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                                             ABSTRACT 

Applied statistical analyses have increasingly incorporated complex survey 

designs, though generalized linear mixed models (GLMMs) remain scarce. This 

study developed a GLMM for two-stage samples using integrated nested Laplace 

approximation (INLA) on the 2021 Nigeria Malaria Indicator Survey (NMIS) data. 

A binomial outcome GLMM was fitted, treating design sampling weights as a 

Gaussian latent model, and posterior estimates were obtained using INLA. 

Simulation and real data applications compared classical, weighted, MCMC, and 

INLA approaches, evaluated through accuracy and model diagnostics. Results 

indicated that incorporating design weights improved model fits, with the INLA 

GLMM showing superior performance. INLA also required the least 

computational time, highlighting its advantage for large survey datasets. The study 

recommends the design-based GLMM approach using INLA for analyzing large-

scale survey data 

 

1. Introduction  

Generalized linear mixed model (GLMM) is a pervasive analysis in applied statistics in areas such 

as health and medical fields, ecological and geographical fields, and even in economics and 

finance. This is not unconnected with its structure, which allows many complex experimental 

designs to be handled within the familiar linear model framework. With the progress in statistical 

methodologies and the availability of powerful computers, GLMMs have become widely used for 

data analysis in applied settings. GLMM in complex survey design is of interest here. 
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Not much recent literatures abound on GLMM under complex designs.  Addressed both the 

computational issues and inflation of the variance of fixed effects for spatial generalized linear 

mixed models [1]. Proposed two methods relying on auxiliary variables for missing covariate data 

and unknown distribution assumptions for random effects to analyze the data using a penalized 

conditional likelihood (PCLE) method [2]. Examined the impact of misspecifying a linear mixed 

model for single-case experimental design data [3]. Proposed two mixed model methods to 

monitor profiles from the exponential family [4]. Compared 95% confidence intervals for small 

area estimation for health indicators via GLMM [5].  

Modelled grouped responses using GLMM with many explanatory variables, redundancies, and 

collinearities [6]. Extended the GLMM to the simultaneous modelling of multiple mixed outcomes. 

[7]. A multivariate GLMM framework was presented, which allows the specification of a set of 

response variables for under-dispersed count data [8]. Presented GLMM for multivariate responses 

with Poisson, negative binomial, and Conway-Maxwell-Poisson distributions [9].  Adeniyi and 

Yahya (2020) proposed a class of Generalized Linear Mixed Models (GLMM) in which the 

assumption of normality was replaced by the class of normal-independent distributions introduced 

by Liu [10, 11]. Compared results from INLA, JAGS’ Gibbs sampling, and Stan’s Hamiltonian 

Monte Carlo for two longitudinal count data [12,13]. Introduced Laplace approximation to Bayesian 

inference for Dirichlet regression models, suitable for multivariate compositional data with 

skewness and heteroscedasticity, with no need for data transformation [14].  

Proposed GLMM with a level-specific random effect for non-repeated item designs where items 

are only used in one level of experimental conditions [15]. Developed a semiparametric mixed-

effect regression model for data from a two-stage design [16]. Studied a model-based simulation 

procedure using the Monte-Carlo EM algorithm [17].  Simulation study evaluated in respondent-

driven clustering, the validity of different regression models, with and without weights [18]. 

Presented a two-stage estimator for clustered count correlated data with overdispersion [19]. 

Examined and detailed the primary inference methods utilized for analyzing data derived from 

complex surveys [20]. Applied regression analysis for a randomized response technique with 

quantitative variables in complex sample designs [21].   

Available regression models for design-based survey analysis only cater to linear regression and 

generalized linear model (we refer to [22]) for material on regression models for survey data using 

R package Survey [23], which handles the regression models except for GLMM). This study aimed 

at GLMMs under complex design survey case of two-stage outcome, specifically binary outcome 

using integrated nested Laplace approximation (INLA) with application to malaria indicator data. 

Multistage sampling is a survey design that entails more than one step of random selection. For 

example, a two-stage sampling could entail sampling households within strata, and then at a second 

stage, individuals are sampled within the already sampled households. Taking into consideration 

the correlation among sampled observations when estimating sampling quantities and model 

coefficients becomes very crucial at this point. Usually, the interest of surveys is in estimating the 

characteristics of the finite population, and hence, the sampling design is important in the analysis. 

The design-based inference is centered on how the sampling design information is implemented 

in the estimation process for population parameters. Such a survey design involves complex 

surveys featuring multistage sampling.  

2 Methods  

2.1 Sample Probabilities and Weights in the motivating dataset 

We review the sampling procedure used in the motivating dataset, the 2021 Nigeria Malaria 

Indicator Survey (NMIS), which was a two-stage stratified cluster survey. Sampling weights were 

computed separately for each stage and cluster based on sampling probabilities. Let P1hi denote 
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the first-stage sampling probability of the ith cluster in stratum h and P2hi denote the second-stage 

sampling probability within the ith cluster. Let 𝑎ℎ be the number of sampled clusters in stratum h, 

𝑀ℎ𝑖 the number of households in the ith cluster, and ∑ 𝑀ℎ𝑖the total number of households in the 

stratum. The probability of selecting the ith cluster is 
𝑎ℎ𝑀ℎ𝑖

∑ 𝑀ℎ𝑖
 

Also, let 𝑏ℎ𝑖 be the number of households in stratum h if the enumeration area (EA) is segmented 

and 𝑏ℎ𝑖 = 1 otherwise. Then the probability of selecting the ith cluster is  

𝑃1ℎ𝑖 =
𝑎ℎ𝑀ℎ𝑖

∑ 𝑀ℎ𝑖
𝑏ℎ𝑖 

Given 𝐿ℎ𝑖 as the number of households listed in cluster i and stratum h, and 𝑔ℎ𝑖 is the number of 

households selected in the cluster. The probability of selecting each household from the cluster is 

𝑃2ℎ𝑖 =
𝑔ℎ𝑖

𝐿ℎ𝑖
 

The overall probability of selecting each household in cluster i of stratum h is then 

𝑃ℎ𝑖 = 𝑃1ℎ𝑖 × 𝑃2ℎ𝑖 

The sampling weight for each household in cluster i of stratum h is given as 

𝑊ℎ𝑖 = 1/𝑃ℎ𝑖 

The total number of the observation is then given by  

𝑁 = ∑ ∑ ∑ ∑ 𝑛𝑚𝑗𝑖ℎ

𝐿ℎ𝑖

𝑚=1

𝑀ℎ𝑖

𝑗=1

𝑎ℎ

𝑖=1

𝐻

ℎ=1

                                                (1) 

2.2 Proposed GLMMs for binary two-stage survey with Laplace approximation inference. 

Let 𝑦ℎ𝑖 be the binary response variable for each household in ith cluster and hth stratum, then we 

have that  

𝑦ℎ𝑖 | 𝑧ℎ𝑖, 𝑥ℎ𝑖, 𝛽𝑖 
𝑖.𝑑

~
 𝐵𝑒𝑟𝑛𝑜𝑙𝑙𝑖 (𝜇ℎ𝑖),     logit(𝜇ℎ𝑖) = 𝑥ℎ𝑖

𝑇 𝛽 + 𝑧ℎ𝑖
𝑇 𝑢𝑖                     (2) 

𝑢𝑖~𝑁(0, 𝐺) 

Equation (2) is an exponential family of distribution because its distribution can be written as thus 

𝑓(𝑦ℎ𝑖) = 𝑝𝑦ℎ𝑖(1 − 𝑝)1−𝑦ℎ𝑖 ,          where 𝑦ℎ𝑖 = 0, 1;   0 ≤ 𝑝 ≤ 1 

𝑓(𝑦ℎ𝑖) = exp[log(𝑝𝑦ℎ𝑖(1 − 𝑝)1−𝑦ℎ𝑖)] 
= exp[𝑦ℎ𝑖 log 𝑝 + (1 − 𝑦ℎ𝑖) log(1 − 𝑝)] 

= exp [𝑦ℎ𝑖 log
𝑝

1 − 𝑝
+ log(1 − 𝑝)] 

= exp[𝑦ℎ𝑖𝜁ℎ𝑖 − log(1 − 𝑒𝜁ℎ𝑖)],  

with  𝜁 = log
𝑝

1−𝑝
,   𝑏(𝜁ℎ𝑖) = log(1 − 𝑒𝜁ℎ𝑖) , 𝑎ℎ𝑖(𝜙) = 1, 𝑐𝑖(𝑦ℎ𝑖, 𝜙) = 0. 

