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ABSTRACT 

This study produces a Bayesian Neural Network (BNN) to forecast GDP 

growth while quantifying prediction uncertainty which is often overlooked 

in traditional neural networks. By integrating Bayesian inference with deep 

learning, the model generates prediction intervals rather than single-point 

estimates, offering a probabilistic perspective crucial for decision-making 

under uncertainty. The BNN was initially trained on simulated data to 

validate its architecture and subsequently tested on real-world quarterly 

GDP data (2010-2023), monthly inflation rates, and interbank interest rates 

sourced from the Central Bank of Nigeria. The model employs Guassian-

distributed weights and biases, uses Rectified Linear Unit (ReLU) activation 

functions, and optimizes training through the Adam algorithm. Results 

demonstrates that the BNN achieves strong predictive performance, with its 

prediction interval providing actionable insights for scenarios where 

uncertainty quantification is paramount. This approach improves GDP 

forecasting accuracy and provides a robust framework for analyzing 

volatile economic metrics in emerging economies like Nigeria 

1. INTRODUCTION  

Accurate predictions of economic metrics including GDP growth rate, inflation rate, 

unemployment rate and interest rate, are a significant aspect of economic policy decisions. For 

businesses, financial institutions, and Governments, accurately predicting GDP growth is essential 

because it informs risk management, resource allocation, and decision-making,[1]. Traditional 

economic forecasting relies on statistical models that assume linear and stationary relationships 

between input variables and economic outcomes. Traditional economic forecasting methods, such 

as autoregressive integrated moving average (ARIMA) developed by [2] and vector autoregression 

(VAR) developed by [3], cannot accurately capture the complexities of economic data, including 

non-linearity, time-varying dynamics, and uncertainties. 
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Traditional techniques of economic forecasting frequently lack the flexibility to respond to new 

data and emerging trends. Big data and high-frequency financial and macroeconomic datasets have 

enabled advanced machine learning techniques, including deep learning, to improve GDP growth 

predictions [4], [5]. Traditional econometric models have limits in forecasting accuracy, as 

emphasized in comparative research [6], [7]. Deep learning models, with their capacity to 

understand complex patterns and extract significant information from vast, multidimensional 

datasets, have shown higher prediction accuracy in numerous financial and economic applications, 

[1], [8]. Deep neural networks’ capacity to automatically learn hierarchical representations from 

data has result to remarkable breakthroughs in predictive modeling. Deep learning algorithms is 

able to recognize complicated patterns as well as connections in datasets that regular models might 

overlook in economic forecasting. Deep learning models, like Deep Neural Network (DNN), 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and others, have gained 

interest in economic applications, providing improved tools for predicting with vast data sets [9]. 

Deep learning models, on the other hand, frequently fail to produce valid estimates of uncertainties 

for tasks critical to the quantification of uncertainty in order to obtain an accurate evaluation of its 

influence on a particular economy, such as economic forecasting. Bayesian deep learning is a 

promising approach to improve accuracy and robustness while quantifying uncertainties. It 

combines the flexibility of deep learning with the probabilistic approach of Bayesian inference, 

resulting in better decision-making, [10], [11] By integrating the strengths of deep learning 

frameworks such as DNN, CNN, and RNN with Bayesian inference, researchers hope to deliver 

more accurate and probabilistic economic and financial predictions. Using Bayesian deep learning 

approaches in economic forecasting integrates deep learning and probabilistic graphical models 

(PGM) [12]. [13] book provides a theoretical framework for neural networks, including structures, 

learning techniques, and applications. It defines fundamental ideas like backpropagation and 

multilayer perceptron. [14] introduced the backpropagation algorithm, which significantly 

improved the training of multi-layer neural networks and enabled deep learning advancements. 

