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ABSTRACT 

The maximum mass of neutron stars (NSs) marks a fundamental limit set by 

general relativity and the equation of state (EOS) of ultra-dense matter. This 

study systematically explores NS maximum masses using relativistic models 

across a range of EOS types, including nucleonic, hyperonic, and quark 

matter. By solving the Tolman-Oppenheimer-Volkoff equations with 

piecewise-polytropic EOS parameterizations, we identify collapse 

thresholds and their sensitivity to high-density physics. Observational 

constraints from NICER (PSR J0740+6620: 2.08±0.07 𝑀⊙) and 

GW170817 tidal deformability are incorporated. Results show that the 

maximum mass (𝑀𝑚𝑎𝑥) strongly depends on EOS stiffness above nuclear 

saturation, with 𝑀𝑚𝑎𝑥 approaching or exceeding 3𝑀⊙. Hybrid EOS with 

quark deconfinement predict distinct kinks in the mass-radius relation near 

𝑀𝑚𝑎𝑥. These findings offer theoretical limits for distinguishing NSs from 

black holes in gravitational and electromagnetic signals, and enable 

stringent. 

1. Introduction  

Neutron star (NS) are giant ball of neutrons, this ball has a diameter of about 20 𝐾𝑚 and 

somewhere around 1.5 𝑀⨀. This exotic system is extremely dense, it is so dense that the neutrons 

are basically all touching one another, so it’s sitting somewhere around nuclear density [1; 2]. To 

give an idea of how dense the nuclear matter is, a teaspoon full of NS material would weigh as 

much as mount Everest, and at the surface of the star the gravitational forces are very strong. 

 This exotic system has been used to directly detect gravitational waves (GW) emitted by 

objects like black holes (BH) and neutron stars (NSs), testing a number of GR predictions with 

previously unheard-of accuracy. GW are space-time ripples brought about by the motion of large 

objects, such as NSs. One would have a BH if the metric deviation in equation (22) were one, 

which is almost half. This indicates that NSs are on the verge of becoming BHs. 
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Since the central density needed to support the star against gravity reaches infinity, the star will 

collapse if the metric deviation reaches 8/9. The delicate balance between the outward pressure 

supplied by the NS's interior structure and the inward pull of gravity is highlighted by this 

important threshold. Although the exact maximum mass of an NS is unknown, it is thought to be 

between 2 and 3𝑀⊙. Because the EOS of NS material is still unknown, scientists are unable to 

pinpoint the precise maximum mass of an NS [3; 4]. In all of astrophysics, this is one of the most 

significant unknowns. 

 The EOS describes how matter behaves at the extreme densities found in NS interiors, 

where pressures can exceed 1034 pascals. At such densities, matter is no longer composed of 

ordinary atoms but rather of degenerate neutron matter, a state where neutrons are packed so tightly 

that they are on the verge of collapsing into a BH. NSs are made of this degenerate neutron matter, 

which represents matter at the limits of Quantum Mechanics. One cannot confine a neutron to too 

small a volume due to the Pauli exclusion principle, which states that no two neutrons (or other 

fermions) can occupy the same quantum state simultaneously. Since NS material is so dense, we 

have essentially reached the Quantum Mechanical limit where neutrons cannot be compressed any 

further without violating this principle [5]. 

 The uncertainty in the EOS arises because the behaviour of matter at such extreme densities 

is governed by the strong nuclear force, which is not fully understood in these conditions. 

Theoretical models of the EOS must account for not only neutrons but also potentially exotic 

particles such as hyperons, pion or kaon condensates, and even deconfined quark matter. Each of 

these possibilities leads to different predictions for the maximum mass and radius of a NS. For 

example, the presence of hyperons or quark matter could soften the EOS, resulting in a lower 

maximum mass, while a stiffer EOS (e.g., due to repulsive nuclear interactions) could allow for 

more massive NSs. 

 

2.0 Neutron Star 

 Observational data from NSs provide critical constraints on the EOS. For instance, the 

detection of massive NSs, such as PSR J0740+6620 with a mass of approximately 2.08 𝑀⊙, rules 

out softer EOS models that cannot support such high masses. Similarly, GW signals from NS 

mergers, like GW170817, offer insights into the tidal deformability of NSs, which is directly 

related to the EOS. These observations are helping scientists narrow down the range of possible 

EOS models and refine our understanding of NS structure. 