Given the 𝑁 × 1 vector w of sampling weights containing information on the sampling design 

employed in the survey, w = w(P). As already seen in the previous section, the sampling weight 

𝑤𝑖 is the inverse of the overall selection probability. The sampling weights are usually referenced 

to non-response and/or known population values of some auxiliary variable [17]. The sampling 

weight is introduced in the calculation of the likelihood for the parameter estimation. 

The conditional expectation 𝐸(𝑦ℎ𝑖|𝑿, 𝒁, 𝑼) is linked to a linear predictor 𝜂ℎ𝑖 with a link function 

ℎ(∙)−1 

ℎ−1{𝐸(𝑦ℎ𝑖|𝑿, 𝒁, 𝑼)} = 𝜂ℎ𝑖 = 𝒙ℎ𝑖
′ 𝜷 + 𝒛ℎ𝑖

′ 𝑢ℎ𝑖                               (3) 

where 𝒙ℎ𝑖
′  is a vector of 𝑝 covariates, 𝜷 is a vector of covariates fixed effects, 𝒛ℎ𝑖

′  is 𝑁 × 𝑞 design 

matrix of random effects and 𝑢ℎ𝑖 is vector of 𝑞 random effects. In matrix notation, we have 
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𝒀 = 𝑿𝜷 + 𝒁𝑼 + 𝜺 

where  𝜺 is 𝑁 × 1 vector of residuals and 

𝒀 | 𝑿𝜷 + 𝒁𝑼~ 𝑓(𝟎, 𝑹) 

In classical statistics, 𝑼 is assumed as 𝑼~𝑁(𝟎, 𝑮), with G being a covariance matrix of random 

effects which are joint deviations around the values in 𝜷, so what is estimated is the covariance. G 

is a function of 𝜽, which are unknown hyperparameters that influences the distribution of G and 

they are to be estimated, i.e., 𝑮 = 𝝍(𝜽).With the assumption of independent random effects 𝑮 =
diag(𝜎𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

2 , 𝜎𝑠𝑙𝑜𝑝𝑒
2 ). A common structure for the covariance matrix of residuals is 𝑹 = 𝑰𝜎𝜀

2, 

which assumes homogeneous independent residuals variances.  

2.2.1 The Latent Gaussian modelling approach 

The GLMM herein considered is a latent Gaussian model (LGM) when it can be expressed in the 

form below 

𝜂ℎ𝑖 = ℎ(𝜇𝑖) = 𝛼 + ∑ 𝛽ℎ𝑥ℎ𝑖

𝑝

ℎ=1

∑ 𝑢𝑙𝑧𝑙𝑖

𝑟

𝑙=1

+ 𝜀𝑖                              (4) 

where in addition to the already defined parameters, 𝜇𝑖 is the mean of the 𝑖th individual, 𝛼 is 

intercept and 𝜀𝑖 are the residuals or unstructured random effects. The Latent model estimates the 

vector of parameters 𝜸 =  {𝜼, 𝜶, 𝜷, 𝒖}. Assuming each parameter follows a Gaussian distribution, 

we note that this is parsimonious in most cases, then the model is an LGM and if the vector 𝜸  is 

assumed to be from a multivariate normal distribution, then it is referred to as  a Gaussian latent 

field, i.e., 𝜸~𝑵(∙, 𝛀) where 

𝛀 = (
𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

) 

If the Gaussian latent field satisfies Markov properties, then it is called a Gaussian Markov random 

field (GMRF), therefore 𝜸~𝐺𝑀𝑅𝐹(𝜽), where 𝜽 are hyperparameters representing the covariance 

matrix 𝛀. A process producing the realizations of a quantity is known to have Markov properties 

if the expected future state of the process depends only on the present state and not the past state.  

The GLMM has the parameters of interest as 𝜸 = (𝜷, 𝒖) with 𝒖 and 𝜷 following a normal 

distribution before that the covariance matrix has a diagonal with very large and equal entries for 

each component of 𝜷 so that the resulting prior is uninformative prior. Then prior distribution is 

assigned to the parameters of the latent field 𝜸. The elements of 𝜸 are conditionally independent, 

given the stochastic dependence structure, such that it results in a GMRF with a sparse precision 

matrix 𝑸(𝜽). With the Markov property, the precision 𝑸 = 𝛀−1, has a large number of zeros 

making it very sparse and much simpler [24].  

From section 2.2, assume the canonical link and log 𝑓(∙)  with the shape 

log 𝑓(𝑦ℎ𝑖|𝜸, 𝜽) = 𝑦ℎ𝑖 − 𝑎(𝜂ℎ𝑖) + 𝑏(𝜂ℎ𝑖) 

with 
𝜕𝑎(𝜂ℎ𝑖)

𝜂ℎ𝑖
= 𝜇ℎ𝑖. The finite population likelihood 

𝐿(𝒚, 𝑿, 𝒁, 𝜸, 𝜽) = ∏ ∫ ∏ 𝑤𝑖𝑓(𝑦ℎ𝑖, 𝒙𝑖, 𝒛𝑖, 𝜸, 𝜽)

𝐻

ℎ=1

𝑁

𝑖=1

          

∝ ∏ ∏ 𝑓(𝑦ℎ𝑖|𝒙𝑖, 𝒛𝑖 , 𝜸, 𝜽) ∙ 𝜙(𝜸|𝝈),

𝐻

ℎ=1

𝑁

𝑖=1

                     (5) 



Olakiigbe et al.- Transactions of NAMP 21, (2025) 183-204 

187 

where 𝜙(∙ |𝝈) is the density of the multivariate normal 𝑁(𝟎, 𝚺), 𝝈 denote the vector of matrix 

elements in 𝚺. Due to better readability, X and Z are left out in the writeup, though the functions 

are conditioned on them. Taking the logarithm of (5) we have 

log 𝐿(𝒚, 𝜸, 𝜽) = ∑ (∑ 𝑤𝑖 log 𝑓(𝑦ℎ𝑖|𝜸, 𝜽) + log 𝜙(𝜽|𝝈)

𝐻

ℎ=1

)

𝑁

𝑖=1

           (6) 

Given the finite population parameter vector 𝜽𝑝𝑜𝑝 and subvectors 𝜷𝑝𝑜𝑝 and 𝝈𝑝𝑜𝑝. 𝜽𝑝𝑜𝑝 is defined 

as 

𝜽𝑝𝑜𝑝 = arg max
𝜽

log 𝐿(𝒚, 𝜸, 𝜽) 

That means, 𝜽𝑝𝑜𝑝 is the maximum likelihood estimate of the super population parameter given 

that the total finite population was observed. 𝜷𝑝𝑜𝑝 exists and is unique for the common GLM such 

as logistic regression and standard linear regression. The population covariance matrix Σ(𝝈𝑝𝑜𝑝) is 

unique, too, thus 𝜽𝑝𝑜𝑝 is well defined as (6) is globally concave, which means convergence to the 

global maximum of (6). As the maximum is unique, it implies that the parameter estimate will 

converge to the maximizer and by extension 𝜽𝑝𝑜𝑝 [17]. 

