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ABSTRACT 

There are many studies in literature that took into consideration intra-state 

heterogeneity concerning individual transition behavior due to latent factors. 

However, none of these studies in literature has captured any specific or 

combination of specific latent factors responsible for differences in transition 

behavior within a homogeneous group in manpower model.  Also, no work in 

literature has been able to unbundle successfully retired staff in a non-

homogeneous Markov fuzzy manpower model. In this study, we considered a 

hierarchically graded Markov manpower system where promotion of employees 

is based on the innovativeness and job performance capability levels of the 

personnel. In this study, the model is proposed to deal with problem of vagueness 

involved in gradual transition of members from one grade to another in a 

manpower system. The model is also proposed to incorporate key personality 

traits that influence employees belonging to a homogeneous group to behave 

differently. This study also seeks to unbundle successfully retired staff in non-

homogeneous Markov fuzzy manpower system using multi-absorbing states 

Markov chain. The mean time to absorption and long run absorption rates 

in each fuzzy state were obtained. 

1. INTRODUCTION  

Fuzzy is a word that suggests vagueness or ambiguity. According to [1] ‘Fuzzy set is a set that 

does not have clearly defined boundaries and can contain members only at some degree’. [2] 

defined fuzzy set mathematically as ‘A fuzzy set D on a non-empty set 𝑈 is defined as a set of 

ordered pairs {(𝑈, 𝜇𝐷(𝑢)), 𝑢 𝜖𝐷}, where 𝜇𝐷(𝑢) is the membership grade of 𝑢 in 𝐷’. The set 𝐷 is 

characterized by its membership function 𝜇𝐷: 𝑈 → [0,1]. A fuzzy manpower system is defined by 

[1] as ‘a manpower system that consists of fuzzy states’. [3] defined manpower system as ‘a system 

that consists of group of people working together for the purpose of achieving the common goal 

of the organization’. 
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Aggregately, the workforce of any organizational manpower system comprises of a stock of 

heterogeneous personnel. In manpower models e.g. [4], [5], [6], manpower system is graded 

hierarchically into mutually exclusive and exhaustive grades where each member belongs to one 

and only one of the grades at any time t. The aggregated personnel system is partitioned into 

homogeneous groups (or grades) so that staff that belong to the same grade possess same attributes 

such as rank, job, age, or experience [7]. These members belonging to same grade are presumed 

to evolve analogously. The grades are defined based on any relevant state variable; staff flow due 

to recruitment (incoming flow), internal flow, as well as attrition (flow out of the system). 

In organizational manpower system, it is assumed that the manpower system is partitioned into 

distinct classes where each member of the system clearly belongs to one and only one class at time 

𝑡 and transitions from one class to another at time 𝑡 + 1. Also, each member of a homogeneous 

group possesses same transition rate to the next higher grade. However, this assumption is not 

realistic in some situations concerning classification of manpower systems. Concerning some 

situations in manpower planning analysis, in applications of Markov theory, we are often faced 

with the fact that the states of the system cannot be precisely measured due to vagueness in 

transition of members from particular grade to another. The set of states (personnel categories) is 

perceived to have states with imprecise boundaries which facilitate gradual transition from 

membership to non-membership and vice versa. 

The differences in transition behavior among members belonging to the same grade motivated this 

study. The differences in transition behavior are as a result of different combinations of levels of 

personnel traits possessed by individuals in the manpower system. 

[8] worked on formulation of multilevel manpower system in discrete time homogeneous Markov 

model. He extended the structure of manpower system in a departmentalized framework. He 

further utilized the features of the extended manpower structure to create a scenario of personnel 

membership in three classes: the active, non-active and external classes. [9] studied the problem 

of ergodicity in non-homogeneous Markov system. In the study he relaxed the basic assumption 

present in all studies of asymptotic behavior. This assumption is that the inherent inhomogeneous 

Markov chain converges to a homogeneous Markov chain with regular transition probability 

matrix. [10] considered studying of personnel grade levels transitions in private university in 

Nigeria with interest in academic staff using Markovian approach, in their study, the objective is  

to estimate the proportion of staff recruited, promoted and withdrawn from different grades in the 

private university and to forecast the manpower structure in the long run. [11] devoted to 

partitioning personnel system based on latent factors to handle the sources of personnel 

differences, [12] considered that a more realistic way to describe a model is by using intervals that 

include the desired values of the parameters. He estimated the parameters from a data set. He 

considered it natural that they will be in confidence intervals and he finally studied Non-

Homogeneous Markov systems process in which the desired basic parameters are in intervals.  

