDE takes the form 
𝑑𝑋(𝑡)

𝑋(𝑡)
= (𝛼 − (𝑏 + 𝜆𝑡) 𝑘)𝑑𝑡 + 𝜎𝑑𝑊(𝑡) + (𝑘 − 1)𝑑𝑃(𝑡)                              (4) 

where 𝛼 is the instantaneous expected return on the asset, σ is the instantaneous volatility of the 

asset return conditional on that jump does not occur, 𝑊(𝑡) is a standard Brownian motion process, 

and 𝑃(𝑡) is an Poisson process with nonconstant intensity 𝜆𝑡 = 𝑏 + 𝜆𝑡. Also, the Brownian 

motion, the lognormal jumps, and the Poisson process are assumed to be independent. The relative 

price jump size of 𝑋(𝑡), 𝑘 − 1, is lognormally distributed with the mean and variance given 

respectively as 

𝐸(𝑘 − 1) = 𝑒𝛾+
𝛿2

2 − 1 ≡ 𝑘̅      and   𝐸[𝑘 − 1 − 𝐸(𝑘 − 1)2] = 𝑒2𝛾+𝛿2
(𝑒𝛿2

− 1). 

The expected relative rate change 𝐸 (
𝑑𝑋(𝑡)

𝑋(𝑡)
) from the jump part 𝑑𝑃(𝑡) in the time interval 𝑑𝑡 is 

(𝑏 + 𝜆𝑡) 𝑘̅𝑑𝑡. This is why the instantaneous expected return on the asset 𝛼𝑑𝑡 is adjusted by 

−(𝑏 + 𝜆𝑡) 𝑘̅𝑑𝑡 in the drift term of the jump-diffusion process to make the jump part an 

unpredictable innovation 

𝐸 (
𝑑𝑋(𝑡)

𝑋(𝑡)
) = 𝐸[(𝛼 − (𝑏 + 𝜆𝑡) 𝑘̅)𝑑𝑡] + 𝐸[𝜎𝑑𝑊(𝑡)] + 𝐸[(𝑘 − 1)𝑑𝑃(𝑡)] 

= (𝛼 − (𝑏 + 𝜆𝑡) 𝑘̅)𝑑𝑡 + 0 + (𝑏 + 𝜆𝑡) 𝑘̅𝑑𝑡 = 𝛼𝑑𝑡 

From equation (4),  

𝑑𝑋(𝑡) = (𝛼 − (𝑏 + 𝜆𝑡) 𝑘)𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊(𝑡) + (𝑘 − 1)𝑋(𝑡)𝑑𝑃(𝑡)                    (5) 

[19] give the Itô formula for the jump-diffusion process as 

𝑑𝑓(𝑋(𝑡), 𝑡) =
𝜕𝑓(𝑋(𝑡), 𝑡)

𝜕𝑡
𝑑𝑡 + 𝑏(𝑡)

𝜕𝑓(𝑋(𝑡), 𝑡)

𝜕𝑥
𝑑𝑡 +

𝜎𝑡
2

2

𝜕2𝑓(𝑋(𝑡), 𝑡)

𝜕𝑥2
𝑑𝑡

+ 𝜎(𝑡)
𝜕𝑓(𝑋(𝑡), 𝑡)

𝜕𝑥
𝑑𝑊(𝑡) + [𝑓(𝑋(𝑡−) + ∆𝑋(𝑡)) − 𝑓(𝑋(𝑡−))], 

where 𝑏(𝑡) corresponds to the drift term and 𝜎(𝑡) corresponds to the volatility term of a jump-

diffusion process 

𝑋(𝑡) = 𝑋(0) + ∫ 𝑏(𝑠)𝑑𝑠 +

𝑡

0

∫ 𝜎(𝑠)𝑑𝑊(𝑠) +

𝑡

0

∑ ∆𝑋(𝑖)

𝑃(𝑡)

𝑖=1

 

Following same we have 

𝑑 ln 𝑋(𝑡) =   
𝜕 ln 𝑋(𝑡)

𝜕𝑡
𝑑𝑡 + (𝛼 − (𝑏 + 𝜆𝑡) 𝑘̅)𝑋(𝑡)

𝜕 ln 𝑋(𝑡)

𝜕𝑋(𝑡)
+

𝜎2(𝑋(𝑡))2

2

𝜕2 ln 𝑋(𝑡)

𝜕(𝑋(𝑡))2
𝑑𝑡

+ 𝜎𝑋(𝑡)
𝜕 ln 𝑋(𝑡)

𝜕𝑋(𝑡)
𝑑𝑊(𝑡)  +  [ln 𝑘𝑋(𝑡) − ln 𝑋(𝑡)]                                             (6) 

𝑑 ln 𝑋(𝑡) = (𝛼 − (𝑏 + 𝜆𝑡) 𝑘̅)𝑋(𝑡)
1

𝑋(𝑡)
𝑑𝑡 +

𝜎2(𝑋(𝑡))2

2
(−

1

(𝑋(𝑡))2
) 𝑑𝑡 + 𝜎𝑋(𝑡)

1

𝑋(𝑡)
𝑑𝑊(𝑡)

+ [ln 𝑘 + ln 𝑋(𝑡) − ln 𝑋(𝑡)] 

= (𝛼 − (𝑏 + 𝜆𝑡) 𝑘̅)𝑑𝑡 −
𝜎2

2
𝑑𝑡 + 𝜎𝑑𝑊(𝑡) + ln 𝑘 
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ln 𝑋(𝑡) − ln 𝑋(0) = (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) (𝑡 − 0) + 𝜎(𝑡)(𝑊(𝑡) − 𝑊(0)) + ∑ ln 𝑘𝑖

𝑃(𝑡)

𝑖=1

 

ln 𝑋(𝑡) = ln 𝑋(0) + (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) (𝑡 − 0) + 𝜎(𝑡)(𝑊(𝑡) − 𝑊(0)) + ∑ ln 𝑘𝑖

𝑃(𝑡)

𝑖=1

 

ln 𝑋(𝑡) = ln 𝑋(0) + (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) (𝑡 − 0) + 𝜎(𝑡)𝑊(𝑡) + ∑ ln 𝑘𝑖

𝑃(𝑡)

𝑖=1

 

exp(ln 𝑋(𝑡)) = exp {ln 𝑋(0) + (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) (𝑡 − 0) + 𝜎(𝑡)𝑊(𝑡) + ∑ ln 𝑘𝑖

𝑃(𝑡)

𝑖=1

} 

𝑋(𝑡) = 𝑋(0) exp {(𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝜎(𝑡)𝑊(𝑡)} exp (∑ ln 𝑘𝑖

𝑃(𝑡)

𝑖=1

) 

𝑋(𝑡) = 𝑋(0) exp {(𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝜎𝑊(𝑡)} ∏ 𝑘𝑖