However, the algorithm suffers from slow convergence, vanishing gradient problems in deep 

networks, and high computational cost for large-scale datasets. [15] found that multi-layer 

feedforward neural networks with sufficient number of hidden units can estimate any continuous 

function, making them universal approximators. Deep learning has been increasingly popular for 

economic forecasting in recent years. In a thorough assessment of financial time series forecasting 

using deep learning applications from 2005 to 2019, [16] found that deep learning algorithms are 

increasingly effective in capturing financial patterns. [17] offered an overview of deep learning-

based stock market prediction, highlighting significant models and their financial forecasting 

strengths. The intricate nature of economic data can lead to overfitting, particularly if the dataset 

is small or has a high number of dimensions. [18] proposed dropout as a regularization method to 

prevent overfitting in deep neural networks. [19] studied how regularization techniques improve 

model generalization and prevent overfitting in deep learning architectures. Bayesian techniques 

provide a powerful framework for economic analysis by quantifying uncertainty and updating 

predictions in response to new data. Bayesian methods have various advantages, including 

uncertainty quantification, integration of prior knowledge, and flexibility, as they can handle 

intricate data and hierarchical structures, which make them suitable for variety of applications. In 

[20], Bayesian strategies were proposed to address structural uncertainty in macroeconomic 

analysis using panel vector autoregressive (VAR) models. The study found that Bayesian 

techniques improve predicting ac curacy in panel VAR models. [21] proposed Bayesian Model 

Averaging (BMA) to improve forecast accuracy by accounting for model uncertainty. It was 

demonstrated in macroeconomic forecasting, where it outperformed single-model techniques. [22] 

proposed a Bayesian Regularized Neural Network (BRNN) model for predicting the Naira-USD 
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exchange rate. It was demonstrated that BRNN outperforms typical machine learning models when 

dealing with exchange rate volatility and uncertainty.  

 

MATERIALS AND METHODS 

The Bayesian Neural Network (BNN) model was developed applying the Variational Inference 

(VI) method. 

2.1 Data Source 

The data used is a secondary data gotten from the Central Bank of Nigeria (CBN) database. The 

data used for the GDP growth forecast is the quarterly datasets of GDP at 2010 CONSTANT 

MARKET PRICES from quarter 1 of 2010 to quarter 4 of 2023, 

https://www.cbn.gov.ng/rates/RealGDP.html. For the inflation rate datasets, we used the monthly 

datasets of the ALL ITEMS (12 MONTHS AVG. CHANGE) from the month 1 of 2010 to month 

12 of 2023, https://www.cbn.gov.ng/rates/inflrates.html. The interest rate datasets used is the 

monthly datasets of INTERBANK CALL RATE from month 1 of 2010 to month 12 of 2023, 

https://www.cbn.gov.ng/rates/interbankrates.html.  

2.2 Data Processing 

Upon data collection, the data was processed to verify quality and uniformity. The data was 

cleaned, which included handling missing value and screening for outliers. The data was also 

standardized to ensure that it is on comparable scales ap propriate for deep learning models. 

2.3 Model Architecture 

The input layer, hidden layers with the ReLU activation, and output layer make up the BNN model. 

𝑦̂ = 𝑓(𝑥; 𝑊) =  𝑊2𝑅𝑒𝐿𝑈(𝑊1. 𝑥 + 𝑏1) + 𝑏2 (1) 

where;  

x is the input to the network which is the vector of features.  

The weight matrices are 𝑊1 and 𝑊2. 𝑊1 connects the input layer to the hidden layer while 𝑊2 

connects the hidden layer to the output layer. The bias vectors are 𝑏1 and 𝑏2 which are added to 

the respective layers to shift the activation functions. 𝑏1 is the bias for the hidden layer and 𝑏2 is 

the bias for the output layer. hiddenlayerandb2isthebiasfortheoutputlayer. The non-linear 

activation function, ReLU, gives the network non-linearity so that it can represent complex 

patterns. Unlike traditional neural networks, BNNs view weight and bias as random variables with 

a prior distribution. The bias and weights are determined using the Guassian distribution, which 

assumes a normal distribution. The key to BNNs is Bayesian inference, which updates the weight 

and bias distributions based on observed data. The posterior distribution of the weights given the 

data, is computed as: 