However, in real life, manpower systems possess imprecise and dynamic humanistic factors that 

play a significant role in their overall behaviors. Consequently, great part of the decision making 

takes place in a fuzzy dynamic environment. As a result, the goals, constraints and the impact of 

possible actions are not exactly known. [13] introduced and defined for the first time the concept 

of a fuzzy non-homogeneous Markov system (F-NHMS). In his study, in order to deal with 

vagueness associated with the estimation of transition probabilities and input probabilities in 

Markov systems, he combined the theory of fuzzy logic and fuzzy reasoning with theory of Markov 

system and then introduced the concept of a fuzzy non-homogeneous Markov system. 

Moreover, [1] and [2] studied a non-homogeneous Markov fuzzy manpower system using single 

absorbing Markov chain for an organization whose promotion of staff is based on innovativeness 

and job performance capability of the individuals. In these studies, dropout, sacked staff and 
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successfully retired staff were lumped together as wastages. However, in our study, an attempt is 

made to unbundle the successfully retired staff. Also, in this study, fuzzy set theory is introduced 

to incorporate personality traits in the analysis of manpower system in order to address the problem 

of differences in transition behavior among personnel belonging to the same grade which in 

literature is assumed equal. The dropout encapsulates those who leave the system by resignation, 

sack, ill health and death, while the retired staff encapsulates those who successfully retired from 

service either by age or years of service. It is desirable and necessary to classify the wastages for 

proper and effective manpower planning and prediction 

Here, we present the traditional non-homogeneous Markov manpower system (NHMMS) and non- 

homogeneous Markov fuzzy manpower system (NHMFMS) as described by [14] and [1] 

respectively. For the traditional non-homogeneous Markov manpower system, according to [14], 

let the aggregated manpower system be classified into grades 𝐺𝑖(𝑖 = 1,2, , , , 𝐾), where 𝐾 is the 

highest of the hierarchical grades. Let {𝑃(𝑡)}𝑡=1
∞  be the sequence of transition probability matrices 

between the grades, {𝑃0(𝑡)}𝑡=1
∞  the sequence of vectors of recruitment probabilities, {𝑃𝐾+1(𝑡)}𝑡=1

∞ , 

the sequence of probabilities of wastage from the system. 𝑁(𝑡) = {𝑁1(𝑡), 𝑁2(𝑡), … , 𝑁𝐾(𝑡)}, a row 

vector denoting the state of the system at any time 𝑡, where 𝑁𝑖(𝑡) is the manpower stock in 𝐺𝑖 at 

time 𝑡, {𝑄(𝑡)}𝑡=1
∞  is the sequence of embedded non-homogeneous Markov chain, where 𝑄(𝑡) =

𝑃(𝑡) + 𝑃𝐾+1
′ (𝑡)𝑃0(𝑡) and (. )′ denotes the transpose of the respective vector, the 𝑖𝑗𝑡ℎ element of 

𝑄(𝑡) is given by 𝑞𝑖𝑗(𝑡) = 𝑃𝑖𝑗(𝑡) + 𝑃𝑖𝐾+1(𝑡)𝑃0𝑗(𝑡) and {𝑇(𝑡)}𝑡=1
∞ , denotes the sequence of total 

number of personnel in the system at time 𝑡, where ∆𝑇(𝑡) = 𝑇(𝑡 + 1) − 𝑇(𝑡). The manpower 

structure at time 𝑡 + 1 is given as 𝑁(𝑡 + 1) = 𝑁(𝑡)𝑄(𝑡) + ∆𝑇(𝑡)𝑃0(𝑡), 

For the fuzzy manpower system, according to [1], let {𝑃𝐹(𝑡)}𝑡=1
∞  be the sequence of transition 

probability matrices between the fuzzy states, {𝑃𝑂𝐹𝑟
(𝑡)}

𝑡=1

∞
 the sequence of vectors of recruitment 

probabilities into fuzzy states 𝐹𝑟, {𝑃𝐹𝑟0(𝑡)}𝑡=1

∞
 the sequence of vectors of wastage probabilities 

from fuzzy state 𝐹𝑟, {𝑄𝐹(𝑡)}𝑡=1
∞  is the sequence of embedded Markov chain associated with fuzzy 

manpower system and 𝑁𝐹(𝑡) = [𝑁𝐹1
(𝑡), 𝑁𝐹2

, (𝑡)… ,𝑁𝐹𝑙
(𝑡)] is a row vector representing the state 

of fuzzy manpower system at any time 𝑡, 𝑁𝐹𝑟
(𝑡) is the expected number of members in fuzzy state 