𝑃(𝑡)

𝑖=1

 

𝑋(𝑡) = 𝑋(0) exp {(𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝜎𝑊(𝑡) + ∑ ln 𝑘𝑖

𝑃(𝑡)

𝑖=1

}                      (7) 

Using the previous definition of the log rate jump size ln 𝑘𝑖 = 𝐾𝑖 

𝑋(𝑡) = 𝑋(0) exp {(𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝜎𝑊(𝑡) + ∑ 𝐾𝑖

𝑃(𝑡)

𝑖=1

}                            (8) 

This implies that 𝑋(𝑡) is an exponential Lévy model 𝑋(𝑡) = 𝑋(0)𝑒𝑃(𝑡) with a compound Poisson 

jump part given as 

𝐶𝑃(𝑡) = (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝜎𝑊(𝑡) + ∑ 𝐾𝑖

𝑃(𝑡)

𝑖=1

 

We note that the compound Poisson jump process ∏ 𝑘𝑖
𝑃(𝑡)
𝑖=1 = 1 if 𝑃(𝑡) = 0 or positive and 

negative jumps cancel each other out.  

In the Black-Scholes case, log return ln(𝑋(𝑡) 𝑋(0)⁄ ) is normally distributed [4]  

𝑋(𝑡) = 𝑋(0) exp {(𝛼 −
𝜎2

2
) 𝑡 + 𝜎𝑊(𝑡)} 

ln(𝑋(𝑡) 𝑋(0)⁄ ) ~𝑁 ((𝛼 −
𝜎2

2
) 𝑡, 𝜎2𝑡) 

[17] posited that the existence of compound Poisson jump process makes log return non-normal, 

which enables the probability density of log return 𝑦(𝑡) = ln(𝑋(𝑡) 𝑋(0)⁄ ) to be obtained as a 

quickly converging series of the following form 

𝒫(𝑦(𝑡) ∈ 𝐴) = ∑ 𝒫(𝑃(𝑡) = 𝑖)𝒫(𝑦(𝑡) ∈ 𝐴|𝑃(𝑡) = 𝑖)

∞

𝑖=0

 

𝒫(𝑦(𝑡)) = ∑
𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!

∞

𝑖=0

𝑁 (𝑦(𝑡); (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝑖𝛾, 𝜎2𝑡 + 𝑖𝛿2)             (9) 
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where  

𝑁 (𝑦(𝑡); (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝑖𝛾, 𝜎2𝑡 + 𝑖𝛿2) 

=
1

√2𝜋𝜎2𝑡 + 𝑖𝛿2
exp [−

𝑥𝑡 − {(𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝑖𝛾}

2(𝜎2𝑡 + 𝑖𝛿2)
] 

The term 𝒫(𝑃(𝑡) = 𝑖) =
𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!
 is the probability that the asset price jumps 𝑖 times during the 

time interval of length 𝑡 and  

𝒫(𝑦(𝑡) ∈ 𝐴|𝑃(𝑡) = 𝑖) = 𝑁 (𝑥𝑡; (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝑖𝛾, 𝜎2𝑡 + 𝑖𝛿2) 

is the Black-Scholes normal density of log-return assuming that the asset price jumps 𝑖 times in 

the time interval of 𝑡. Therefore, the log-return density as in the Merton model can be interpreted 

as the weighted average of the Black-Scholes normal density by the probability that the asset price 

jumps 𝑖 times. 

The characteristic function of the model can be calculated by Fourier transform of the log-return 

density function with parameters (𝑎, 𝑏) = (1,1) 

𝜙(𝜔) = ∫ exp(𝑖𝜔𝑦(𝑡)) 𝒫(𝑦(𝑡))𝑑𝑦(𝑡)

∞

−∞

                                                    (10) 

= exp [(𝑏 + 𝜆𝑡) exp {
1

2
𝜔(2𝑖𝛾 − 𝛿2𝜔)} − (𝑏 + 𝜆𝑡)(1 + 𝑖𝜔𝑘̅) −

1

2
𝑡𝜔{−2𝑖𝛼 + 𝜎2(𝑖 + 𝜔)}] 

= exp [(𝑏 + 𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} − (𝑏 + 𝑏𝑖𝜔𝑘̅ + 𝜆𝑡 + 𝑖𝜔𝑘̅𝜆𝑡) + 𝑖𝛼𝑡𝜔 −
1

2
𝑡𝜔𝜎2𝑖 −

1

2
𝑡𝑖𝜔2] 

= exp [(𝑏 + 𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} − 𝑏 − 𝑏𝑖𝜔𝑘̅ − 𝜆𝑡 − 𝑖𝜔𝑘̅𝜆𝑡 + 𝑖𝛼𝑡𝜔 −
1

2
𝑡𝜔𝜎2𝑖 −

1

2
𝑡𝑖𝜔2] 

= exp [(𝑏 + 𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} −
𝑖𝜔

2
(2𝑏𝑘̅ + 2𝑘̅𝜆𝑡 − 2𝛼𝑡 − 𝑡𝜎2) −

1

2
𝑡𝑖𝜔2 − (𝑏 + 𝜆𝑡)] 

= exp [(𝑏 + 𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} − (𝑏 + 𝜆𝑡) −
𝑖𝜔

2
(2𝑏𝑘̅ + 2𝑘̅𝜆𝑡 − 2𝛼𝑡 − 𝑡𝜎2) −

1

2
𝑡𝑖𝜔2] 

= exp [(𝑏 + 𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) −
𝑖𝜔

2
(2𝑏𝑘̅ + 2𝑘̅𝜆𝑡 − 2𝛼𝑡 − 𝑡𝜎2) −

1

2
𝑡𝑖𝜔2] 

= exp [(𝑏 + 𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) − 𝑖𝜔 (𝑏𝑘̅ + 𝑘̅𝜆𝑡 − 𝛼𝑡 −
𝑡𝜎2

2
) −

1

2
𝑡𝑖𝜔2] 

= exp [(𝑏 + 𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) − 𝑖𝜔 (−𝛼𝑡 −
𝑡𝜎2

2
+ (𝑏 + 𝜆𝑡)𝑘̅) −

1

2
𝑡𝑖𝜔2] 

= exp [(𝑏 + 𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) + 𝑖𝜔 (𝛼𝑡 −
𝑡𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) −

1

2
𝑡𝑖𝜔2] 

Let  

𝜓(𝜔) = (𝑏 + 𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) + 𝑖𝜔 (𝛼𝑡 −
𝑡𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) −

1

2
𝑡𝑖𝜔2     (11) 

be the characteristic exponent or cumulant generating function, where 𝑘̅ ≡ 𝑒𝛾+
𝛿2