 The study of NSs and their EOS is not only important for understanding these exotic objects 

but also for probing the fundamental physics of dense matter. NSs serve as natural laboratories for 

testing theories of Quantum Chromodynamics (QCD) under conditions that cannot be replicated 

on Earth. Additionally, the maximum mass of a NS has profound implications for astrophysics, as 

it determines the boundary between NSs and BHs. If a NS exceeds its maximum mass, it will 

collapse into a BH, releasing a tremendous amount of energy in the form of GWs and possibly 

gamma-ray bursts. 

 The metric deviation and the EOS are central to understanding the stability and structure 

of NSs. While NSs are on the brink of becoming BHs, the exact maximum mass remains uncertain 

due to the unknown nature of matter at extreme densities. By combining theoretical models with 

observational data, scientists are gradually unravelling the mysteries of NSs and the fundamental 

physics that govern them [3; 4; 5]. 

Neutron stars are produced when a massive star runs out of fuel and falls. When the star's 

core collapses, every proton and electron inside is crushed together to create neutrons [6]. If a star's 

core has a mass of one to three solar masses, these newly created neutrons can stop the star from 

collapsing and leave behind a neutron star (stars with bigger masses will still fall into black holes 

with a stellar mass) [7]. 
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The sun-sized object with the mass of a metropolis is the densest known object as a result 

of this collapse. These star remnants have a diameter of around twenty kilometres, or twelve miles. 

One trillion kilogrammes, or one billion tonnes, is the approximate weight of a single sugar cube 

produced of material from NSs on Earth [8]. 

A NS with a strong magnetic field (field lines in blue shown in Figure 1) and a light beam 

travelling along the magnetic axis are depicted in this pulsar diagram. The magnetic field 

spins along with the NS, moving that beam throughout space. We perceive the beam as a regular 

pulse of light if it sweeps across Earth. Since NSs originated as stars, they can be found 

sporadically in the same locations as stars throughout the galaxy. They can also be discovered 

alone or in binary systems with a companion, just like stars. Due to their insufficient radiation 

output, a large number of NSs are probably undetected [9]. However, they are easily observable 

in specific situations. 

 

 2.1 Structure of Neutron Star 

A neutron star's cross-section can be loosely classified into four areas (refer to Figure 9): 

There are only a few centimetres of atmosphere, a Fermi liquid of relativistic degenerate electrons 

and a lattice of atomic nuclei make up the outer crust. In essence, this is stuff from white dwarfs. 

The inner crust, which stretches from the neutron drip density to a transition density (𝑄𝑡𝑟  ≃
 1.7 × 1014 𝑔𝑐𝑚−3) is surrounded by the outer crust.  

Concerning the matter's compressibility, three distinct groups can be applied when 

organising the corresponding EOSs: soft, mild, and stiff.  According to research by [10], with 

varying EOSs one can generate a variety of stellar models, especially concerning maximum 

masses, which range from 𝑀𝑚𝑎𝑥~1.4 𝑀⨀ for the softest EOSs to 𝑀𝑚𝑎𝑥~2.5 𝑀⨀ for the stiffest. 

The EOSs can also be separated based on the matter's composition; only nucleon matter can be 

responsible for extremely stiff EOSs. [11]. 

 Neutron star models can be computed in the framework of GR after obtaining the EOS. 

The central density 𝜌𝐶 is used to parameterize a family of NS models, where the gravitational mass 

𝑀 = 𝑀(𝜌𝐶)  and the circumferential radius 𝑅 = 𝑅(𝜌𝐶) are derived and the proper length of the 

NS equator is represented by 2𝜋𝑅 [12]. The EOS is a critical input for constructing NS models, as 

it describes how pressure varies with density in the star's interior. It encapsulates the microphysics 

of matter at extreme densities, including nuclear interactions, phase transitions, and the possible 

presence of exotic particles like hyperons or deconfined quarks. Once the EOS is determined, it 

can be integrated into the TOV equations, which are the general relativistic equations governing 

the structure of spherically symmetric, static stars. These equations balance the inward pull of 

gravity against the outward pressure gradient, ensuring hydrostatic equilibrium. 

 The central density 𝜌𝐶 serves as a key parameter in these models and by varying 𝜌𝐶 , one 

can generate a sequence of NS models, each corresponding to a different mass and radius. This 

sequence is often represented as a mass-radius (M-R) curve, which is a fundamental tool for 

comparing theoretical predictions with observational data. For example, observations of NS 

masses from binary systems and radii from X-ray timing or GW events provide critical constraints 

on the EOS. 