𝐹𝑟(𝑟 = 1,2, … , 𝑙) at time 𝑡. The structure of fuzzy manpower s 

𝑁𝐹(𝑡 + 1) = 𝑄𝑓(𝑡)𝑁𝐹
′ (𝑡) + ∆𝑇(𝑡)𝑝0𝐹(𝑡). 

2.  MATERIALS AND METHODS 

Let 𝐺𝑖(𝑖 = 1,2, … , 𝐾) be the state space for the traditional Non-Homogeneous Markov manpower 

system. In this study, the 𝑖𝑗𝑡ℎ  elements of 𝑄(𝑡) is defined as 𝑞𝑖𝑗(𝑡) = 𝑃𝑖𝑗(𝑡) + {𝑃𝑖𝑊𝐷
(𝑡) +

𝑃𝑖𝑊𝑅
(𝑡)}𝑃0𝑗(𝑡), where  𝑃𝑖𝑊𝐷

(𝑡) and 𝑃𝑖𝑊𝑅
(𝑡) are probabilities of wastages as dropout and 

retirement respectively. Let 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑙} be the fuzzy state space or the set of fuzzy states. 

The fuzzy state, 𝐹𝑟 (𝑟 = 1,2, … , 𝑙) is assumed to be a fuzzy set on 𝐺𝑖. Let 𝜇𝐹𝑟
(𝑖): 𝐺𝑖 → [0,1] denote 

the membership function for the fuzzy state 𝐹𝑟. We also assume that 𝐹 defines a fuzzy probabilistic 

partition on 𝐺𝑖 so that ∑ 𝜇𝐹𝑟
(𝑖) = 1𝑙

𝑟=1  

Define ɸ = [

𝜇𝐹1
(1) ⋯ 𝜇𝐹𝑙

(1)

⋮ ⋱ ⋮
𝜇𝐹1

(𝐾) ⋯ 𝜇𝐹𝑙
(𝐾)

] to be an 𝐾 ×  𝑙 matrix of membership values. 

We make the following definitions. 
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Definition 1 [15]. Let there be two fuzzy events 𝐴 and 𝐵 with membership functions 𝜇𝐹𝐴
(. ) and 

𝜇𝐹𝐵
(. ) respectively. Then, the product of two fuzzy events 𝐴 and 𝐵 is defined as 𝐴. 𝐵 ↔ 𝜇𝐹𝐴.𝐵

=

𝜇𝐹𝐴
. 𝜇𝐹𝐵

 

Definition 2 [15]. Let there be two fuzzy events 𝐴 and 𝐵 with membership functions are 𝜇𝐹𝐴
(. ) 

and 𝜇𝐹𝐵
(. ) respectively. Then, the conditional probability of fuzzy event 𝐴 given fuzzy event 𝐵 is 

defined as 𝑝𝑟𝑜𝑏(𝐴|𝐵) =
𝑝𝑟𝑜𝑏(𝐴.𝐵)

𝑝𝑟𝑜𝑏(𝐵)
;  𝑝𝑟𝑜𝑏(𝐵) > 0. 

2.1 Transition Probabilities Between the Fuzzy States. 

Let 𝑍𝑡 and 𝑍𝑡
𝑓
be the non-fuzzy and fuzzy states of the manpower system at time 𝑡 respectively. 