As already noted, the solution of the marginal likelihood for the integral in (6) under GLMMs is 

not feasible analytically due to the 𝑞-multidimension vectors 𝑢𝑖 and even at the finite population 

level. Examined Laplace's integral approximation using a Taylor series expansion around the mode 

[25]. The Gauss-Hermite approximation was discussed in Fitzmaurice et al., (2008), in which a 

Cholesky decomposition of the covariance of the random effect is used, such that 𝑢𝑖 = 𝑮(𝜽)1/2𝑢𝑖
∗ 

giving an independent standard normal distribution for 𝑢𝑖
∗~𝑁(𝟎, 𝑰) [26]. The penalized quasi-

likelihood approach was developed, focusing on penalized quasi-likelihood estimation using 

Laplace approximation for the marginal likelihood [27, 28]. 

Given some extreme cases of 𝑮(𝜽) = 0, it implies that for a GLMM with a binary outcome, the 

observations for a specific individual will always have the same value, and the penalization term 

tends to infinity such that the maximum likelihood estimate for 𝑢𝑖will no longer be defined  [29]. 

In this parameterization, priors are defined for the latent Gaussian field and the hyperparameters 

and we present brief definitions of prior distributions for an integrated Laplace approximation.  

2.3  Laplace Approximation to Marginal Likelihood for GLMMs for binary outcome for 

two-stage survey 

From section 2.2.1, the latent field 𝜸 is assumed to have a multivariate Gaussian prior with zero 

mean, forming a GMRF with sparse precision matrix matrix 𝑸(𝜽2), i.e. 𝜸~𝑁(𝟎, 𝑸−1(𝜽2)), and a 

prior on the hyperparameter vector 𝜙(𝜽) is assumed for the set of hyperparameters 𝜽 = (𝜽1, 𝜽2), 

to follow the penalized complexity (PC) prior  [30], which results in penalizing more complex 

models to reduce model complexity. The PC priors have been noted to improve point estimation 

and credible intervals [31]. The marginal likelihood function in equation (6) is then evaluated using 

Laplace approximation by expressing the integral term as 

∫ ∏ 𝑓(𝑦𝑖𝑗|𝜷, 𝑢𝑖)𝑓(𝑢𝑖|𝑮(𝜽))𝑑𝑢𝑖

𝑛𝑖

𝑗=1

= ∫ 𝑓(𝒚|𝜷, 𝒖)𝑓(𝒖|𝑮(𝜽))𝑑𝒖

= ∫ 𝑒
log{𝑓(𝒚|𝜷, 𝒖)𝑓(𝒖|𝑮(𝜽))}

𝑑𝒖 = ∫ 𝑒ℎ(𝑢) 𝑑𝑢 

 ℎ(𝑢) = log{𝑓(𝒚|𝜷, 𝒖)𝑓(𝒖|𝑮(𝜽))}                                       (7). 

The aim is to choose 𝑢̂ such that ℎ(𝑢) is maximized and fulfils the necessary and sufficient 

conditions, ℎ′(𝑢) = 0 and  ℎ′′(𝑢̂) < 0. The second order Taylor expansion around 𝑢̂ for ℎ(𝑢) is 

given as 
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ℎ(𝑢) ≈ ℎ̃(𝑢) = ℎ(𝑢̂) + (𝑢 − 𝑢̂)ℎ′(𝑢̂) +
1

2
(𝑢 − 𝑢̂)2ℎ′′(𝑢̂) 

= ℎ(𝑢̂) −
1

2
(𝑢 − 𝑢̂)2(−ℎ′′(𝑢̂))                                          (8) 

From here 𝑒ℎ̃(𝑢) is proportional to the normal density with mean 𝑢̂ and variance 
1

−ℎ′′(𝑢̂)
. This 

follows that the Laplace approximation for the likelihood becomes 

𝐿(𝜷, 𝑼, 𝜽) = ∫ 𝑒ℎ(𝑢) 𝑑𝑢 ≈ ∫ 𝑒ℎ̃(𝑢) 𝑑𝑢 = exp (ℎ(𝑢̂) ∫ exp (
ℎ′′(𝑢̂)

2
(𝑢 − 𝑢̂)2)) 𝑑𝑢 

= exp (−ℎ(𝑢̂)√
2𝜋

ℎ′′(𝑢̂)
)                              (9) 

It follows that  

(𝒖, 𝜷|𝒚) =
𝑓(𝒚|𝜷, 𝒖)𝑓(𝒖|𝑮(𝜽))

𝑓(𝒚)
∝ exp(ℎ(𝒖)) ≈ 𝐶 × exp (

ℎ′′(𝑢̂)

2
(𝑢 − 𝑢̂)2)          (10) 

which implies that 𝑼|𝒀 = 𝑦 ≈ 𝑁 (𝑢̂,
1

−ℎ′′(𝑢)
). 

The Laplace approximation performs better for larger clusters with its precision increases when 

higher order of Taylor expansion is used. However, the approximation is less accurate if the 

variance of random effects is large [32]. The expression in equation (10) is applied to obtain the 

posterior expression for the latent field and hyperparameters. 

2.3.1 Posterior approximation with INLA 

The posterior distribution of the model hyperparameters and the latent field under the Bayesian 

framework, using Bayes’ theorem, can be obtained from the conditional posterior distribution 

𝑝(𝜽𝑖 , 𝜸𝑖|𝑫𝑖) =
𝑝(𝑫𝑖|𝜽𝑖 , 𝜸𝑖)𝑝(𝜽𝑖, 𝜸𝑖)

𝑝(𝑫𝑖)
∝ 𝑝(𝑫𝑖|𝜽𝑖 , 𝜸𝑖)𝑝(𝜸𝑖|𝜽𝑖)𝑝(𝜽𝑖)    (11) 

where 𝑝(𝜸𝑖|𝜽𝑖) and 𝑝(𝜽𝑖) are  prior distributions and the focus is on approximating the 

multidimensional integral from the marginal likelihood 𝑝(𝑫𝑖|𝜽𝑖 , 𝜸𝑖) and approximation technique 

of INLA has been shown to provide exact approximations to the posterior estimates at faster rates 

than sampling-based methods such as Markov Chain Monte Carlo (MCMC), especially for 

complex and hierarchical models [33]. 

We consider the Laplace transformation using a second-order Taylor series expansion for the 

integral of the density function 𝑝(𝝌) by taking the form of [34]. 