 The circumferential radius 𝑅 is particularly significant because it defines the star's size as 

measured by an observer at infinity. It is related to the star's gravitational mass 𝑀 through the 

curvature of space-time, as described by GR. The proper length of the NS equator, 2𝜋𝑅 is a 

measure of the star's surface geometry in its own reference frame. This quantity is important for 

understanding phenomena such as surface emission, rotational effects, and the star's interaction 

with its environment. 

 Recent advances in astrophysical observations and theoretical modelling have significantly 

improved our understanding of NS structure. For instance, the detection of GWs from NS mergers 
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(e.g., GW170817) has provided unprecedented constraints on the EOS by limiting the maximum 

mass and radius of NSs. Similarly, X-ray observations from missions like Neutron Star Interior 

Composition Explorer (NICER) have allowed for precise measurements of NS, further refining 

our models. 

 The computation of NS models within the framework of GR, parameterized by the central 

density 𝜌𝐶, provides a powerful tool for exploring the properties of these extreme objects. By 

combining theoretical EOS models with observational data, scientists can probe the nature of dense 

matter, test the limits of GR, and uncover the secrets of NS interiors [12]. 

 

2.2 Binary Neutron Star 

By monitoring GW radiation, BNSs can be used as new, highly accurate observatories to 

track their final years of inspiral. GR plays a major role in determining the eventual inspiral, which 

results in the well-predicted "chirping" kind of evolution. As a result, little disturbances from their 

backdrop do not affect the chirping inspiral [13]. 

This not only enables precision cosmology in conjunction with optical equivalents but also 

makes it possible to detect binary GWs as small as 10−21 fractional oscillations of the metric [14]. 

BNS as illustrated in figure 10, two NSs going around a common central mass; these exotic 

systems are used to test the various predictions of the theory of GR to unprecedented accuracy. 

Most of the stars one sees in the sky are binary systems, most of them are very white binaries with 

orbital periods of years or centuries, and some of them are close binaries, close enough to interact 

with one another [15]. 

This abundance of diverse binary systems improves our knowledge of GW emissions and 

star evolution. In particular, processes like mass transfer and tidal interactions can occur in close 

binaries, resulting in a dynamic development that may eventually cause the NSs to fuse or cause 

common envelope events. Not only do these mergers result in measurable GWs, but they are also 

essential for nucleosynthesis, especially for the synthesis of heavy elements like platinum and gold. 

Astronomers can test the predictions of GR with amazing accuracy and learn more about the 

ultimate destiny of binary systems in the universe by examining these interactions [16]. 

 

                       

Figure 1 Binary neutron stars going around a common central mass. Credit: NICER 

3.0 Relativistic Framework 

The metric, which represents the most significant general relativity concept relevant to 

stellar applications, was studied.  A generalized Pythagorean theorem that incorporates the time 

coordinate uses the metric as a geometric tool to relate distances in space-time. Since the 

underlying physics is more important than the particular coordinate system, tensors, which are 
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multi-indexed objects, are the invariant language used to represent all equations. The Einstein 

summation convention assumes an inferred sum across repeated indices, which simplifies the 

notation. Keeping this in mind, and starting with the general relativity Einstein-Hilbert action, 

which is provided by: 

 S = ∫
1

2k
R√−𝑔d4x  (1) 

where 𝑑4𝑥 is the space-time volume element, 𝑘 is the gravitational constant, 𝑔 is the 

determinant of the metric tensor, 𝑆 is the action, and 𝑅 is the Ricci scalar, and note that the minus 

sign under the square root arises because we are in a Lorentzian space-time. 

The action about the metric tensor 𝑔𝛼𝛽 was altered in order to derive the field equations 

which resulted in   

 𝛿𝑆 = ∫
1

2𝑘
𝛿(𝑅√−𝑔)𝑑4𝑥   (2) 

By expanding the variation 𝛿(𝑅√−𝑔), using product rule and applying the variation to each term 

gives: 

 δS = ∫
1

2k
(δR√−𝑔 + Rδ√−𝑔)d4x     (3) 

The variation of the determinant can be simplified using the relation: 

 𝛿(√−𝑔) =
1

2√−𝑔
𝑔𝛼𝛽𝛿𝑔𝛼𝛽  (4) 

Where 𝑔𝛼𝛽is the inverse metric tensor. The contracted Bianchi identity states that: 