For the non-fuzzy states 𝑍𝑡, define 𝑛𝑖.(𝑡) = ∑ 𝑛𝑖𝑗(𝑡)
𝐾
𝑗=1  to be the manpower stock in 𝐺𝑖 at time 𝑡, 

where 𝑛𝑖𝑗(𝑡) is the observed flow representing the number of staff in category 𝐺𝑖 at time 𝑡 that 

would be promoted to category 𝐺𝑗 at time 𝑡 + 1. The transition probability is defined as, 𝑃𝑖𝑗(𝑡) =

𝑝𝑟𝑜𝑏{𝑍𝑡+1 = 𝐺𝐽|𝑍𝑡 = 𝐺𝑖}. This is the probability that a member in category 𝐺𝑖 at time 𝑡 would be 

promoted to category 𝐺𝑗 at time 𝑡 + 1. The maximum likelihood estimate of 𝑃𝑖𝑗(𝑡) is defined as; 

𝑃𝑖𝑗(𝑡) =
∑ 𝑛𝑖𝑗(𝑡)

𝑇
𝑡=1

∑ 𝑛𝑖.(𝑡)
𝑇
𝑡=1

 .                                                                                         (1) 

The transition probability matrix is defined as 

𝑃(𝑡) = [
𝑃11(𝑡) ⋯ 𝑃1𝐾(𝑡)

⋮ ⋱ ⋮
𝑃𝐾1(𝑡) ⋯ 𝑃𝐾𝐾(𝑡)

] ,                                                     (2) 

and the embedded Markov chain is given by 

𝑄(𝑡) = [
𝑞11(𝑡) ⋯ 𝑞𝑖𝐾(𝑡)

⋮ ⋱ ⋮
𝑞𝐾1(𝑡) ⋯ 𝑞𝐾𝐾(𝑡)

]                                                                   (3) 

where the element 𝑞𝑖𝑗(𝑡) = 𝑃𝑖𝑗(𝑡) + {𝑃𝑖𝑊𝐷
(𝑡) + 𝑃𝑖𝑊𝑅

(𝑡)}𝑃0𝑗(𝑡).                    (4) 

For the fuzzy states 𝑍𝑡
𝑓
, 

define 𝑃𝐹𝑟𝐹𝑠
(𝑡) = 𝑝𝑟𝑜𝑏[𝑍𝑡+1

𝑓
= 𝐹𝑆|𝑍𝑡

𝑓
= 𝐹𝑟] =

𝑝𝑟𝑜𝑏[𝑍𝑡+1
𝑓

=𝐹𝑠,𝑍𝑡
𝑓
=𝐹𝑟]

𝑝𝑟𝑜𝑏[𝑍𝑡
𝑓
=𝐹𝑟]

           (5) 

𝑝𝑟𝑜𝑏[𝑍𝑡+1
𝑓

= 𝐹𝑠, 𝑍𝑡
𝑓

= 𝐹𝑟] = ∑∑𝑝𝑟𝑜𝑏[𝑍𝑡+1 = 𝐺𝑗 , 𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟𝐹𝑠
(𝑖, 𝑗)

𝐾

𝑗=1

𝐾

𝑖=1

 

= ∑ ∑ 𝑃𝑖𝑗(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝜇𝐹𝑠

(𝑗)𝐾
𝑗=1

𝐾
𝑖=1                 (6) 

𝑝𝑟𝑜𝑏[𝑍𝑡
𝑓

= 𝐹𝑟] = ∑ 𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝐾

𝑖=1                                                  (7) 

𝑃𝐹𝑟𝐹𝑠
(𝑡) =

∑ ∑ 𝑃𝑖𝑗(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝜇𝐹𝑠

(𝑗)𝐾
𝑗=1

𝐾
𝑖=1

∑ 𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
𝐾
𝑖=1 (𝑖)

 

𝑃𝐹𝑟𝐹𝑠
(𝑡) = (𝐶𝑟(𝑡))

−1
∑ ∑ 𝑃𝑖𝑗(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟

(𝑖)𝜇𝐹𝑠
(𝑗)𝐾

𝑗=1
𝐾
𝑖=1                  (8) 

where 𝐶𝑟(𝑡) = ∑ 𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝐾

𝑖=1  

Then 𝑃𝐹(𝑡) = 𝛾1(𝑡)ɸ
′𝛾2(𝑡)𝑃(𝑡)ɸ , by matrix notation       (9) 

Where 𝛾1(𝑡) = 𝑑𝑖𝑎𝑔(𝜃1𝑟(𝑡)). is a diagonal matrix of order 𝑙 ×  𝑙 with 𝜃1𝑟(𝑡) = ∑ 𝑝𝑟𝑜𝑏[𝑧𝑡 =𝐾
𝑖=1