2 − 1. We then 

have 

𝜙(𝜔) = exp[𝑡𝜓(𝜔)] 
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Following the procedure of [21], the characteristic exponent (11) can be alternatively obtained by 

substituting the Lévy measure of the model 

ℓ(𝑑𝑥) =
𝜆

√2𝜋𝛿2
exp {

(𝑑𝑥 − 𝛾)

2𝛿2
} = (𝑏 + 𝜆𝑡)𝑓(𝑑𝑥) 

into the Lévy-Khinchin representation of the finite variation type  

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ ∫ {exp(𝑖𝜔𝑥) − 1}ℓ(𝑑𝑥)

∞

−∞

 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ ∫ {exp(𝑖𝜔𝑥) − 1}(𝑏 + 𝜆𝑡)𝑓(𝑑𝑥)

∞

−∞

 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ (𝑏 + 𝜆𝑡) ∫ {exp(𝑖𝜔𝑥) − 1}𝑓(𝑑𝑥)

∞

−∞

 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ (𝑏 + 𝜆𝑡) { ∫ exp(𝑖𝜔𝑥)𝑓(𝑑𝑥) − ∫ 𝑓(𝑑𝑥)

∞

−∞

∞

−∞

}         (12) 

Since ∫ exp(𝑖𝜔𝑥)𝑓(𝑑𝑥)
∞

−∞
 is the characteristic function of 𝑓(𝑑𝑥), 

∫ exp(𝑖𝜔𝑥)𝑓(𝑑𝑥)

∞

−∞

= exp (𝜔𝑖𝜐 −
𝛿2𝜔2

2
) 

Therefore, 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ (𝑏 + 𝜆𝑡) {exp (𝜔𝑖𝜐 −

𝛿2𝜔2

2
) − 1}                  (13) 

where 𝜐 = 𝛼𝑡 −
𝑡𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅. This corresponds to (11). 

2.3.1 Log Exchange rate process with the nonconstant intensity 

We recall the log exchange rate dynamics as 

ln 𝑋(𝑡) = ln 𝑋(0) + (𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) (𝑡 − 0) + 𝜎(𝑡)𝑊(𝑡) + ∑ ln 𝑘𝑖

𝐿𝑡

𝑖=1

 

Hence the characteristic function of the probability density of log exchange rate ln 𝑋(𝑡) in equation 

(10) with the term 𝑦(𝑡)  replaced by ln 𝑋(𝑡) and with the Fourier transform above is 

𝜙(𝜔) = ∫ exp(𝑖𝜔 ln 𝑋(𝑡)) 𝒫(ln 𝑋(𝑡))𝑑 ln 𝑋(𝑡)

∞

−∞

 

= exp [(𝑏 + 𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) + 𝑖𝜔 (𝛼𝑡 −
𝑡𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) −

1

2
𝑡𝑖𝜔2] (14) 

with 𝑘̅ = 𝑒𝛾+
𝛿2

2 − 1. 
The diffusion process of the log-return for the exchange rate is  

𝑋(𝑡) = 𝑋(0)𝑒
(𝑟−(𝑏+𝜆𝑡)𝑘̅−

𝜎2

2
)𝑡+𝜎𝑊𝑡𝑈(𝑛(𝑡))                                        (15) 

where  

𝑈(𝑛(𝑡)) = ∏(1 + 𝑘𝑖)

𝑛(𝑡)

𝑖=0
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2.3.2 Derivation of the arbitrage-free dynamics of 𝑋(𝑡) 

We introduce the auxiliary process 𝑋(𝑡)∗ given by 

𝑋(𝑡)∗ ≔
𝑊(𝑡)𝑓𝑋(𝑡)

𝑊(𝑡)𝑑
= 𝑒(𝑟𝑓−𝑟𝑑)𝑡𝑋(𝑡)                                                             (16) 

Hence, 

𝑋(𝑡)∗ = 𝑋(0) exp ((𝛼 −
𝜎2

2
(𝑏 + 𝜆𝑡) 𝑘̅) 𝑡 + 𝜎𝑊(𝑡) + 𝑃(𝑡))                                         (17) 

where 𝜇 = 𝜇 + 𝑟𝑓 − 𝑟𝑑. 

Since 𝑃(𝑡) is a subordinator, we have 

𝑃(𝑡) = 𝑚𝑡 + ∫ ∫ 𝑧𝑁(𝑑𝑠, 𝑑𝑧)

∞

0

𝑡

0

= ∫ ∫ 𝑧𝑁(𝑑𝑠, 𝑑𝑧)

∞

0

𝑡

0

,      𝑚 = 0 

The last equation follows from 

𝐸[𝑃(𝑡)] = 𝑚𝑡 + 𝐸 [∫ ∫ 𝑧𝑁(𝑑𝑠, 𝑑𝑧)

∞

0

𝑡

0

] = 𝑚𝑡 + 𝐸 [∫ ∫ 𝑧𝑁(𝑑𝑠, 𝑑𝑧)

∞

0

𝑡

0

] 

= 𝑚𝑡 + 𝐸 [𝑡 ∫ 𝑧𝑣(𝑑𝑧)

∞

0

] = 𝑚𝑡 + 𝐸 [𝑡 ∫ 𝑧𝑎𝑧−1𝑒−𝑏𝑧𝑑𝑧

∞

0

] 

= 𝑚𝑡 + 𝐸 [𝑎𝑡 ∫ 𝑒−𝑏𝑧

∞

0

] = 𝑚𝑡 + 𝐸 [𝑎𝑡
1

𝑏
] = 𝑚𝑡 + 𝑡

𝑎

𝑏
 

Since the expectation of the Gamma process 𝐸[𝑃(𝑡)] equals 
𝑎

𝑏
 , we have to have 𝑚 = 0. By the 

Itô formula we proceed with the following mathematical computation. 

𝑋(𝑡)∗ = 𝑋(0) + ∫ 𝑋(𝑠)∗𝜎𝑑𝑊(𝑠)

𝑡

0

+ ∫ 𝑋(𝑠)∗ (𝜇 −
1

2
𝜎2) 𝑑𝑠

𝑡

0

+
1

2
∫ 𝑋(𝑠)∗𝜎2𝑑𝑠

𝑡

0

+ ∫ ∫ 𝑋(𝑠−)∗(𝑒𝑧 − 1)𝑁(𝑑𝑠, 𝑑𝑧)

∞

0

𝑡

0

 

= 𝑋(0) + ∫ 𝑋(𝑠)∗𝜎𝑑𝑊(𝑠)

𝑡

0

+ ∫ 𝑋(𝑠)∗𝜇𝑑𝑠

𝑡

0

+ ∫ ∫ 𝑋(𝑠)∗(𝑒𝑧 − 1)𝑣(𝑑𝑧)𝑑𝑠

∞

0

𝑡

0

+ ∫ ∫ 𝑋(𝑠−)∗(𝑒𝑧 − 1)𝑁̃(𝑑𝑠, 𝑑𝑧)

∞

0

𝑡

0

 

= 𝑋(0) + ∫ 𝑋(𝑠)∗𝜎𝑑𝑊(𝑠)

𝑡

0

+ ∫ 𝑋(𝑠)∗𝜇𝑑𝑠

𝑡

0

+ ∫ ∫ 𝑋(𝑠)∗(𝑒𝑧 − 1)𝑣(𝑑𝑧)𝑑𝑠

∞

0

𝑡

0

+ ∫ ∫ 𝑋(𝑠−)∗(𝑒𝑧 − 1)𝑁̃(𝑑𝑠, 𝑑𝑧)

∞

0

𝑡

0

, 

where we have inserted the compensated Poisson measure 𝑁̃(𝑑𝑧, 𝑑𝑠) = 𝑁(𝑑𝑧, 𝑑𝑠) − 𝑣(𝑑𝑧)𝑑𝑠 in 

the second equality. 