∫ 𝑝(𝜸)

∞

−∞

𝑑𝜸 = ∫ exp(log 𝑝(𝜸))

∞

−∞

𝑑𝜸 = ∫ exp(𝑔(𝜸))

∞

−∞

𝑑𝜸                   (12)  

The integral value is a function of the behaviour in the neighbourhood of the mode of 𝑔(𝜸) and 

hence 𝑔(𝜸) can be replaced by a second-order Taylor approximation of 𝑔(𝜸) to compute the 

integral’s approximate value.  
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Let 𝜸∗ be the global maximum of 𝜸 given as 

𝜸∗ = argmax 𝜸𝑔(𝜸), 

then  

𝜕𝑔(𝜸)

𝜕𝜸
|

𝜸=𝜸∗

= 0 

for 𝑔(𝜸) to be approximated as 

𝑔(𝜸) ≈ 𝑔(𝜸∗) + 0.5(𝜸 − 𝜸∗)′𝐇𝑔(𝜸∗)(𝜸 − 𝜸∗) 

where 𝐇𝑔(𝜸∗) is the Hessian of 𝑔(𝜸∗), and equation (9) can be written as 

∫ 𝑝(𝜸)

∞

−∞

𝑑𝜸 = ∫ exp(𝑔(𝜸∗) + 0.5(𝜸 − 𝜸∗)′𝐇𝑔(𝜸∗)(𝜸 − 𝜸∗))

∞

−∞

𝑑𝜸     

= exp(𝑔(𝜸∗)) ∫ exp(0.5(𝜸 − 𝜸∗)′𝐇𝑔(𝜸∗)(𝜸 − 𝜸∗))

∞

−∞

𝑑𝜸 

= exp(𝑔(𝜸∗)) ∫ exp(−0.5(𝜸 − 𝜸∗)′{−𝐇𝑔(𝜸∗)}(𝜸 − 𝜸∗))

∞

−∞

𝑑𝜸 

= exp(𝑔(𝜸∗)) (2𝜋)
𝑛𝑚

2 |𝐇𝑔(𝜸∗)|−
1
2 × 

∫ (2𝜋)−
𝑛𝑚

2 |𝐇𝑔(𝜸∗)|−
1
2

∞

−∞

exp(−0.5(𝜸 − 𝜸∗)′{−𝐇𝑔(𝜸∗)}(𝜸 − 𝜸∗)) 𝑑𝜸 

The integral follows multivariate Normal and putting −𝐇𝑔(𝜸∗) = 𝑸(𝜸∗), the precision matrix 

for the random vector 𝜸∗ yields  

∫ 𝑝(𝜸)

∞

−∞

𝑑𝜸 ≈ exp(𝑔(𝜸∗)) (2𝜋)
𝑛𝑚

2 |𝐇𝑔(𝜸∗)|−
1
2 ×     

∫ (2𝜋)−
𝑛𝑚

2 |𝑸(𝜸∗)|−
1
2

∞

−∞

exp(−0.5(𝜸 − 𝜸∗)′𝑸(𝜸∗)(𝜸 − 𝜸∗)) 𝑑𝜸 

≈ (2𝜋)
𝑛𝑚

2 |𝑸(𝜸∗)|−
1
2 exp(𝑔(𝜸∗)). 

The posterior distribution of 𝑝(𝜸, 𝜽|𝑫) is obtained from the joint posterior distribution as 

𝑝(𝜸, 𝜽|𝑫) ∝ 𝑝(𝜽)|𝑸(𝜽)|
1
2 exp (−

1

2
𝜸′𝑸(𝜽)𝜸 + ∑ log 𝑝(𝑫𝑖|𝜸𝑖, 𝜽)

𝒏

𝒊=𝟏

) 

which can be rewritten as, ignoring elements with 𝜸 

𝑝(𝜸|𝜽, 𝑫) ∝ exp (−
1

2
𝜸′𝑸(𝜽)𝜸 + ∑ 𝑔𝑖(𝜸𝑖)

𝒏

𝒊=𝟏

)                       (13)  

Gaussian approximation 

The Gaussian approximation of Equation (13), 𝑝𝐺(𝜸|𝜽, 𝑫) is obtained by combining the mode and 

the curvature at the mode of 𝑝(𝜸|𝜽, 𝑫). A Newton-Raphson method is used to calculate the mode 

in iteration. Let 𝜇(0) be the mode’s initial value, and expand 𝑔𝑖(𝜸𝑖) around 𝝁𝑖
(0)

= (𝜇𝑖1
(0)

, … , 𝜇𝑖𝑁
(0)

) 

to the second order Taylor expansion, 

𝑔𝑖(𝜸𝑖) ≈ 𝑔𝑖(𝝁𝑖
(0)

) + 𝒃𝑖
′𝜸𝑖 −

1

2
𝒄𝑖

′𝜸𝑖
′𝜸𝑖                                            (14) 

where 𝒃𝑖 and 𝒄𝑖 depend on 𝝁(0). Substituting equation (14) into equation (13) yields 
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𝑝𝐺(𝜸|𝜽, 𝑫) ≈ 𝑔𝑖(𝝁𝑖
(0)

) exp (−
1

2
𝜸′(𝑸 + 𝒄)𝜸 + 𝒃′𝜸) 

∝ exp (−
1

2
𝜸′(𝑸 + 𝒄)𝜸 + 𝒃′𝜸). 

A Gaussian approximation of 𝑝𝐺(𝜸|𝜽, 𝑫) is arrived at with precision matrix (𝑸 + diag(𝒄)) and 

mode 𝝁(1), which gives the solution of (𝑸 + diag(𝒄))𝝁(1) = 𝒃. The procedure is then iterated, 

with 𝝁(1)as the new starting value, until it converges to a Gaussian distribution with, say, mean 

𝝁(𝑗) → 𝝁(∗) = 𝜸∗ and precision matrix 𝑸(𝑗) → 𝑸(∗) = 𝑸 + diag(𝒄∗), 𝑗 = 1,2, …, using a suitable 

convergence criterion. 

At this point, the obtained approximation will be [35]: 

𝑝𝐺(𝜸|𝜽, 𝑫) ∝ exp (−
1

2
(𝜸 − 𝜸∗(𝜽))

′
(𝑸(𝜽) + diag(𝒄))(𝜸 − 𝜸∗(𝜽))), 

where c is the 2nd-order term in the Taylor expansion of ∑ log 𝑝(𝑫𝑖|𝜸𝑖 , 𝜽)𝒏
𝒊=𝟏  at modal value 

𝜸∗(𝜽). 
For the marginal posterior conditional distribution 𝑝(𝜸𝑖|𝜽, 𝑫) included in the computation of the 

marginal posterior 𝑝(𝜸𝑖|𝑫), [36] discussed three approximations 𝑝(𝛾𝑖|𝜽𝑘, 𝑫) where 𝜽𝑘 are 

weighted points to be used in the integration, the approximations are Gaussian, full Laplace, and 

simplified Laplace approximation. The Gaussian approximation has been noted to generally not 

be the best if the true density of 𝑝(𝜸𝑖|𝜽, 𝑫) is not symmetric, hence, the full Laplace approximation 

is a correction of Gaussian approximation and accurate but at a very expensive computational cost. 

However, the simplified Laplace approximation which is based on the Taylor series expansion of 

the full Laplace approximation is modestly accurate in most real application settings [34]. 

If the mean of 𝜸 is 𝝁, the density of 𝜸 is 

𝑝(𝜸) = (2𝜋)−𝑛
2⁄ |𝑸|

1
2⁄ exp [−

1

2
(𝜸 − 𝝁)𝑇𝑸(𝜸 − 𝝁)]                            (15) 

The sparse matrix 𝑸 is factorized as Cholesky triangle product 𝑳𝑳𝑇, and only non-zero terms are 

computed due to the Markov property and 𝐿𝑗𝑖 = 0. Let 𝑳𝑇𝜸 = 𝒓 where 𝒓 ~ 𝑁(𝟎, 𝟏), then we 

have that 𝐿𝑖𝑖𝜒𝑖 = 𝑟𝑖 − ∑ 𝐿𝑘𝑖𝜒𝑘
𝑛
𝑘=𝑖+1  for 𝑖 = 𝑛, … , 1. Multiplying each side with 𝜒𝑗 , 𝑗 ≥ 𝑖 and 

taking the expectation yields the recursion 

Σ𝑖𝑗 =
𝜕𝑖𝑗

2

𝐿𝑖𝑖
−

1

𝐿𝑖𝑖
∑ 𝐿𝑘𝑖Σ𝑘𝑗

𝑛

𝑘=𝑖+1

         𝑗 ≥ 𝑖,    𝑖 = 𝑛, … , 1 

where 𝚺 = 𝑸−1 is the covariance matrix and 𝜕𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝜕𝑖𝑗 = 0 otherwise. These 

recursion results in Gaussian approximations 𝑝𝐺(𝜸|𝜽, 𝑫) with mean 𝜇𝑖(𝜽) and marginal variance 

𝜎𝑖
2(𝜽). 