 ∇𝛼𝐺𝛼𝛽 = 0   (5) 

Where 𝐺𝛼𝛽is the Einstein Tensor. By using this identity, we obtain: 

 𝛿𝑅 = −
1

2
𝑔𝛼𝛽𝛿𝑔𝛼𝛽  (6) 

Substituting the variations into the expression from (43) and simplifying, one obtains: 

 𝛿𝑆 = −
1

2𝑘
∫ √−𝑔 𝑔𝛼𝛽𝛿𝑔𝛼𝛽𝑑4𝑥 + 

1

2𝑘
∫ 𝑅√−𝑔 𝑔𝛼𝛽𝛿𝑔𝛼𝛽𝑑4𝑥  (7) 

When setting the variation 𝛿𝑆 to zero and simplifying, one is able to obtain the following field 

equations: 

 1

2𝑘
∫(√−𝑔 𝐺𝛼𝛽 − 𝑅√−𝑔 𝑔𝛼𝛽)𝛿𝑔𝛼𝛽𝑑4𝑥 = 0  (8) 

Since the variation 𝛿𝑔𝛼𝛽 is arbitrary, one can equate the integrand to zero: 

 𝐺𝛼𝛽 −
1

2
𝑅𝑔𝛼𝛽 = 0   (9) 

The total energy momentum tensor of gravity and of matter are combined to obtain the 

gravitational field equations in the presence of matter and radiation 𝑘𝑇𝛽
𝛼  so that the general field 

equation can now be written in the form that is most familiar in the literature: 

 𝐺𝛼𝛽 −
1

2
𝑅𝑔𝛼𝛽 = 𝑘𝑇𝛽

𝛼  (10) 

This equation represents the Einstein field equations. it connects the space-time curvature 

defined by the Einstein tensor  𝐺𝛼𝛽 to the way in which matter and energy are distributed as stated 

by the Ricci scalar 𝑅 and the metric tensor 𝑔𝛼𝛽. Einstein calculates the constant 𝑘 = 8𝜋𝐺 (when 

the speed of light (c) is set to 1 in units). 

 𝐺𝛽
𝛼 =

8𝜋𝐺

𝐶4 𝑇𝛽
𝛼  (11) 

The stress energy tensor is on the right side, and the metric space time geometry is on the left. 

Taking the stress energy tensor to be a perfect fluid, hence 
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 𝑇0
0 = 𝜌𝑜𝑐2(1 + 𝑐), 𝑇𝑖

𝑖 = −𝑃, and 𝑇𝛽≠𝛼
𝛼 = 0  (12) 

 Continuity of 𝑇𝛽
𝛼 →  ∇𝛼𝑇𝛽

𝛼 = 0 

and  

 ∇𝛼 − covariant derivative = 𝜕𝛼𝑇𝛽
𝛼 + Γ𝛼𝜎

𝛼 𝑇𝛽
𝜎 − Γ𝛼𝛽

𝜎 𝑇𝜎
𝛼 

Solving for the 𝐺0
0 component:  

 1

𝑟2
. [1 −

𝑑

𝑑𝑟
(𝑟𝑒−𝜆)] =

8𝜋𝐺

𝑐2
𝜌𝑜(1 + 𝜖)  (13) 

 →
𝑑

𝑑𝑟
(𝑟𝑒−𝜆) = 1 −

8𝜋𝐺

𝑐2
𝑟2𝜌𝑜(1 + 𝜖)  → ∫ 𝑑𝑟

𝑟

0
  

 𝑟𝑒−𝜆  = 𝑟 −
2𝐺

𝑐2 ∫ 4𝜋𝑟2𝜌𝑜(1 + 𝜖)𝑑𝑟 ⟹ 𝑀(𝑟)
𝑟

0
  (14) 

 
𝑒𝜆 = (1 −

2𝐺𝑀(𝑟)

𝑟𝑐2
)

−1

  
(15) 

and solving for 𝐺1
1 component: 

 1

𝑟2   . [1 − 𝑟𝑒−𝜆 (1 + 𝑟
𝑑𝜈

𝑑𝑟
)] = −

8𝜋𝐺

𝑐4 𝑃  (16) 

 𝑑𝜈

𝑑𝑟
=

1

𝑟
(

2𝐺𝑀(𝑟)

𝑟𝑐2 +
8𝜋𝐺

𝑐4 𝑃𝑟2) (1 −
2𝐺𝑀(𝑟)