We see that if 
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𝜇 + ∫ (𝑒𝑧 − 1)𝑣(𝑑𝑧)

∞

0

= 0, 

then 𝑋(𝑡)∗ is a local martingale with respect to 𝑃∗ = 𝑃 (the physical measure). Hence, 𝑋(𝑡) has 

arbitrage-free dynamics if 

𝜇 = 𝑟𝑑 − 𝑟𝑓 − ∫ (𝑒𝑧 − 1)𝑣(𝑑𝑧)

∞

0

.                                                     (18) 

2.3.3 General risk neutral measures for the xMJNID model 

We note that to have 𝑎, 𝑏 > 0, then ∫ (𝑒𝑧 − 1)2𝑣(𝑑𝑧)
∞

0
 exists. This is so because, by insertion of 

the Lévy measure, we have that 

∫ (𝑒𝑧 − 1)2𝑣(𝑑𝑧)

∞

0

= ∫(𝑒𝑧 − 1)2𝑎𝑧−1𝑒−𝑏𝑧𝑑𝑧

∞

0

,    when  𝑣(𝑑𝑧) =  𝑎𝑧−1𝑒−𝑏𝑧 

Moreover, we can see that using the mean value theorem, 𝑒𝑧 − 1 = 𝑒𝑧 − 𝑒0 = 𝑧 ∙ ∫ 𝑒𝜃𝑧𝑑𝜃
1

0
, we 

have that 

∫(𝑒𝑧 − 1)𝑣(𝑑𝑧)

∞

0

= ∫ ∫ 𝑒𝜃𝑧𝑑𝜃 𝑧 𝑣(𝑑𝑧)

1

0

∞

0

                                (19) 

and inputting the expression for the Lévy measure, we have 

= ∫ ∫ 𝑒𝜃𝑧𝑑𝜃 ∙  𝑎𝑒−𝑏𝑧𝑑𝑧

1

0

∞

0

= 𝑎 ∫ (∫ 𝑒𝑧(𝜃−𝑏)𝑑𝑧

∞

0

) 𝑑𝜃

1

0

 

where we utilize Fubini’s theorem. Then we have,  

= 𝑎 ∫ [
1

𝜃 − 𝑏
𝑒𝑧(𝜃−𝑏)|

0

∞

] 𝑑𝜃

1

0

= 𝑎 ∫
1

𝜃 − 𝑏
𝑑𝜃

1

0

 

where also we assume that 𝑏 > 1 . 
= 𝑎 ∙ [log(𝑏 − 𝜃)|0

1] = 𝑎(log(𝑏 − 1) − log(𝑏)). 
The log-returns are given by 

𝑌(𝑡𝑖) = log (
𝑋(𝑡𝑖)

𝑋(𝑡𝑖−1)
)                                                              (20) 

= (𝜇 −
1

2
𝜎2) ∆𝑡 + 𝜎(𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)) + 𝑃(𝑡𝑖) − 𝑃(𝑡𝑖−1) 

= (𝑟𝑑 − 𝑟𝑓 − 𝑎(log(𝑏 − 1) − log(𝑏)) −
1

2
𝜎2) ∆𝑡 + 𝜎(𝑊(𝑡𝑖) − 𝑊𝐵(𝑡𝑖−1)) + 𝑃(𝑡𝑖) − 𝑃(𝑡𝑖−1) 

Here 𝑊(𝑡𝑖) and 𝑃(𝑡𝑖) are independent stochastic processes and 𝑌(𝑡𝑖) can be written in the 

following way: 

𝑌(𝑡𝑖) = 𝑦1 + 𝑦2 

where 

𝑦1 ∶= (𝑟𝑑 − 𝑟𝑓 − 𝑎(log(𝑏 − 1) − log(𝑏)) −
1

2
𝜎2) ∆𝑡 + 𝜎(𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)) 

𝑦2 ≔ 𝑃(𝑡𝑖) − 𝑃(𝑡𝑖−1) 

In order to find the density of 𝑌(𝑡𝑖) we compute 

𝒫(𝑌(𝑡𝑖) ≤ 𝑦) = 𝒫(𝑦1 + 𝑦2 ≤ 𝑥) = 𝐸[𝟙{𝑦1+𝑦2≤𝑦}(𝑦1 + 𝑦2)]                           (21) 
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= ∫ ∫ 𝟙{𝑦1+𝑦2≤𝑦}(𝑦1 + 𝑦2) ∙ 𝑓𝑌1,𝑌2

(𝑦1,𝑦2)
𝑑𝑦1𝑑𝑦2

∞

0

∞

−∞

 

with 𝑦1, 𝑦2 independent, then 

∫ ∫ 𝟙{𝑦1+𝑦2≤𝑦}(𝑦1 + 𝑦2) ∙ 𝑓𝑌1,𝑌2

(𝑦1,𝑦2)
𝑑𝑦1𝑑𝑦2

∞

0

∞

−∞

 

= ∫ ∫ 𝟙(−∞,𝑦](𝑦1)𝟙[0,𝑦−𝑦1](𝑦2) ∙ 𝑓𝑌1

(𝑦1)
𝑓𝑌2

(𝑦2)
𝑑𝑦1𝑑𝑦2

∞

0

∞

−∞

 

= ∫   ∫ 𝑓𝑌1

(𝑦1)
𝑓𝑌2

(𝑦2)
𝑑𝑦2𝑑𝑦1

𝑦−𝑦1

0

𝑦

−∞

, 

where 𝟙(−∞,𝑦) is the indicator function of the interval (−∞, 𝑦]. 