Results and discussion 

Performance of designed-based GLMM in different sample sizes using a simulation study 

To compare our model to other existing models, we shall examine their performances under 

different sample sizes and variable random effect by simulating data set in the similitude of the 

design used for the 2021 NMIS, where the stratification variable was the place of residence with 

two strata, namely urban and rural. PSU are the EA clusters; samples were chosen separately in 

each stratum using a two-stage selection process. A predetermined number of households were 

chosen in each cluster using equal probability systematic sampling in the second step of selection, 

while EAs were chosen in the first stage with a probability proportional to their size. 

To start, we run data simulations for four predictor factors: ea (for clusters the number of subject), 

hh (identifying the household in each cluster), slpnet (if children sleep under a mosquito net: no or 

yes), resid (place of residence stratification). These factors are crucial indicators to the incidence 

of malaria fever as have been captured in the 2021 NMIS report. The variable of interest is the 
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event of fever denoted as y, (if the child had a fever, yes = 1 or no = 0) as a result of mosquito was 

simulated using a random number generator for the binomial distribution. We set the probability 

for the binomial distribution to vary based on the place of residence of respondents and whether 

they slept under mosquito nets or not. We set the probabilities thus; rural/no: p = 0.75, rural/yes: 

p = 0.47, urban/no: p = 0.65, urban/yes: p = 0.39. These are the fixed effects as we assume the 

effects of place of residence and sleeping under the mosquito net and their interaction are fixed. 

The effect of sleeping under mosquito net decreases in rural areas by a probability of 0.38 and 

decreases in urban areas by a probability of 0.26.  

We assume that observation in the same cluster will be correlated thus we have a random effect 

for each EA, hence we have a mixed effects approach. A normal distribution with a mean of 0 and 

a standard deviation of 0.012 is used to generate n random samples from which we include random 

effect probabilities and use the probabilities to generate the response variables with the model 

𝑃𝑟𝑜𝑏(𝑦 = 1) = logit−1(𝛽0 + 𝛽1slpnet − 𝛽2resid − 𝛽3𝑠𝑙𝑝𝑛𝑒𝑡 ∗ 𝑟𝑒𝑠𝑖𝑑 + 𝑢 ∗ z) 

where  

• β0 = log-odds of living in a rural area and not sleeping under a mosquito net 

• β1 = difference in log-odds between living in a rural area and sleeping under a mosquito 

net and living in a rural area, not sleeping under a mosquito net 

• β2 = difference in log-odds between living in an urban area, not sleeping under a mosquito 

net, and living in a rural area, not sleeping under a mosquito net 

• β3 = difference in log-odds for urban residents sleeping under mosquito net effect versus 

the rural residents sleeping under mosquito net effect  

• 𝑢~𝑁(0, (𝜏𝑒𝑎
−1)2) is random effect probability for each household 

The fixed effects values were obtained by transforming the probabilities to log-odds and obtained 

the fixed values as β0 = 1.735, β1 = -1.855, β2 = -1.116, β3 = 0.788 and 𝜏𝑒𝑎
−1 = 0.012. We 

simulate population sizes of N = 150, 500, 2000, 5000, and 10000. In order to oversample extreme 

random effect parameters to bias random-intercept variance we follow the specification of  [37] 

pairwise sampling probabilities from sampling probabilities at each stage in calculating the design 

weights for each household given the values of N and resulted in the sample sizes n respectively 

as n = 90, 340, 1230, 2920 and 5965.  

The simulated dataset is combined with all the survey design information including the primary 

sampling unit, the enumeration area, the household number, and design weights using the R survey 

package [23]. The purpose of this is that the necessary design information is bonded to the dataset 

for accurate analytical adjustments to be carried out automatically and dependably. Also, it helps 

to provide valid variance estimates for statistics computed on the survey objects. The models 

applied to the simulated dataset were the model-based GLMM with Adaptive Gauss-Hermite 

Quadrature (AGHQ) approximation, weighted Adaptive Gauss-Hermite Quadrature (wtd AGHQ) 

approximation, GLMM with MCMC and the design-based GLMM with INLA as presented in this 

study. The models were fitted for each value of N and the corresponding n values and presented 

the tables that follow with the parameters true and estimated values and accuracy measures such 

as BIAS, mean absolute error (MAE), mean squared error (MSE) and root mean squared error 

(RMSE). 

Table 1: Comparison of models estimates for simulated data with N = 150    
N = 150 

   

AGHQ true 
value 

prediction MSE RMSE MAE BIAS 

beta0 1.734601 0.863636 0.758580 0.870965 0.870965 0.870965 

beta1 -
1.854745 

0.346154 4.843957 2.200899 2.200899 -
2.200899 



Olakiigbe et al.- Transactions of NAMP 21, (2025) 183-204 

192 

beta2 -
1.115562 

0.703704 3.309727 1.819266 1.819266 -
1.819266 

beta3 0.788394 0.533333 0.065056 0.255060 0.255060 0.255060 

τrealpsu 0.012000 0.000000 0.000144 0.012000 0.012000 0.012000 

wtd AGHQ 

beta0 1.734601 0.928108 0.650431 0.806493 0.806493 0.806493 

beta1 -
1.854745 

0.367825 4.939819 2.222570 2.222570 -
2.222570 

beta2 -
1.115562 

0.711649 3.338698 1.827211 1.827211 -
1.827211 

beta3 0.788394 0.676472 0.012527 0.111922 0.111922 0.111922 

τrealpsu 0.012000 1.596300 2.510006 1.584300 1.584300 -
1.584300 

MCMC 

beta0 1.734601 2.429484 0.482863 0.694883 0.694883 -
0.694883 

beta1 -
1.854745 

-3.365495 2.282366 1.510750 1.510750 1.510750 

beta2 -
1.115562 

-1.350667 0.055274 0.235105 0.235105 0.235105 

beta3 0.788394 2.608121 3.311406 1.819727 1.819727 -
1.819727 

τrealpsu 0.012000 0.346218 0.111702 0.334218 0.334218 -
0.334218 

INLA 

beta0 1.734601 1.977682 0.059088 0.243081 0.243081 -
0.243081 

beta1 -
1.854745 

-2.638078 0.613610 0.783333 0.783333 0.783333 

beta2 -
1.115562 

-1.077267 0.001467 0.038295 0.038295 -
0.038295 

beta3 0.788394 1.879115 1.189673 1.090721 1.090721 -
1.090721 

τrealpsu 0.012000 0.012207 0.000000 0.000207 0.000207 -
0.000207 

Table 2: Comparisons of models estimates for simulated data with N = 500    
N = 500 

   