𝐺𝑖]𝜇𝐹𝑟
(𝑖), ɸ is an 𝐾 ×  𝑙 matrix of membership values, 𝛾2(𝑡) = 𝑑𝑖𝑎𝑔(𝜃2𝑟(𝑡)) is a matrix of order 

𝐾 × 𝐾 with 𝜃2𝑟(𝑡) = 𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖], 𝑃(𝑡) is a 𝐾 × 𝐾 transition probability matrix between the 

non-fuzzy states. 
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Lemma 1. The sequence of the transition probability matrices {𝑃𝐹(𝑡)}𝑡=1
∞  of a non-homogeneous 

Markov fuzzy manpower system is a sequence of sub-stochastic matrices and is given by 

{𝑃𝐹𝑟𝐹𝑠
(𝑡)}𝑡=1

∞ ;  𝐹𝑟 , 𝐹𝑠 ∈ 𝐹. 

Proof. In order to prove this, we recall that, out of  𝑘 + 1 personnel categories, 𝐺𝐾+1 is a 

hypothetical category representing wastage, it is only on 𝐾 categories that the orthogonal partition 

of fuzzy sets {𝐹1, 𝐹2, … , 𝐹𝑙} is defined and using the fact that ∑ 𝜇𝐹𝑟
(𝑖)𝑙

𝑟=1 = 1 and ∑ 𝑃𝑖𝑗(𝑡) ≤ 1𝐾
𝑗=1 . 

𝑃𝐹𝑟𝐹𝑠
(𝑡) = (𝐶𝑟(𝑡))

−1
∑∑𝑃𝑖𝑗(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟

(𝑖)𝜇𝐹𝑠
(𝑗)

𝐾

𝑗=1

𝐾

𝑖=1

 

∑𝑃𝐹𝑟𝐹𝑠

𝑙

𝑠=1

(𝑡) = ∑(𝐶𝑟(𝑡))
−1

∑∑𝑃𝑖𝑗(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝜇𝐹𝑠

(𝑗)

𝐾

𝑗=1

𝐾

𝑖=1

𝑙

𝑠=1

 

= (𝐶𝑟(𝑡))
−1

∑∑𝑃𝑖𝑗(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)∑𝜇𝐹𝑠

(𝑗)

𝑙

𝑠=1

𝐾

𝑗=1

𝐾

𝑖=1

 

= (𝐶𝑟(𝑡))
−1

∑ ∑ 𝑃𝑖𝑗(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝐾

𝑗=1
𝐾
𝑖=1      (since ∑ 𝜇𝐹𝑠

(𝑗)𝑙
𝑠=1 =1) 

∑𝑝𝐹𝑟𝐹𝑠
(𝑡) = (𝐶𝑟(𝑡))

−1
∑𝑝𝑟𝑜𝑏[𝐶𝑡 = 𝐺𝑖]𝜇𝐹𝑟

(𝑖)∑𝑃𝑖𝑗(𝑡)

𝐾

𝑗=1

𝐾

𝑖=1

𝑙

𝑟=1

 

= (𝐶𝑟(𝑡))
−1

𝐶𝑟(𝑡)∑𝑃𝑖𝑗(𝑡)

𝐾

𝑗=1

 

Then ∑ 𝑃𝐹𝑟𝐹𝑠
(𝑡) = ∑ 𝑃𝑖𝑗(𝑡) ≤ 1𝐾

𝑗=1
𝑙
𝑠=1  

Theorem 1 [16]. If {𝐴(𝑡)}𝑡=1
∞  is a sequence of irreducible regular stochastic matrices and 

lim
𝑡→∞

𝐴(𝑡) = 𝐴, then the product  ∏ 𝐴𝑡 = 𝐴∗𝑡
𝑖=1 . 

Therefore, define  𝑃𝑡 = 𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖] = 𝑃(1)𝑄(1, 𝑡) = 𝑃(1) ∏ 𝑄(𝑖)𝑡
𝑖=1 . 

Then,  lim
𝑡→∞

𝑃𝑡 = 𝑃(1)𝑄∗ = 𝑃∗, where 𝑃∗ represents any row of the matrix 𝑄∗. Note that 𝑄∗ is an 

irreducible regular stochastic matrix. 