The density of the log-returns are now given by 

𝑓𝑌(𝑡𝑖)(𝑦) =
𝜕

𝜕𝑦
𝑃(𝑌(𝑡𝑖) ≤ 𝑦) = ∫ 𝑓𝑌1

(𝑦1)𝑓𝑌2
(𝑦 − 𝑦1)𝑑𝑦1

𝑦

−∞

,                     (22) 

where  

𝑓𝑌1
(𝑦) =

1

(2𝜋∆𝑡𝜎2)
1
2

exp (−
(𝑦 − (𝑟𝑑 − 𝑟𝑓 − 𝑎(log(𝑏 − 1) − log(𝑏)) −

1
2 𝜎2) ∆𝑡)

2

2∆𝑡𝜎2
) 

𝑓𝑌2
(𝑦) =

𝑏𝑎∆𝑡

Γ(𝑎∆𝑡)
𝑥𝑎∆𝑡−1𝑒−𝑏𝑦. 

Hence, 

𝑓𝑌1
(𝑦1)𝑓𝑌2

(𝑦 − 𝑦1) 

=
1

(2𝜋∆𝑡𝜎2)
1
2

exp (−
(𝑦1 − (𝑟𝑑 − 𝑟𝑓 − 𝑎(log(𝑏 − 1) − log(𝑏)) −

1
2 𝜎2) ∆𝑡)

2

2∆𝑡𝜎2
)

∙
𝑏𝑎∆𝑡

Γ(𝑎∆𝑡)
(𝑦 − 𝑦1)𝑎∆𝑡−1𝑒−𝑏(𝑦−𝑦1) 

=
1

(2𝜋∆𝑡𝜎2)
1
2

exp (−
(𝑦1 − 𝑠)2

2∆𝑡𝜎2
) ∙

𝑏𝑎∆𝑡

Γ(𝑎∆𝑡)
(𝑥 − 𝑦1)𝑎∆𝑡−1𝑒𝑏𝑦1𝑒−𝑏𝑦 

=
1

(2𝜋∆𝑡𝜎2)
1
2

exp (−
(𝑦1 − 𝑠)2

2∆𝑡𝜎2
+ 𝑏𝑦1) ∙

𝑏𝑎∆𝑡

Γ(𝑎∆𝑡)
(𝑥 − 𝑦1)𝑎∆𝑡−1𝑒−𝑏𝑦,                (23) 

where we have defined 𝑠 ∶= (𝑟𝑑 − 𝑟𝑓 − 𝑎(log(𝑏 − 1) − log(𝑏)) −
1

2
𝜎2) ∆𝑡. Taking the 

expression in the exponent in (22), we have that 

−
(𝑦1 − 𝑠)2

2∆𝑡𝜎2
+ 𝑏𝑦1 = −

1

2∆𝑡𝜎2
(𝑦1

2 − 2(𝑠 + ∆𝑡𝜎2𝑏)𝑦1) + 𝑠2) 

= −
1

2∆𝑡𝜎2
(𝑦1

2 − 2𝑠̃𝑦1 + 𝑠2) 

= −
1

2∆𝑡𝜎2
(𝑦1

2 − 2𝑠̃𝑦1 + 𝑠̃2 − 𝑠̃2 + 𝑠2) 



Okeji et al.- Transactions of NAMP 21, (2025) 155-174 

166 

= −
1

2∆𝑡𝜎2
((𝑦1 − 𝑠̃)2 − 𝑠̃2 + 𝑠2) 

= −
(𝑦1 − 𝑠̃)2

2∆𝑡𝜎2
+

(−𝑠̃2 + 𝑠2)

2∆𝑡𝜎2
 

where we have defined 𝑠̃ ∶= 𝑠 + ∆𝑡𝜎2𝑏. 

The likelihood function is given by 

𝐿(𝑦1, … , 𝑦𝑚; 𝜎2, 𝑎, 𝑏) = ∏ 𝑓𝑌(𝑡𝑖)(𝑦𝑖)

𝑚

𝑖=1

                                           (24) 

and we find the MLE’s by considering the equations 
𝜕

𝜕𝜎2
𝐿(𝑦1, … , 𝑦𝑚; 𝜎2, 𝑎, 𝑏) = 0                                                  (25) 

𝜕

𝜕𝑎
𝐿(𝑦1, … , 𝑦𝑚; 𝜎2, 𝑎, 𝑏) = 0                                                    (26) 

𝜕

𝜕𝑏
𝐿(𝑦1, … , 𝑦𝑚; 𝜎2, 𝑎, 𝑏) = 0                                                    (27) 

We will for simplicity assume that 𝑎∆𝑡 = 1, consequently 𝑎 =
1

∆𝑡
 and the calculation of (26) is 

omitted. Insertion of (23) into (22) gives 

𝑓𝑌(𝑡𝑖)(𝑥) = ∫
1

(2𝜋∆𝑡𝜎2)
1
2

exp (−
(𝑦1 − 𝑠̃)2

2∆𝑡𝜎2
+

(−𝑠̃2 + 𝑠2)

2∆𝑡𝜎2
) ∙

𝑏𝑎∆𝑡

Γ(𝑎∆𝑡)
(𝑥 − 𝑥1)𝑎∆𝑡−1𝑏𝑒−𝑏𝑦𝑑𝑦1

𝑦

−∞

, 

with 𝑎∆𝑡 = 1, then it becomes  

= ∫
1

(2𝜋∆𝑡𝜎2)
1
2

exp (−
(𝑦1 − 𝑠̃)2

2∆𝑡𝜎2
+

(−𝑠̃2 + 𝑠2)

2∆𝑡𝜎2
) ∙ 𝑏𝑒−𝑏𝑦𝑑𝑦1

𝑦

−∞

 

= exp (−
𝑠2 − 𝑠̃2

2∆𝑡𝜎2
) ∙ 𝑏𝑒−𝑏𝑦 ∙

1

(2𝜋∆𝑡𝜎2)
1
2

∫ exp (−
(𝑦1 − 𝑠̃)2

2∆𝑡𝜎2
) 𝑑𝑦1

𝑦

−∞

 

= exp (−
𝑠2 − 𝑠̃2

2∆𝑡𝜎2
) 𝑏𝑒−𝑏𝑦 ∙ Φ𝑠̃,∆𝑡𝜎2(𝑦𝑖),                                                (28) 

where Φ𝑠̃,∆𝑡𝜎2(𝑦𝑖) is the normal cumulative distribution with mean 𝑠̃ and variance ∆𝑡𝜎2. 