AGHQ true value prediction MSE RMSE MAE BIAS 

beta0 1.734601 0.855422 0.772957 0.879179 0.879179 0.879179 

beta1 -1.854745 0.395062 5.061632 2.249807 2.249807 -
2.249807 

beta2 -1.115562 0.725490 3.389473 1.841052 1.841052 -
1.841052 

beta3 0.788394 0.297297 0.241176 0.491097 0.491097 0.491097 
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τrealpsu 0.012000 0.000000 0.000144 0.012000 0.012000 0.012000 

wtd AGHQ 

beta0 1.734601 0.891870 0.710196 0.842731 0.842731 0.842731 

beta1 -1.854745 0.391893 5.047386 2.246639 2.246639 -
2.246639 

beta2 -1.115562 0.775975 3.577912 1.891537 1.891537 -
1.891537 

beta3 0.788394 0.256024 0.283417 0.532369 0.532369 0.532369 

τrealpsu 0.012000 1.038400 1.053497 1.026400 1.026400 -
1.026400 

MCMC 
      

beta0 1.734601 2.259958 0.276000 0.525357 0.525357 -
0.525357 

beta1 -1.854745 -2.781554 0.858974 0.926809 0.926809 0.926809 

beta2 -1.115562 -1.121129 0.000031 0.005568 0.005568 0.005568 

beta3 0.788394 0.690650 0.009554 0.097743 0.097743 0.097743 

τrealpsu 0.012000 0.055756 0.001915 0.043756 0.043756 -
0.043756 

INLA 
      

beta0 1.734601 1.811701 0.005944 0.077100 0.077100 -
0.077100 

beta1 -1.854745 -2.243014 0.150753 0.388269 0.388269 0.388269 

beta2 -1.115562 -0.828733 0.082271 0.286829 0.286829 -
0.286829 

beta3 0.788394 0.386822 0.161260 0.401571 0.401571 0.401571 

τrealpsu 0.012000 0.012139 0.000000 0.000139 0.000139 -
0.000139 

Table 3: Comparisons of models estimates for simulated data with N = 2000    
N = 2000 

   

AGHQ true 
value 

prediction MSE RMSE MAE BIAS 

beta0 1.734601 0.883206 0.724874 0.851396 0.851396 0.851396 

beta1 -
1.854745 

0.479626 5.449288 2.334371 2.334371 -
2.334371 

beta2 -
1.115562 

0.646955 3.106466 1.762517 1.762517 -
1.762517 

beta3 0.788394 0.376625 0.169553 0.411769 0.411769 0.411769 

τrealpsu 0.012000 0.000000 0.000144 0.012000 0.012000 0.012000 

wtd AGHQ 

beta0 1.734601 0.943839 0.625304 0.790762 0.790762 0.790762 

beta1 -
1.854745 

0.471910 5.413323 2.326655 2.326655 -
2.326655 
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beta2 -
1.115562 

0.703921 3.310519 1.819483 1.819483 -
1.819483 

beta3 0.788394 0.314330 0.224737 0.474064 0.474064 0.474064 

τrealpsu 0.012000 1.517900 2.267735 1.505900 1.505900 -
1.505900 

MCMC 
      

beta0 1.734601 2.420892 0.470995 0.686291 0.686291 -
0.686291 

beta1 -
1.854745 

-2.558532 0.495316 0.703787 0.703787 0.703787 

beta2 -
1.115562 

-1.667474 0.304607 0.551912 0.551912 0.551912 

beta3 0.788394 1.204320 0.172995 0.415927 0.415927 -
0.415927 

τrealpsu 0.012000 0.098815 0.007537 0.086815 0.086815 -
0.086815 

INLA 
      

beta0 1.734601 2.008520 0.075031 0.273919 0.273919 -
0.273919 

beta1 -
1.854745 

-2.087734 0.054284 0.232989 0.232989 0.232989 

beta2 -
1.115562 

-1.405468 0.084046 0.289906 0.289906 0.289906 

beta3 0.788394 0.998801 0.044271 0.210407 0.210407 -
0.210407 

τrealpsu 0.012000 0.012408 0.000000 0.000408 0.000408 -
0.000408 

 

Table 4: Comparisons of models estimates for simulated data with N = 5000 

N = 5000 

AGHQ true 
value 

prediction MSE RMSE MAE BIAS 

beta0 1.734601 0.856948 0.770274 0.877653 0.877653 0.877653 

beta1 -
1.854745 

0.475366 5.429420 2.330112 2.330112 -
2.330112 

beta2 -
1.115562 

0.660811 3.155500 1.776373 1.776373 -
1.776373 

beta3 0.788394 0.359712 0.183768 0.428682 0.428682 0.428682 

τrealpsu 0.012000 0.000000 0.000144 0.012000 0.012000 0.012000 

wtd AGHQ 

beta0 1.734601 0.913252 0.674614 0.821349 0.821349 0.821349 

beta1 -
1.854745 

0.478917 5.445981 2.333663 2.333663 -
2.333663 

beta2 -
1.115562 

0.684563 3.240448 1.800124 1.800124 -
1.800124 
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beta3 0.788394 0.322673 0.216896 0.465721 0.465721 0.465721 

τrealpsu 0.012000 1.253000 1.540081 1.241000 1.241000 -
1.241000 

MCMC 
      

beta0 1.734601 2.403566 0.447514 0.668965 0.668965 -
0.668965 

beta1 -
1.854745 

-2.529783 0.455676 0.675037 0.675037 0.675037 

beta2 -
1.115562 

-1.497472 0.145855 0.381910 0.381910 0.381910 

beta3 0.788394 0.842585 0.002937 0.054191 0.054191 -
0.054191 

τrealpsu 0.012000 0.006057 0.000035 0.005943 0.005943 0.005943 

INLA 
      

beta0 1.734601 1.794182 0.003550 0.059580 0.059580 -
0.059580 

beta1 -
1.854745 

-1.892915 0.001457 0.038170 0.038170 0.038170 

beta2 -
1.115562 

-1.126270 0.000115 0.010708 0.010708 0.010708 

beta3 0.788394 0.647476 0.019858 0.140918 0.140918 0.140918 

τrealpsu 0.012000 0.012162 0.000000 0.000162 0.000162 -
0.000162 

 

 

Table 5: Comparisons of models estimates for simulated data with N = 10000 

N = 10000 

AGHQ true 
value 

prediction MSE RMSE MAE BIAS 

beta0 1.734601 0.835958 0.807560 0.898643 0.898643 0.898643 

beta1 -
1.854745 

0.456093 5.339972 2.310838 2.310838 -
2.310838 

beta2 -
1.115562 

0.657365 3.143271 1.772927 1.772927 -
1.772927 

beta3 0.788394 0.396925 0.153248 0.391469 0.391469 0.391469 

τrealpsu 0.012000 0.000000 0.000144 0.012000 0.012000 0.012000 

wtd AGHQ 

beta0 1.734601 0.881944 0.727023 0.852657 0.852657 0.852657 

beta1 -
1.854745 

0.454100 5.330766 2.308845 2.308845 -
2.308845 

beta2 -
1.115562 

0.697352 3.286657 1.812914 1.812914 -
1.812914 

beta3 0.788394 0.377764 0.168617 0.410630 0.410630 0.410630 

τrealpsu 0.012000 1.214500 1.446006 1.202500 1.202500 -
1.202500 
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MCMC 
      

beta0 1.734601 1.988201 0.064313 0.253600 0.253600 -
0.253600 

beta1 -
1.854745 

-2.227099 0.138647 0.372353 0.372353 0.372353 

beta2 -
1.115562 

-1.163398 0.002288 0.047837 0.047837 0.047837 

beta3 0.788394 0.880978 0.008572 0.092585 0.092585 -
0.092585 

τrealpsu 0.012000 0.040822 0.000831 0.028822 0.028822 -
0.028822 

INLA 
      

beta0 1.734601 1.630116 0.010917 0.104486 0.104486 0.104486 

beta1 -
1.854745 

-1.806320 0.002345 0.048426 0.048426 -
0.048426 

beta2 -
1.115562 

-0.978050 0.018910 0.137512 0.137512 -
0.137512 

beta3 0.788394 0.735635 0.002783 0.052758 0.052758 0.052758 

τrealpsu 0.012000 0.011993 0.000000 0.000007 0.000007 0.000007 

 