𝑃(𝑊(𝑙)|𝐷) =
𝑃(𝐷|𝑊(𝑙))𝑃(𝑊(𝑙))

𝑃(𝐷)
∝ 𝑃(𝐷|𝑊(𝑙))𝑃(𝑊(𝑙)) (2) 

Making predictions based on the posterior distribution of the model parameters is the main goal of 

the BNN model, rather than simply drawing inferences from it. This is achieved by integrating the 

posterior distribution to obtain the posterior predictive distribution: 

https://www.cbn.gov.ng/rates/RealGDP.html
https://www.cbn.gov.ng/rates/inflrates.html
https://www.cbn.gov.ng/rates/interbankrates.html
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𝑃(𝑦|𝑥, 𝐷) = ∫ 𝑃(𝑦|𝑥, 𝜃)𝑃(𝜃|𝐷)𝑑𝜃 (3) 

Where y is the predicted output, x is the input, D is the observed data and θ=(W,b) is the model 

parameter. This distribution shows a comprehensive distribution of probable outcomes, including 

uncertainty. 

2.4 Model Training and Evaluation 

The posterior distribution in Eq. 2 is intractable, so we apply the Stochastic Variational Inference 

(SVI) approach. We use a more straightforward distribution to approximate the posterior 

distribution q(W) which belongs to Guassian distribution 

𝑞(𝑊) = 𝑁(𝑊|μ, Σ) (4) 

And then minimizes the Kullback-Leibler (KL) divergence between q(W) and 𝑃(𝑊(𝑙)|𝐷). 

This KL divergence minimization is the same as maximizing the Evidence Lower Bound (ELBO), 

that is, defining the loss function: 

ℒ(μ, Σ) = 𝐸𝑞(𝑤)[log 𝑝 ( 𝐷 ∣ 𝑤 )] − KL(𝑞(𝑤) ∥ 𝑝(𝑤)) (5) 

We use the training data to update the parameters µ and Σ by minimizing ℒ(μ, Σ). The SVI used 

the variant of the Stochastic Gradient Descent (SGD) Adam optimizer to update the model 

parameters iteratively.  

When considering the parameters, the loss function’s gradient ∇𝑊𝐿(𝑊, 𝑏) and ∇𝑏𝐿(𝑊, 𝑏), 

represent the direction and the rate of change to decrease the loss function. The parameters need 

to be moved in the opposite direction of the gradient in order to minimize the loss. The Basic 

Gradient Descent (BGD) which updates the parameters by moving them in the opposite direction 

of the gradients is given as: 

𝑊 ← 𝑊 − η∇𝑊𝐿(𝑊, 𝑏) (6) 

𝑏 ← 𝑏 − η∇𝑏𝐿(𝑊, 𝑏) (7) 

η is the learning rate, a hyperparameter that controls the size of the step we take in the parameter 

space during each update. The Adam optimizer improves upon BGD by adapting the learning rate 

for each parameter individually. The algorithm is given below: 

1. Initialize the parameter: We initialize the weights 𝑊0 using the prior knowledge. We also 

initialize the first moment vector 𝑚0 = 0and the second moment vector𝑣0 = 0. We set the 

timestep 𝑡 = 0 and the learning rate η =  0.01.  

2. First Moment (Mean of the Gradients): Adam optimizer computes an exponentially moving 

average of the gradient mt, which helps in smoothing the update process: 

𝑚𝑡 = β1𝑚𝑡−1 + (1 − β1)∇𝑊𝐿(𝑊, 𝑏) (8) 

β1 is a hyperparameter that controls the decay rate of the moving average. 