𝑟𝑐2 )
−1

  
(17) 

Using the equation of continuity of stress energy tensor, 

 ∇𝛼𝑇𝛽
𝛼 = 0 → static + symmetry only 𝜕𝑟 ≠ 0  

 𝑇𝛽≠𝛼
𝛼 = 0   

 ⟹   𝜕𝛼𝑇1
𝛼 + Γ𝛼𝛽

𝛼 𝑇𝛼1
𝛽

− Γ𝛼1
𝛽

𝑇𝛽
𝛼 = 0  (18) 

Recall that, 

 Γ𝛼𝛽
𝛼 =

1

2
𝑔𝜎𝜌(𝜕𝛼𝑔𝜌𝛽 + 𝜕𝛽𝑔𝛼𝜌 − 𝜕𝜌𝑔𝛼𝛽)  (19) 

 ⟹   𝜕𝑟𝑇1
1 + Γ𝛼1

𝛼 𝑇1
1 − Γ𝛼1

𝛼 𝑇𝛼
𝛼 = 0   

 ⟹  Γ01
0 =

1

2

𝑑𝜈

𝑑𝑟
, Γ21

2 = Γ31
3 =

1

𝑟
   and,  

 𝑇0
0 = 𝜌0𝑐2(1 + 𝜖), 𝑇𝑖

𝑖 = −𝑃     (𝑖 = 1,2,3)   

 ⟹   
𝑑(−𝑃)

𝑑𝑟
−

1

2

𝑑𝜈

𝑑𝑟
  [𝜌𝑜𝑐2(1 + 𝜖) + 𝑃] = 0  (20) 

 
⟹

𝑑𝜈

𝑑𝑟
=

1

𝑟
(

2𝐺𝑚(𝑟)

𝑟𝑐2 +
8𝜋𝐺

𝑐4 𝑃𝑟2) (1 −
2𝐺𝑚(𝑟)

𝑟𝑐2 )
−1

  
(21) 

By simplifying equation (21), we arrived at the TOV equation, as shown in equation (22) 

 
⟹   

𝑑𝑝

𝑑𝑟
= −

𝐺𝑚(𝑟)

𝑟2 . (1 + 𝜖 +
𝑃

𝜌𝑜𝑐2) (1 +
4𝜋𝑟3𝑃

𝑚(𝑟)𝑐2
) (1 −

2𝐺𝑚(𝑟)

𝑟𝑐2 )
−1

  
(22) 

 

Equation (22) above is the TOV equation, and a non-relativistic star with 𝑃 ≪ 𝜌𝑐2,  𝑃𝑟3 ≪
𝑚𝑐2, and 𝑟 ≫ 2𝑚 creates a weak space time curvature. So, the relativistic equation gives us the 

Newtonian equation of stellar equilibrium; then the parenthesis reduces to one leaving the terms: 

 ⟹   
𝑑𝑝

𝑑𝑟
= − 

𝐺𝑚(𝑟)

𝑟2   (23) 
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 𝑑𝑚

𝑑𝑟
 = −4𝜋𝑟2  (24) 

4.0 Neutron Star Maximum Mass Using TOV 

From equation (62) where 𝑝 = pressure, 𝜌𝑜 = rest mass density, 𝑚(𝑟) = enclosed mass, and 

(1 −
2𝐺𝑚(𝑟)

𝑟𝑐2
)

−1

 is the metric deviation; For a NS one assume zero temperature limit and a constant 

density, now NS actually have a high temperature, so the zero-temperature limit does not actually 

mean the temperature is zero, it means that it is low compared to the chemical potential. Constant 

density can be interpreted in two ways, either one takes equation (25) constant or equation (26) 

constant. 

 →  𝜌𝑜 , (1 + 𝜖) = constant (25) 

 →  𝜌𝑜 = constant and 𝜖 = 0 (26) 

Defining:    

 𝑥 =
𝑃

𝜌𝑐2 ,    𝛽(𝑟) ≡  
2𝐺𝑚(𝑟)

𝑟𝑐2   (27) 

Here 𝛽 is metric deviation, plug this (27) into equation (21) gives  

 →   
𝑑(𝜌𝑐2𝑥)

𝑑𝑟
= −

𝜌

2𝑟
. (1 + 𝑥)(𝛽𝑐2 + 8𝜋𝐺𝑟2𝜌𝑥)(1 − 𝛽)−1   (28) 

Since the density is constant, one have mass is just the volume times the density 𝜌. We can plug 

this into 𝛽 to find that 𝛽 is proportional 𝑟2. 