From Tables 1 to 5 we observe that as the sample size increased, our model with INLA gave the 

best estimates of the intercept and random effect parameters in all sample sizes considered as we 

see the model had the least values of all accuracy measures. The next to follow was the AGHQ 

approximation, then the MCMC model, while the wtd AGHQ did not perform well in the random 

effect estimation for the simulated dataset. For the interaction parameter, wtd AGHQ had the best 

estimate for N = 150, MCMC had the best estimate for N = 500 and 5000, INLA had the best for 

N = 2000 and 10000. For both main effect parameters INLA had the best estimate for N = 150, for 

N = 500 both MCMC and INLA had the best estimates for beta2 and beta1 respectively, while for 

N = 2000, 5000, and 10000, INLA had the best estimates for both main effect parameters.  

The summary of the simulation studies showed that the Bayesian approach of MCMC and INLA, 

overall gave better or close parameters’ estimates for the simulated data, while the INLA approach 

with design information was mostly preferred over the other methods, meaning that other methods 

were able to also fit GLMM without design information, the INLA approach presented in this 

study utilizes the design information to get better parameter estimates, as reported in the simulation 

output tables. The preference of the INLA GLMM over other MCMC (Bayesian approaches 

performed better) stems from the ease for which the posterior (marginal) is evaluated as against 

the joint posterior in MCMC.  

Comparing all the models together to see how the simulated dataset favoured each of the models 

we use the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Deviance 

information criterion (DIC), deviance, log-likelihood and Widely Applicable Information 

Criterion (WAIC). AIC compares the quality of different statistical models for a given dataset, 

balancing how well a model fits the data against its complexity (number of parameters), a lower 

AIC value indicates a better model fit relative to its complexity. BIC selects the best model among 

a set of models by considering both how well it fits the likelihood and its number of parameters, 
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with lower BIC values indicating a better model fit while penalizing for excessive complexity. 

DIC is a Bayesian equivalent of AIC that compares different statistical models by balancing their 

goodness of fit against their complexity, and choosing the model that best explains the data without 

being overly complex; it is and is particularly useful when analysing models with hierarchical 

structures. Deviance is a measure of error, and a lower deviance indicates a better fit. Log-

likelihood represents the probability of observing the data given the model's parameters. A higher 

log-likelihood value indicates a better fit between the model and the observed data. WAIC is a 

generalization of the AIC and it's an estimate of out-of-sample relative K-L divergence (KLD), 

while a smaller WAIC value indicates a better model. 

The comparison of the models was not very satisfying owing to the fact that different model 

comparison measures are used for models under classical and Bayesian approaches. Even for 

Bayesian approaches such as MCMC and INLA, the model comparison measures are not 

comparable except for DIC. MCMC outputs deviance measures as do classical GLMM, while 

INLA outputs log-likelihood as do classical GLMM. We present the results of these measures for 

the simulated dataset in the tables that follow. 

Table 6: Comparisons of models fit for simulated dataset (N = 150, 500, 2000)  
N = 150  

AGHQ wtd AGHQ MCMC INLA 

AIC 114.610 747.103 - - 

BIC 127.109 759.602 - - 

logLik -52.305 -368.552 - -64.7212 

Deviance 104.610 673.240 97.251 NA 

DIC - - 109.992 112.3667 

WAIC - - - 112.7762  
N = 500 

AIC 397.240 2896.932 - - 

BIC 416.385 2916.076 - - 

logLik -193.620 -1443.466 - -208.669 

Deviance 387.240 2689.856 334.376 - 

DIC - - 395.880 395.1731 

WAIC - - - 395.2918 

N = 2000 

AIC 1460.486 9986.509 - - 

BIC 1486.060 10012.083 - - 

logLik -725.243 -4988.254 - -744.436 

Deviance 1375.119 9104.577 1237.850 - 

DIC - - 1448.474 1461.383 

WAIC - - - 1461.462 

 

Table 7: Comparisons of models fit for simulated dataset (N = 5000, 10000) 

N = 5000  
AGHQ wtd AGHQ MCMC INLA 

AIC 3507.801 25065.660 - - 
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BIC 3537.698 25095.560 - - 

logLik -1748.901 -12527.830 - -1768.39 

Deviance 3497.801 23145.370 2772.385 - 

DIC - - 3461.351 3505.714 

WAIC - - - 3505.81 

N = 10000 

AIC 7299.027 52661.430 - - 

BIC 7332.496 52694.900 - - 

logLik -3644.514 -26325.710 - -3665.51 

Deviance 7289.027 48787.940 6148.140 - 

DIC - - 7245.793 7296.893 

WAIC - - - 7297.05 

7From Table 6 and Table 7, we see that the log-likelihood for INLA was near the values of those 

of AGHQ and wtd AGHQ for all the N values simulated, while the DIC values of INLA and 

MCMC were also close for the N values simulated, with MCMC being slightly lower in values 

than INLA. Comparing the deviance values of the classical approaches to MCMC showed that 

MCMC had lower deviance values. Then for the classical model-based approaches, the AGHQ 

was preferred to the wtd AGHQ for all values of N simulated AGHQ had far lower values than 

wtd AGHQ. 

Hence from the simulation study, we saw that our INLA GLMM performed satisfactorily in 

estimating the model true parameters for all sample sizes, and there were close estimates with 

MCMC and model-based AGHQ in certain instances of coefficients, but overall in estimating the 

main effects and interaction and intercept terms given the INLA GLMM performed better with 

lowest error term values. However, due to the differences in classical and Bayesian estimations, 

comparing both methods are not easy due to no common diagnostics for both, even for Bayesian 

methods DIC was the only common diagnostics for comparison while WAIC requires complicated 

computation to obtain from MCMC algorithms. The overlapping measures of log-likelihood and 

deviance for AGHQ with INLA and MCMC respectively, meant that we could see how both 

Bayesian methods compared with AGHQ. 

GLMMs on 2021 NMIS with INLA inference. 

We here perform the Bayesian generalised linear mixed modelling on the two-stage survey design 

with the binary outcome on the NMIS 2021 data using the integrated Laplace approximation with 

the response variable being “if children had a fever in last two weeks” and predictors such as the 

number of children in household, if children slept under a mosquito net last night, children’s age 

in months, education level of the mother, wealth index of household and type of place of residence. 

The implementation here considers the design in section 3.1, for the evaluation of the model, 

making it fall into the category of design-based approach. The stratification variable is the place 

of residence with two values, “0” and “1” with level labels “urban” and “rural” respectively. The 

levels of clustering are defined by the enumeration area (EA) and the Household (HH). 