Therefore, 𝑄∗ = lim
𝑡→∞

𝑄𝑡         (10) 

𝑃𝐹 = 𝛾1ɸ
′𝛾2𝑃ɸ                                              (11) 

where 𝛾1 = 𝑑𝑖𝑎𝑔(𝜃1𝑟) is a diagonal matrix of order 𝑙 × 𝑙 with 𝜃1𝑟 = ∑ 𝑃𝑖
∗𝜇𝐹𝑟

(𝑖)𝐾
𝑖=1 , and 𝑃𝑖

∗ is the 

𝑖𝑡ℎ element of 𝑃∗, 𝛾2 = 𝑑𝑖𝑎𝑔(𝜃2𝑟) is a diagonal matrix of order 𝐾 ×  𝐾, with 𝜃2𝑟 = 𝑃𝑖
∗, 𝜋 and 𝑝 

is as defined. 

2.2 Wastage Probabilities for the Fuzzy Manpower System 

Let 𝑃𝑖𝑊𝐷
(𝑡) = 𝑝𝑟𝑜𝑏[𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑠 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1|𝑍𝑡 = 𝐺𝑖] 

Similarly, 𝑃𝐹𝑟𝑊𝐷
(𝑡) = 𝑝𝑟𝑜𝑏[𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑠 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1|𝑍𝑡

𝑓
= 𝐹𝑟] 

=
𝑝𝑟𝑜𝑏[𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑠 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡+1,𝑍𝑡

𝑓
=𝐹𝑟]

𝑝𝑟𝑜𝑏[𝑍𝑡
𝑓
=𝐹𝑟]

                                  (12)                         

𝑝𝑟𝑜𝑏[𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑠 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1, 𝑍𝑡
𝑓

= 𝐹𝑟] 
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= ∑𝑝𝑟𝑜𝑏[𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑠 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1|𝑍𝑡 = 𝐺𝑖]𝑝𝑟𝑜𝑏[𝑋𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)

𝐾

𝑖=1

 

= ∑ 𝑃𝑖𝑊𝐷
(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟

(𝑖)𝐾
𝑖=1                                                                                     (13) 

𝑝𝑟𝑜𝑏[𝑍𝑡
𝑓

= 𝐹𝑟] = ∑ 𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝐾

𝑖=1                                                          (14) 

𝑃𝐹𝑟𝑊𝐷
(𝑡) = (𝐶𝑟(𝑡))

−1
∑ 𝑃𝑖𝑊𝐷

(𝑡)𝑝𝑟𝑜𝑏[𝑍𝑡 = 𝐺𝑖]𝜇𝐹𝑟
(𝑖)𝐾

𝑖=1 , 

Then, 𝑃𝐹𝑟𝑊𝐷
(𝑡) = 𝛾1(𝑡)𝛽1(𝑡), where 𝛽1(𝑡) is an 𝑙 ×  1 column vector whose elements are 

𝜃3𝑟(𝑡) = ∑ 𝑃𝑖𝑊𝐷
(𝑡)𝑝𝑟𝑜𝑏[𝑋𝑡 = 𝐺𝑖]𝜇𝐹𝑟

(𝑖)𝐾
𝑖=1 . 

Then, lim
𝑡→∞

𝑃𝐹𝑟𝑊𝐷
(𝑡) = 𝑃𝐹𝑟𝑊𝐷

= 𝛾1𝛽1.                                                                                 (15) 

where 𝛽1 is an 𝑙 × 1 column vector whose element 𝜃3𝑟 = ∑ 𝑃𝑖𝑊𝐷
𝑝𝑖

∗𝐾
𝑖=1 𝜇𝐹𝑟

(𝑖). 

Similarly, lim
𝑡→∞

𝑃𝐹𝑟𝑊𝑅
(𝑡) = 𝑃𝐹𝑟𝑊𝑅

= 𝛾1𝛽2           (16) 

where 𝛽2 is an 𝑙 × 1 column vector whose element 𝜃4𝑟 = ∑ 𝑃𝑖𝑊𝑅
𝑃𝑖

∗𝐾
𝑖=1 𝜇𝐹𝑟

(𝑖) 

2.3 Transition Probability Matrix (TPM) for the Fuzzy Manpower System with Multi-

Absorbing States 

This is given as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

11 12 1

21 22 2

1 2

1 0 . . . 0 . 0 0 . . . 0

0 1 . . . 0 . 0 0 . . . 0

. . . . .

. . . . .

. . . . .