 𝑚(𝑟) =
4𝜋𝑟3

3
𝜌   (29) 

and  

 𝛽(𝑟) =
8𝜋𝐺𝜌𝑟2

3𝑐2   (30) 

Note, 8𝜋𝐺𝑟2𝜌 = 3𝛽𝑐2  

Then, 

 →  𝛽(𝑟) =
8𝜋𝐺𝜌𝑟2

3𝑐2 →
𝑑𝛽

𝑑𝑟
=

2𝛽

𝑟
  (31) 

Using the chain rule, 

 →   
𝑑

𝑑𝑟
=

𝑑𝛽

𝑑𝑟
,

𝑑

𝑑𝛽
=  

2𝛽

𝑟
 .

𝑑

𝑑𝛽
 ,  (32) 

Then plug (32) into equation (22)  

 ⇒   𝜌𝑐2.
2𝛽

𝑟

𝑑𝑥

𝑑𝛽
=  −

𝜌

2𝑟
. (1 + 𝑥)(𝛽𝑐2 + 3𝛽𝑐2𝑥)(1 − 𝛽)−1  (33) 

Some term cancelling out and rearranging, 

 ⇒  
𝑑𝑥

(1+𝑥)(1+3𝑥)
= −

1

4
.

𝑑𝛽

1−𝛽
  (34) 

Then integrate equation (34) gives 

 →   𝑙𝑛 (
1+3𝑥

1+𝑥
) =  

1

2
. ln(1 − 𝛽) + 𝐶   (35) 

Find the constant, assume the 𝜌𝑠 = 0, means that 𝑥(𝑟 = 𝑅) = 0. 

 ⇒   𝑙𝑛 (
1+3𝑥

1+𝑥
) =  

1

2
. ln(1 − 𝛽) + 𝐶   (36) 

 𝜌𝑠 = 0 → 𝑥(𝑟 = 𝑅) = 0,    

Then one defines another quantity,  𝛽 ̅  ≡  
2𝐺𝑚

𝑅𝑐2   → 𝑥(𝛽̅) = 0 



Bringen et al.- Transactions of NAMP 22, (2025) 1-10 

8 

Then plug in 𝑐 = −
1

2
ln (1 − 𝛽̅) in equation (34) and re write 

 
⇒   𝑙𝑛 (

1+3𝑥

1+𝑥
) = 𝑙𝑛√

1−𝛽

1−𝛽̅
  

(37) 

Solving for 𝑥(𝛽) → 𝑃(𝛽) = 𝜌𝑐2. 𝑥(𝛽) 

 
⟹     𝑃(𝛽) = 𝜌𝑐2.

√1−𝛽−√1−𝛽̅

3√1−𝛽̅− √1−𝛽
  

(38) 

 𝛽 =
2𝐺𝑚(𝑟)

𝑟𝑐2  =
8𝜋𝐺𝜌𝑟2

3𝑐2 ,   𝛽̅ =
2𝐺𝑚

𝑅𝑐2    

and central pressure: 

 
𝜌𝑜 ≡ 𝑝(𝑜) = 𝜌𝑐2.

1−√1−𝛽̅

3√1−𝛽̅−1
  

(39) 

Note the denominator if it → 0; 𝑝(𝑜) → 𝛼 𝑎𝑛𝑑 𝑖𝑓 𝛽̅ →
8

9
  , the star will collapse to black hole. 

The maximum mass of NS can be, when 
2𝐺𝑚

𝑅𝑐2 =
8

9
, rewriting the radius gives; 

 
𝑅 = (

3𝑀

4𝜋𝜌
)

1/3

   
(40) 

assume the nuclear density: 

 𝜌 ≈ 2.
2𝑀𝑛

4𝜋𝑟𝑛
3    (41) 

here 𝑟𝑛 is nuclear radius ≈ 10−15 𝑚. Neutron has two spin state, spin up/down, hence the 2. 
substituting the density (41) into the radius (40) 

 ⟹   
2𝐺𝑚

𝑅𝑐2 =
2𝐺

𝑟𝑛𝑐2   . (𝑚2 ⋅ 𝑀𝑛)
1

3 =
8

9
  

(42) 

Now solve for the mass thus as; 

 