3. Second Moment (Variance of the Gradients): Adam optimizer also computes an exponentially 

moving average of the squared gradient 𝑣𝑡, which helps in scaling the learning rate: 
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𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)(∇𝑊𝐿(𝑊, 𝑏))
2

(9) 

β2 is another hyperparameter controlling the decay rate of this moving average. 

4. Bias Correction: Since 𝑚𝑡 and 𝑣𝑡 are initialized to 0, Adam optimizer includes bias correction 

terms to counteract the initial bias: 

𝑚𝑡̂ =
𝑚𝑡

1 − β1
𝑡 (10) 

𝑣𝑡̂ =
𝑣𝑡

1 − β2
𝑡 (11) 

5. Parameter Update: The parameters are updated as follows: 

𝑊𝑡 ← 𝑊𝑡−1 − η
𝑚𝑡̂

√𝑣𝑡̂ + ϵ
(12) 

𝑏𝑡 ← 𝑏𝑡−1 − η
𝑚𝑡̂

√𝑣𝑡̂ + ϵ
(13) 

ϵ is a small constant added to prevent division by zero. 

This process of iteration continues for multiple epochs or until convergence. We use the model to 

produce predictions on the test data after it has been trained. To make predictions, we sample 

weights from the posterior predictive distribution in Eq. 3 and average them. 

𝑦̂ =
1

𝑁
∑ 𝑓(𝑥; 𝑊𝑖)

𝑁

𝑖=1

(14) 

where 𝑊𝑖 ∼ 𝑞(𝑊). 

We evaluate the model’s performance by assessing its predicted uncertainty. The predictive 

uncertainty is calculated by examining the variations in the predictions: 

𝑉𝑎𝑟(𝑦̂) =
1

𝑁
∑(𝑓(𝑥; 𝑊𝑖) − 𝑦̂)

2
𝑁

𝑖=1

(15) 

2.5 Hyperparameter Optimization 

For the BNN model to perform better, different combinations of vital hyperparameters such as 

hidden dimensions and learning rate were evaluated. Table 1 shows the many combinations 

utilized during the tuning process. Each combination was assessed on the following metrics: Mean 

Square Error (MSE), Mean Absolute Error (MAE), and coverage.  

Table 1: Performance Table with Hidden Dimensions and Learning Rates 

Hidden 

Dimension 

Evaluation 

Metrics 

Learning Rate 

0.001 0.005 0.01 0.05 

MSE 1.27 0.74 0.65 0.62 
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64 
MAE 0.95 0.62 0.57 0.56 

COVERAGE 32.26% 100.00% 100.00% 100.00% 

32 

 

MSE 1.56 0.98 1.26 4.97 

MAE 1.07 0.78 0.93 2.01 

COVERAGE 19.35% 100.00% 100.00% 100.00% 

16 
MSE 1.64 0.99 1.11 1.35 

MAE 1.08 0.78 0.84 0.97 

COVERAGE 25.81% 90.32% 83.87% 96.77% 

8 
MSE 1.18 1.12 1.29 1.25 

MAE 0.81 0.85 0.95 0.93 

COVERAGE 29.03% 67.74% 61.29% 64.52% 

4 
MSE 1.39 1.14 1.21 1.12 

MAE 0.92 0.87 0.90 0.85 

COVERAGE 29.03% 54.84% 54.84% 54.84% 

 

Table2 shows that the optimal hidden dimension and learning rate for BNN performance is 

(16,0.005), resulting in low MSE and MAE and high coverage. 

The hyperparameters used for the BNN model is given in Table 2; 

Table 2. Hyperparameters Table. 