The specification is such that the likelihood used for the observations is the binomial distribution 

and we prefer to specify the priors on the hyperparamters in the likelihood as logit priors and the 

penalised complexity prior for precision parameter. The summary of the resulting model 

specification showing the posterior estimates of the model parameters is shown in    Table 8. 
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Table 8: Posterior Estimate of GLMM using INLA 

Fixed effect mean sd 2.5% CI 97.5% CI mode 

(Intercept) -0.5000 0.1370 -0.7680 -0.2320 -0.4990 

sleep under mosq. Net_ALL 0.0060 0.0710 -0.1330 0.1450 0.0060 

sleep under mosq. Net_Some -0.1190 0.0890 -0.2920 0.0550 -0.1190 

sleep under mosq. Net_No net -0.2420 0.0710 -0.3810 -0.1020 -0.2420 

number of children in HH -0.0510 0.0200 -0.0900 -0.0120 -0.0510 

child_age_month -0.0030 0.0010 -0.0050 0.0000 -0.0030 

Education level_Primary 0.2250 0.0760 0.0750 0.3750 0.2250 

Education level_Secondary 0.0820 0.0770 -0.0680 0.2330 0.0820 

Education level_Higher -0.2390 0.1120 -0.4590 -0.0180 -0.2390 

Wealth index_Poorer -0.0330 0.0780 -0.1850 0.1200 -0.0330 

Wealth index_Middle -0.1230 0.0880 -0.2960 0.0500 -0.1230 

Wealth index_Richer -0.2440 0.1020 -0.4450 -0.0440 -0.2440 

Wealth index_Richest -0.3320 0.1200 -0.5670 -0.0970 -0.3320 

Type of place of residence_Rural 0.2570 0.0980 0.0650 0.4500 0.2570 

Random effect      

Precision for realpsu 1.3700 0.1290 1.1400 1.6400 1.3500 

The results from Table 8, showed that sleeping under mosquito net, education level of mothers, 

wealth index and place of residence were all significant indicators of malaria incidence among 

children. With higher incidence in children who live around rural areas compared to those in urban 

areas as reported by the marginal posterior estimates value of 0.26 for factor type of place of 

residence. Also, the incidence of malaria fever weakened as wealth index of family increased, 

similar was the case for level of education of mothers of children. 

The model selection criteria obtained for the INLA model, for which we represent as INLAglmm, 

were Watanabe-Akaike information criterion (WAIC) of 12374.65, DIC of 12383.52, marginal 

log-Likelihood of -6425.06 and deviance of 12266.0. The marginal posterior mean effect of 

number of children under 5 years in household, age of child in months and place of residence, 

either urban or rural area and the posterior marginal are seen to Gaussian in distribution.  

The trace and density plots of the model parameters as well as the summary plot of the variance 

component associated with primary sampling unit and the residual precision component fitted and 

linear predictor in Figure 1 shows that the residual precision far from zero and the parameter 

estimates are in line with specifications.   

 



Olakiigbe et al.- Transactions of NAMP 21, (2025) 183-204 

200 

 

F
ig

u
re

 1
: 

S
u
m

m
ar

y
 p

lo
t 

fo
r 

th
e 

co
ef

fi
ci

en
ts

 f
ro

m
 I

N
L

A
 G

L
M

M
 



Olakiigbe et al.- Transactions of NAMP 21, (2025) 183-204 

201 

Comparing the INLAglmm with other models for the 2021 NMIS data. 

Comparing the models from the classical and Bayesian approaches is not exactly straightforward 

since different model diagnostics are produced by the different models and also the specifications 

of the models are different. We shall without ignoring the flaws, attempt to put together the model 

comparison measures to see how the different models fit the Nigeria Malaria Indicator Survey 

2021. The model comparison measures are given as produced by the model fitting process and 

shown in Table 9. 

Table 9: Model Comparison Measures  
AIC BIC logLik deviance DIC WAIC 

AGHQ 12684 12793 -6327.10 12654.00 
  

wtdAGHQ 12296 12405 -6333.00 12266.00 
  

INLAglmm 
 

-6425.06 
 

12383.76 12374.65 

MCMCglmm 
  

12091.12 12388.94 
 

From Table 9, we can see for the classical case that the weighted approach, wtdAGHQ was better 

than the model-based approach AGHQ, since its AIC, BIC, log-likelihood, and deviance are lower 

than those of the latter. Comparing the log-likelihoods of the modelling approaches shows that 

INLAglmm had the lowest value.  We also noted that the time taken to run the models was the least 

for the INLA model and up to minutes for the classical approaches. 

In summary, the results of the simulation study and application to real-world data [38] emphasize 

the impact of Bayesian methodology on a wide range of application areas and under various real-

life scenarios of differing populations and sampling sizes. The contrast made with existing 

approaches of model-based analysis and MCMC with survey weights and INLA shows that the 

methodology for GLMM presented here can be attractive in survey data analysis. The selling point 

of the INLA approach is its computational efficiency. The marginal posterior is evaluated from the 

sparse precision matrix of the latent field as discussed in section 2, which in turn leads to quicker 

computations and hence improves the computation time for complex models and large data as 

usually found in survey data. While several works have highlighted the merits of INLA as an 

alternative to MCMC, ( [36]; [34]; and [39] ), our work here brings to the forefront the 

methodology of GLMM for complex survey design as a latent Gaussian model for INLA 

estimation. The impact of complex survey information in data analysis has already been 

highlighted in the literature, where it was also shown that design-based analysis for GLMM is 

scarce, hence the significance of this study. The practical implication of this study is the application 

of the Bayesian approach for complex survey data and specifically the INLA approach for 

efficiency in the face of complex hierarchical models and large datasets.  

Conclusion  

While there are solutions for analyses of survey data with survey information for multiple 

regression and generalized linear model, there are scarce resources on GLMM and this study 

sought to fill this gap and also shed more light on the line of application of the approximate 

Bayesian inference of INLA. Our modelling approach was motivated by the Nigeria Malaria 

Indicator Survey 2021 dataset and the variable of interest was a binary outcome of the incidence 

of fever, hence we examined a binary two-stage survey GLMM. Our simulation study compared 

the performance of different GLMMs for different sample sizes and the effect of prior 

specifications under INLA method for binary two stage survey data. We saw that our INLA 

approach performed better in estimating model parameters and precision of random effect, 
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compared to MCMC and AGHQ approximations, although there were settings where their 

estimates were close. We note the significant effect of survey design in the results from analysis 

of simulations. 

Classical GLMM using Adaptive Gauss-Hermite Quadrature approximation (AGHQ) and 

weighted AGHQ approximation, and Bayesian MCMC and our design-based INLA were applied 

to the 2021 NMIS dataset. We saw from the study that for the classical case that the weighted 

approach, wtdAGHQ was better than the model-based approach AGHQ, since its AIC, BIC, log-

likelihood and deviance are lower than those of the latter. The INLA approach was preferred when 

compared using log-likelihood over the classical approaches and over the MCMC approach 

comparing their DIC. We also noted that the time taken to run the models was least for the INLA 

model and up to minutes for the classical approaches, which is of great merit especially when 

analysing large datasets from survey studies. We note that the design-based approach for GLMM 

binary outcome and using INLA is therefore advocated especially in analyses of survey data. 

Despite the potential of the INLA method for survey data analysis, there are yet some limitations 

to the approach. Its computational cost is exponential concerning the number of hyperparameters 

θ, and due to its reliance on large sparse matrix computations for the posterior approximation, with 

a large number of hyperparameters, INLA will require a large amount of memory for such large 

models. Majorly, INLA was developed only for the subclass of structured additive regression 

models that can be expressed as LGMs, so it cannot be applied to models that cannot be expressed 

as LGMs. Also, implementing new models with INLA requires a high level of programming and 

expertise due to the intricate numerical optimization [36]. The subjectivity of prior specification is 

also a challenge as it is in any Bayesian approach to data analysis. Another noticeable limitation 

of this study is that the scope was only on a two-stage sampling design involving binomial response 

variables. Hence, future research can extend the distribution of response variables to other 

members of the exponential family of distributions. 
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