𝑀𝑚𝑎𝑥 ≈
1

√2𝑀𝑛
. (

𝑟𝑛𝐶2⋅
8

9

2𝐺
)

3

2

 ≫ 3 𝑀⊙  

(43) 

 

Results and Discussion 

Some detailed models put the maximum mass of NS around 2 − 2.6 𝑀⊙  and the largest 

NS throughout the literatures reviewed in this research is around 1.9 − 2.95 𝑀⊙ and for a while it 

was thought one could not have NS over 2 𝑀⊙  and there was quite a debate on to whether the 

measurements of this particular NS were accurate; but today it is obvious that astronomers are 

convinced that it is over 2 𝑀⊙ and the calculated results confirmed that 

𝑀𝑚𝑎𝑥  of NS theoritically ≫ 3 𝑀⊙. 

Considering causality, the speed of sound in the material has to be less than c. if one 

assumes a relativistic gas with the model we have chosen, that will bring down the maximum mass 

to just over 3 𝑀⊙. There is other thing that might cause instability, a self-gravitating object will 

go unstable when the sound crossing time is approximately equal to the force fall time. 

 One enters the core above the transition density when all atomic nuclei have broken down 

into their component parts-protons and neutrons. The core may also contain hyperons, more 

massive baryon resonances, and possibly a gas of free up, down, and strange quarks due to the 

high Fermi pressure [16]. Lastly, there might also be 𝜋 − and 𝐾 − meson condensates there. This 

transition marks a profound shift in the nature of matter, as the extreme densities and pressures in 

the core of a NS overcome the nuclear forces that bind protons and neutrons into atomic nuclei. 

 At these densities, which can exceed several times the nuclear saturation density 

approximately 2.8 × 1014 𝑔𝑐𝑚−3, the distinction between individual nucleons blurs, and the core 

becomes a soup of exotic particles. Hyperons, which are baryons containing one or more strange 
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quarks, may appear as the Fermi energy of the neutrons increases, providing a new degree of 

freedom for the system. Additionally, the high Fermi pressure can lead to the deconfinement of 

quarks, resulting in a phase transition from hadronic matter to a quark-gluon plasma. This state of 

matter, where quarks and gluons are no longer confined within protons and neutrons, is reminiscent 

of the conditions in the early universe, just moments after the Big Bang. 

 The presence of 𝜋 − and 𝐾 − meson condensates further complicate the picture, these 

mesons, which are normally short-lived particles, can form a Bose-Einstein condensate in the 

dense environment of a NS core. Such condensates can significantly alter the EOS of the matter, 

affecting the star's overall structure and stability. For instance, the softening of the EOS due to 

meson condensates or quark matter can lead to a smaller maximum mass for NSs, which has 

implications for the observed population of these objects. 

 Understanding the composition and behaviour of matter at these extreme densities is one 

of the greatest challenges in modern astrophysics and nuclear physics. Observations of NSs, 

particularly through GW signals from mergers (such as those detected by LIGO and Virgo) and 

precise measurements of their masses and radii (e.g., from NICER missions), provide critical 

constraints on the EOS. These observations help scientists test theoretical models and explore the 

possible existence of exotic phases of matter, such as colour superconductivity in quark matter or 

the formation of strange stars [17]. 

 The core of a NS is a natural laboratory for studying matter under conditions that cannot 

be replicated on Earth. By probing the properties of this ultra-dense matter, researchers can gain 

insights into the fundamental forces of nature, the behaviour of quantum chromodynamics (QCD) 

at high densities, and the evolution of compact objects in the universe. 

 

Conclusion  

 In conclusion, the maximum mass of a neutron star is a critical probe into the nature of 

ultra-dense matter and the restrictions imposed by strong gravity. By applying relativistic equation 

of state (EOS) models, we may confine the feasible mass range while accounting for fundamental 

nuclear interactions and general relativistic effects. Although there is still opportunity for 

improvement due to uncertainties in the EOS at supranuclear densities, current theoretical 

predictions, which are backed by astronomical data like gravity waves and X-ray pulse patterns, 

indicate that neutron stars most likely have a maximum mass between ~2.2 and 2.6 𝑀⊙, but this 

research has calculated 𝑀𝑚𝑎𝑥 of NS theoritically to be ≫ 3 𝑀⊙.  Future developments in high-

energy experiments and multi-messenger astronomy will be crucial in reducing these limitations, 

which will ultimately improve our comprehension of matter in harsh environments and the 

viability of alternative gravity theories. 
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