The likelihood function can now be written as 

𝐿(𝑦1, … , 𝑦𝑚; 𝜎2, 𝑏) = ∏ 𝑓𝑋(𝑡𝑖)(𝑥𝑖)

𝑚

𝑖=1

 

= 𝑏𝑚 exp (−𝑚
(𝑠2 − 𝑠̃2)

2∆𝑡𝜎2
) exp (−𝑏 ∑ 𝑦𝑖

𝑚

𝑖=1

) ∙ ∏ Φ𝑠̃,∆𝑡𝜎2(𝑦𝑖)

𝑚

𝑖=1

.                           (29) 

2.4 Estimation of log-returns for the 𝑋(𝑡) with xMJNID model 

The estimation approach to be used here in based on quasi-likelihood method. From the log-

likelihood function of equation (29), we choose the physical measure, i.e. 𝑢(𝑡)  =  0 in the 

Girsanov calculations, resulting in 𝜇 as the constant  =  𝑟𝑑  −  𝑟𝑓,  and also take we 𝑏 = 1 and have 

the following likelihood function 

𝐿(𝑦1, … , 𝑦𝑚; 𝜎2) = log ∏ 𝑓𝑌(𝑡𝑖)(𝑦𝑖)

𝑚

𝑖=1

=
1

(2𝜋∆𝑡𝜎2)
𝑚
2

exp (−
∑ (𝑦 − (𝜇 −

1
2 𝜎2) ∆𝑡)

2
𝑚
𝑖=1

2∆𝑡𝜎2
) (30) 
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and the log-likelihood function 

𝑙(𝑦1, … , 𝑦𝑚; 𝜎2) = log[𝐿(𝑦1, … , 𝑦𝑚; 𝜎2; 𝑏)] = log (
1

(2𝜋∆𝑡𝜎2)
𝑚
2

) −
∑ (𝑦 − (𝜇 −

1
2 𝜎2) ∆𝑡)

2
𝑚
𝑖=1

2∆𝑡𝜎2
 

= −
𝑚

2
log(2𝜋∆𝑡𝜎2) −

∑ (𝑦 − (𝜇 −
1
2 𝜎2) ∆𝑡)

2
𝑚
𝑖=1

2∆𝑡𝜎2
 

Differentiating with respect to 𝜎2  and equating to zero gives 
𝜕

𝜕𝜎2
𝑙(𝑦1, … , 𝑦𝑚; 𝜎2)

= −
𝑚

2

1

2𝜋∆𝑡𝜎2
∙ (2𝜋∆𝑡)

−
2 ∑ (𝑦𝑖 − (𝜇 −

1
2 𝜎2) ∆𝑡) ∙

1
2 ∆𝑡 ∙ 2∆𝑡𝜎2 − ∑ (𝑦𝑖 − (𝜇 −

1
2 𝜎2) ∆𝑡)

2

∙ 2∆𝑡𝑚
𝑖=1

𝑚
𝑖=1

(2∆𝑡𝜎2)2
                         (31) 

= −
𝑚

2𝜎2
−

∑ (𝑦𝑖 − (𝜇 −
1
2 𝜎2) ∆𝑡) ∙ ∆𝑡𝜎2 − ∑ (𝑦𝑖 − (𝜇 −

1
2 𝜎2) ∆𝑡)

2
𝑚
𝑖=1

𝑚
𝑖=1

(2∆𝑡𝜎4)
 

=
−𝑚∆𝑡𝜎2 − ∑ (𝑦𝑖 − (𝜇 −

1
2 𝜎2) ∆𝑡) ∙ ∆𝑡𝜎2 + ∑ (𝑦𝑖 − (𝜇 −

1
2 𝜎2) ∆𝑡)

2
𝑚
𝑖=1

𝑚
𝑖=1

(2∆𝑡𝜎4)
= 0 

and solving for 𝜎2 gives the quasi-maximum likelihood estimate 

−𝑚∆𝑡𝜎2 − ∑ (𝑦𝑖 − (𝜇 −
1

2
𝜎2) ∆𝑡) ∙ ∆𝑡𝜎2 + ∑ (𝑦𝑖 − (𝜇 −

1

2
𝜎2) ∆𝑡)

2𝑚

𝑖=1

𝑚

𝑖=1

= 0 

−𝑚∆𝑡𝜎2 − ∆𝑡𝜎2 ∑ (𝑦𝑖 − (𝜇 −
1

2
𝜎2) ∆𝑡) + ∑ (𝑦𝑖

2 − 2𝑦𝑖 (𝜇 −
1

2
𝜎2) ∆𝑡) ((𝜇 −

1

2
𝜎2) ∆𝑡)

2𝑚

𝑖=1

𝑚

𝑖=1

= 0 

−𝑚∆𝑡𝜎2 − ∆𝑡𝜎2 ∑ 𝑥𝑖

𝑚

𝑖=1

+ 𝑚(∆𝑡)2𝜎2 (𝜇 −
1

2
𝜎2) + ∑ 𝑦𝑖

2

𝑚

𝑖=1

− 2∆𝑡 (𝜇 −
1

2
𝜎2) ∑ 𝑦𝑖

𝑚

𝑖=1

+ 𝑚 (𝜇 −
1

2
𝜎2)

2

(∆𝑡)2 = 0 

−𝑚∆𝑡𝜎2 − ∆𝑡𝜎2 ∑ 𝑦𝑖

𝑚

𝑖=1

+ 𝑚(∆𝑡)2𝜎2 (𝜇 −
1

2
𝜎2) + ∑ 𝑦𝑖

2

𝑚

𝑖=1

− 2∆𝑡 (𝜇 −
1

2
𝜎2) ∑ 𝑦𝑖

𝑚

𝑖=1

+ 𝑚 (𝜇 −
1

2
𝜎2)

2

(∆𝑡)2 = 0 

−𝑚∆𝑡𝜎2 + ∑ 𝑦𝑖
2

𝑚

𝑖=1

− 2∆𝑡𝜇 ∑ 𝑦𝑖

𝑚

𝑖=1

−
𝑚

4
𝜎2(∆𝑡)2 + 𝑚(∆𝑡)2𝜇2 = 0 

𝑚

4
𝜎4(∆𝑡)2 + 𝑚∆𝑡𝜎2 − (∑ 𝑦𝑖

2

𝑚

𝑖=1

− 2∆𝑡𝜇 ∑ 𝑦𝑖

𝑚

𝑖=1

+ 𝑚(∆𝑡)2𝜇2) = 0 

𝑚

4
𝜎4(∆𝑡)2 + 𝑚∆𝑡𝜎2 − (∑(𝑦𝑖 − ∆𝑡𝜇)1

𝑚

𝑖=1

) = 0 

This is an equation of second order with respect to 𝜎2 
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𝜎2 =
−𝑚∆𝑡 ± √(𝑚∆𝑡)2 − 4 ∙

𝑚
4

(∆𝑡)2 ∙ (−1) ∑ (𝑦𝑖 − ∆𝑡𝜇)2𝑚
𝑖=1

2 ∙
𝑚
4

(∆𝑡)2
 

𝜎2 =
−𝑚∆𝑡 ± √(𝑚∆𝑡)2 + 𝑚(∆𝑡)2 ∑ (𝑦𝑖 − ∆𝑡𝜇)2𝑚

𝑖=1
𝑚
2

(∆𝑡)2
 

𝜎2 =
−𝑚∆𝑡 ± 𝑚∆𝑡√(1 + 𝑚−1 ∑ (𝑦𝑖 − ∆𝑡𝜇)2𝑚

𝑖=1
𝑚
2

(∆𝑡)2
 

𝜎̂2 =
−1 ± √1 + 𝑚−1 ∑ (𝑦𝑖 − ∆𝑡𝜇)2𝑚

𝑖=1

1
2 ∆𝑡

                                            (32) 

The diffusion coefficient quasi-maximum likelihood estimate is given as (32). 