Hyperparameters Value 

Input Dim 10 

Hidden Dim 16 

Output Dim 1 

Learning Rate 0.005 

Batch Size 32 

Epochs 300 

 

An input dimension of 10 indicates that the model expects 10 features for each data point. The 

quantity of neurons in the hidden layers is the hidden dimension; our hidden layer contains 16 

neurons. Because we have 2 hidden layers, each contains 8 neurons. The output dimension of 1 

indicates that we expect only one output, which is GDP. The Adam optimization algorithm uses 

the learning rate to determine the step size. A learning rate of 0.005 indicates that the model will 

update the weights at a 0.005 step to help it converge on the optimal solution. The batch size of 32 

indicates that the model processed 32 data points before performing the backpropagation step. 

Epochs of 300 means the model will make 300 passes over the data to optimize its performance. 

2.6 Evaluation Metrics 

The BNN model was evaluated using the Mean Square Error (MSE), Mean Absolute Error (MAE), 

and coverage, which is the percentage of actual values that fall within the predicted confidence 

interval. 

RESULTS 

The evaluation table is given in Table 3; 
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Table 3: Evaluation Metrics  

Metrics Value 

MSE 0.99 

MAE 0.78 

Coverage 90.32 

 

MSE calculates the average squared difference between actual and predicted values. In this case, 

an MSE of 0.99 implies that the squared differences between predicted and actual GDP values are 

relatively small. The MAE calculates the average absolute difference between actual and predicted 

values. A value of 0.78 indicates that the average absolute difference between predicted and actual 

GDP values is around 0.78 units. This shows that the model is moderately accurate, with 

predictions deviating from true values by approximately 0.78 units on average. Coverage is the 

percentage of actual values falling within the prediction interval (specified by the lower and upper 

bounds of the 95% confidence interval). With a coverage of 90.32%, more than 90% of the actual 

values are within the predicted confidence interval, which is less than the expected 95%. This 

coverage indicates a minor under confidence, which means the model’s intervals are a little too 

tight. 

The evaluation plot is given in Fig. 1 

 

Figure 1. Plot of the Evaluation Metrics. 

The low MAE and MSE indicates that the model have a high accuracy and the high coverage 

suggest that the approach is effectively capturing uncertainties. 

The forecast table is given in Table 4; 

Table 4: Forecast Table with Lower and Upper Bounds 

Actual Value Predicted Value Lower Bound Upper Bound 

-0.107206 -0.202959 -1.050463 1.404272 
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-0.107206 0.224955 -0.353073 1.156345 

-0.131346 -0.235192 -1.335047 0.864664 

-0.131346 0.244618 -1.387753 0.930206 

0.722205 0.225144 -1.387753 0.632976 

0.722205 -0.229072 -1.449252 0.689124 

0.722205 0.159671 -1.050278 1.203022 

0.722205 -0.193950 -1.560273 1.229458 

1.523102 0.240734 -1.053524 1.237345 

1.523102 0.160408 -1.264354 1.072118 

1.523102 -0.105702 -1.376738 1.013945 

0.162268 0.149976 -2.120406 1.520661 

0.162268 0.148667 -1.762581 1.464365 

0.162268 0.146317 -1.758120 1.463385 

0.121148 -0.211961 -1. 571137 1.147203 

 

The forecast plot is given in Fig.2; 

 

Figure 2. Forecast plot with coverage. 

The actual GDP fluctuates which shows high variability in the data while the predicted GDP does 

not capture the fluctuation of the actual GDP. The 95% confidence interval is wide which indicate 

high uncertainties in the prediction. 

CONCLUSION 

In this work, BNN is demonstrated to be a highly successful technique for economic forecasting. 

The BNN model presented in this research presents a strategy for forecasting economic variables 

that gives both accuracy and a measure of uncertainty. This was accomplished by integrating 

Bayesian inference with neural network flexibility. The BNN model built also demonstrates that 

BNN may be applied to small datasets as well as large datasets. The BNN model’s uncertainty 

quantification is a highly successful technique for improving the dependability of economic 



Chidiebere et al. - Transactions of NAMP 22, (2025) 21-30 

29 

projections and providing decision-makers with critical insights into risk management and 

capitalizing on opportunities in ever-changing economic scenarios. 
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