Results and discussion 

3.1 Simulation study results 

This section presents the results of the simulation study comparing the xMJNID model to existing 

models and evaluating their performances using model diagnostics, Akaike information criterion 

(AIC) and Bayesian information criterion (BIC), while root mean squared error (RMSE), mean 

absolute scaled error (MASE) and symmetric mean absolute percentage error (SMAPE) were used 

to compare the parameter estimates to the specified true values. 

We simulated levy jumps using compound Passion process setting the parameters’ values as alpha 

= 1, lambda = 0.5, drift = 0, diffusion = 2 and Gaussian distribution with mean 0.01 and standard 

deviation 0.1, for observation sizes 200, 500, 4500 and 10000. We fitted all the models in 

consideration and present the results in Table 1 and Table 2. 

Table 1: Comparison of models with Simulated data for N = 200 and 500    
N = 200 

   

model GBm O-U VAS CEV Merton xMJNID 

drift  4.19794 3.36979 0.00000 2.65734 4.19794 4.19791 

diffusion 2.45927 32.82588 1712.17500 2.00000 2.44496 2.44495 

mase 1.164302 8.548916 
  

1.160725 1.160714 

rmse 2.986103 21.92704 1710.175 0.789956 2.985019 2.984995 

smape 1.102992 1.885143 1.995333 1.740004 1.100105 1.100103 

AIC 656.4956 860.87 2245.971 959.0319 662.4979 588.9815 

BIC 663.0923 867.4666 2255.866 968.9269 678.9895 608.7714 
   

N = 500 
   

drift  1.52022 1.19079 0.00000 1.00000 1.15266 1.15262 

diffusion 1.15266 13.84775 0.00001 2.00000 1.51848 1.15282 

mase 0.40811 3.25964 
  

0.40854 0.40859 

rmse 0.88284 8.41983 3801.48 0.90183 0.88331 0.88342 

smape 1.13629 1.74760 1.99790 1.66715 1.13685 1.13686 

AIC 1073.80 1285.17 6403.90 1110.49 1079.83 297.22 

BIC 1082.22 1293.59 6416.55 1123.14 1100.91 322.51 
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Table 2: Comparison of models with Simulated data for N = 4500 and 10000    
N = 4500 

   

model GBm O-U VAS CEV Merton xMJNID 

drift  0.21100 0.02577 0.67086 1.00004 0.21100 0.21101 

diffusion -0.48643 2.73895 2.73909 0.66879 0.48623 0.48627 

mase 0.67436 0.19118 
  

0.43119 0.43119 

rmse 1.76449 0.52283 0.73909 1.18491 1.08075 1.08072 

smape 2.00000 1.15593 0.31191 1.55721 1.60886 1.60884 

AIC -4574.2 -3039.9 -3043.5 -4457.3 -4567.9 -163463.7 

BIC -4561.4 -3027.1 -3024.3 -4438.1 -4535.8 -163425.2 
   

N = 10000 
   

drift  0.00998 0.05438 0.20996 1.00004 0.01005 0.01001 

diffusion 0.32277 1.52214 1.52214 0.41958 0.32275 -0.32277 

mase 0.42180 0.13306 
  

0.42182 0.583194 

rmse 1.18600 0.34008 0.47786 1.28292 1.18602 1.642459 

smape 1.72208 1.13567 0.27134 1.47403 1.72210 2.00000 

AIC -25407.1 -18510.2 -18510.9 -24607.9 -25400.3 -809721 

BIC -25392.7 -18495.8 -18489.2 -24586.3 -25364.3 -809678 

The comparison of the parameters of the models was done bearing in mind the different 

parameterisation of the models in defining the drift and diffusion coefficients, this means some 

drawbacks in the comparisons of the parameters’ values, affecting the accuracy measures. 

However, we are comparing the models using the model diagnostics AIC and BIC. xMJNID model 

has the lowest MASE, SMAPE, AIC and BIC when N = 200, followed by Merton model and 

GBM. Similar patterns was observed for N = 500. For N = 4500 and 10000, O-U model seemed 

to favour the parameter values than the rest models, however, the xMJNID model still had the least 

AIC and BIC values, indicating that it was the preferred model to the rest. 

3.2 Data description of the Nigeria Exchange rate to the US Dollar  

We present the dataset of the Nigeria Exchange rate to the US Dollar for data analysis and 

application of our modified geometric Brownian motion with jump and stochastic volatility. The 

monthly exchange rate data of the Nigeria naira to the US dollars was from the period of January 

2000 to December 2023. 

 
Figure 1. Time Series Plot of Nigeria Exchange Rate to US dollars  
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From the time series plots in Figure 1 above, there has been heightened variance in the exchange 

rate of the naira to US dollar, with the earlier periods being characterized by low prices and very 

high levels for the recent periods. Moreover, the price series is non-Gaussian as opposed to the log 

returns’ series.  

Autoregressive Integrated Moving Average model (ARIMA) 

We applied the ARIMA model to the raw exchange rate of the naira to the US dollar by use of the 

auto-arima function in R and obtained as the best model ARIMA(2,1,0) with drift, AIC=2107.28, 

BIC=2121.92, log likelihood = -1049.64 and variance of 88.74. Applying the same function on the 

dataset with the monthly frequency in the function, we obtained a best model seasonal 

ARIMA(2,1,2)(1,0,0)[12] with AIC=2042.67, BIC=2064.63, log likelihood = -1015.34 and 

variance of 68.84. The ARIMA models are summarised in Table 3. 

Table 3: Comparison of ARIMA models for Nigeria Exchange rate 

 ARIMA(2,1,0) with drift ARIMA(2,1,2)(1,0,0)[12] 

AIC 2107.28 2042.67 

BIC 2121.92 2064.63 

Log likelihood -1049.64 -1015.34 

Variance 88.74 68.84 

Comparing the two ARIMA models using the model comparison measures as shown in Table 3, 

shows that the seasonal ARIMA model is a better fit for the exchange rate data, as its measures 

are lower than that of the ARIMA with drift model. We can infer that the results may be because 

of the definition of the monthly frequency in the auto-arima function. Table 4 shows the model 

coefficients of the seasonal ARIMA and what follows is the derivation of the fitted seasonal 

ARIMA model for the exchange rate of the naira to the US dollar Where εt is white noise with 

standard deviation of 8.297=√68.84. 

Table 4: ARIMA(2,1,2)(1,0,0)[12] for Nigeria Exchange rate 

Sigma sqd. = 68.84 
  

 
ar1 ar2 ma1 ma2 sar1 

Coeff. -0.1362 -0.6594 0.4935 0.5555 0.6286 

s.e. 0.1263 0.087 0.1441 0.1008 0.0753 

The seasonal ARIMA with two autoregressive parts, two moving average parts and a seasonal 

autoregressive part is given thus  
𝑦̂𝑡 = 1.358𝑦𝑡−1 + 0.652𝑦𝑡−2 − 0.822𝑦𝑡−3 + 0.585𝑦𝑡−4 + 0.366𝑦𝑡−5 − 0.629𝜀𝑡−12 + 𝜀𝑡 

where 𝜀𝑡 is white noise with standard deviation of 8.297 = √68.84. 
The plot of the exchange rate of the naira to the dollar from the seasonal ARIMA for 2024 and 

2025 is shown in Figure 2. The forecast is the blue line, and the 80% and 95% prediction intervals 

are shown by the dark grey and light grey shaded area around the blue line, respectively.  
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Figure 2. Plot of Exchange rate Forecast from ARIMA(2,1,2)(1,0,0)[12] 

The realities of the exchange rate given all economic, political and social indicators for the year 

2024 has shown that this forecast from the seasonal ARIMA had been further from the realities. 

And we particularly noted the absence of jumps in the forecast for which we saw was a key 

characteristic of the exchange rate of the naira to the US dollar. 

3.3 Modelling Naira/Dollar exchange rate with xMJNID model   

At this juncture, we shall investigate the performance of xMJNID model with various diffusion 

processes on the naira/dollar exchange rate using AIC, BIC and log-likelihood as well as their 

estimate standard errors. The diffusion processes models we used for comparison with our 

xMJNID model includes but not limited to the models discussed in chapter three, Geometric 

Brownian motion (GBm), Ornstein–Uhlenbeck (O-U), Vasicek Model (VAS), Constant Elasticity 

of Variance (CEV), and Merton model. The estimates, AIC and BIC are given in Table 5. 

Table 5: Comparison of Diffusion Processes on Naira/Dollar exchange rate data 

model drift std. err diffusion std. err AIC BIC Log-

like. 

GBm 1.51331 0.48320 -0.51566 0.02209 1842.83 1850.15 1838.83 

O-U -1.45866 0.65901 167.95256 7.10160 2167.62 2174.94 2163.62 

VAS 1.46454 na 0.00258 na 3456.97 3467.95 3450.97 

CEV 1.56348 0.51745 1.58605 na 1892.36 1903.34 1886.36 

Merton 0.55318 0.18166 0.18698 0.00878 1284.56 1302.86 1274.56 

xMJNID 0.55321 0.18166 0.18699 0.00878 1247.26 1269.22 1235.26 

ARIMA with drift 
   

2107.28 2121.92 -1049.64 

Seasonal ARIMA 
   

2042.67 2064.63 -1015.34 

    * na = not available 

As expected all the models are to give different estimates, however we can see that those models 

that are similar in their structure have close estimates for the drift coefficient, like the diffusion 

processes of Geometric Brownian motion (GBm), Ornstein–Uhlenbeck (O-U), Vasicek Model 

(VAS) and Constant Elasticity of Variance (CEV). Their diffusion coefficient estimates are very 

different except for VAS. We note that the estimates of our xMJNID model are close to that of 

Merton model with very similar standard error of the estimates. Looking at the AIC, BIC and log-
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likelihood, shows that xMJNID model has the lowest AIC and BIC with values closest to those of 

Merton model (xMJNID has AIC and BIC of 1247.26 and 1269.22, while Merton model had AIC 

and BIC of 1284.56 and 1302.86 respectively).  

3.4 Dynamics of jumps in xMJNID model for the exchange rate  

The jump component is composed of lognormal jumps driven by a Poisson process and models 

the sudden changes in the exchange rate due to the arrival of new important information, whether 

economic or political. The summary model statistics from our PM model is shown in Table 6a and 

Table 6b. 

Table 6a: Summary statistics from xMJNID model on Naira/Dollar exchange rate data 

Coef. Estimate Std. Error 

diffusion 0.187 0.009 

drift 0.553 0.182 

alpha 2.964 17.093 

lambda 18.781 18.647 

beta 14.962 8.874 

delta 39.651 7.034 

Number of estimated jumps: 20 

Average inter-arrival times: 0.036 

Average jump size: 13.909 

Standard Dev. of jump size: 37.796127 

Jump Threshold: 15.87 

Notice that the summary statistics for jump size (Standard Dev. of jump size: 37.796127) suggest 

that the jumps come from the Gaussian distribution with zero mean and standard deviation 

37.796127. 

Table 6b: Summary statistics from xMJNID model on Naira/Dollar exchange rate data 

Summary statistics for jump times: 
  

Min. 1st Qu. Median Mean 3rd Qu. Max. 

0.4246 0.9593 1.0536 0.9786 1.0933 1.1151 
      

Summary statistics for jump size: 
  

Min. 1st Qu. Median Mean 3rd Qu. Max. 

-68.75 -17.06 19.48 13.91 35.34 81.41 

The forecast of the paths with jumps from the xMJNID model is also shown in Figure 3, where the 

forecast values are circled in red text on the plot of the exchange rate data, indicating the jump 

process fitted by the xMJNID. The summary statistics of the jump times and size are given in 

Table 4b. We can observe from the results that the mean jump time is 0.9786 and the mean jump 

size is 13.91. 
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Figure 3. Plot of Exchange rate and xMJNID Model Forecast  

Conclusion  

The xMJNID estimates revealed a drift of 0.553, diffusion of 0.187, lambda of 18.781, beta of 

14.962 and delta of 39.651. It had 20 estimated jumps with an average jump size of 13.909 and 

15.87 jump threshold. Given the structure of xMJNID with a diffusion part and a jump component, 

there are very rear periods of normal price distribution (Gaussian) but more of random intermittent 

unusual price movements or jumps. For our dataset, the variance of the diffusion though positive 

was not significant at 0.187 but the jump component was both positive and significant at 18.781, 

implying that jumps were quite dominant in the naira/dollar exchange rate dynamics. Moreover, 

the intensity of the compound Poisson, i.e. the probability of the jump is high, because the drift 

term was significantly at 0.553 indicating a presence an upward trend in the naira/dollar exchange 

rate.  
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