0 0 . . . 0 . 0 0 . . . 0

. . . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . .

. . . . .

. . . . .

. . . . . . .

l

L

l l l L

f
g

g

l l lg

t
t t t t t t

F F F F F F

t t t t t t
F F F F F F

t t t t t t
F F F F F F

Q p p p

p p p

p p p

  

  

  




=






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

In canonical form, we have, 

𝑄𝑓 = [
𝐼 0
𝑊 𝑃𝐹

]                                                                                     (17) 

where 𝐼 is an identity matrix of transition probabilities between the absorbing states. 0 is an 𝑔 ×   𝑙 
matrix of transition probabilities from the absorbing states to the transient states. 𝑊 is an 𝑙 ×  𝑔 

matrix of probabilities of absorption. 

Iterative multiplication of equation (16) gives 

𝑄𝑓
𝑡 = [

𝐼 0
(1 + 𝑃𝐹 + 𝑃𝐹

2 + ⋯ + 𝑃𝐹
𝑡−1)𝑊 𝑃𝐹

𝑡]                                                                     (18) 

lim
𝑡→∞

𝑄𝑓
𝑡 = 𝑄𝑓

∗ = [
𝐼 0

𝐻𝑊 0
]                                                                                            (19) 
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(since lim
𝑡→∞

𝐼 = 1, lim
𝑡→∞

0 = 0 𝑎𝑛𝑑 lim
→∞

𝑃𝐹
𝑡 = 0, (𝑃𝐹 is a sub-stochastic matrix), where 𝐻 = 1 +

𝑃𝐹 + 𝑃𝐹
2 + ⋯ . .= (1 − 𝑃𝐹)−1 is called the fundamental matrix (FM) for the multi-absorbing states 

Markov chain. 

2.4 Mean Time to Absorption 

The average number of years before dropout or retirement from each fuzzy state is obtained using 

𝐻 = (1 − 𝑃𝐹)−1.. The total number of years a member of staff has to stay in the system before 

absorption (ie dropout or retirement) is 𝑁 = (1 − 𝑃𝐹)−1𝑒′                               (20) 

where 𝑒 is an 1 ×  𝑙 row vector of ones. 

2.5 Absorption Rates 

Let 𝑎𝑟 be the probability that an absorbing Markov chain will be absorbed in the absorbing fuzzy 

state 𝐹𝑠 after starting in transient fuzzy state 𝐹𝑟. Let 𝜑 be a matrix with entries 𝑎𝑟. Then, 

𝜑 = 𝐻𝑊                                                                                                              (21), 

where 𝐻 = (1 − 𝑃𝐹)−1 is the fundamental matrix and 𝑊is as defined in the canonical form. 

RESULTS 

In this section, the use of multi-absorbing States Markov chain in the analysis of Non-

Homogeneous Markov Fuzzy Manpower System (NMFMS) is presented. This is to illustrate the 

theoretical results of the previous sections. Concerning analysis of differentials in manpower 

systems, sources of personnel differences were classified by [17] into observable and (non 

observable) latent sources. It is observed that the partitioning of the manpower system into the 

distinct classes, 𝐺𝑖 , is based on observable sources. [17] also classified latent sources into 

individual traits and environmental factors. In this study, environmental factors are restricted only 

to organizational culture. Also, we assume in this that the influence of organizational culture on 

individual career development is the same for every member of the system. 

In any organizational manpower system, individual traits are very diverse. As a result, the 

influence of individual traits on career development is also very diverse for different members of 

the organization. Concerning personality study, individual traits were partitioned into five classes 

by ([18, [19]). They are; Openness, Conscientiousness, Extraversion, Agreeableness, and 

Neuroticism. In this work, we considered only Openness and Conscientiousness. [20] stated that 

fuzzy partitions are linguistic representations of their universe of discourse and that their elements 

are linguistic terms like ‘low’, medium’, ‘high’. For this study, we formulate the fuzzy partitions 

in terms of ‘High’ and ‘Low’ levels of the combination of the Openness and Conscientiousness. 

Therefore, we set 𝐹 = {𝐹1, 𝐹2, 𝐹3, 𝐹4} to denote the fuzzy state space. 𝐹1 is the combination of Low 

level of openness and Low level of conscientiousness, 𝐹2 denotes High level of openness and Low 

level of conscientiousness, 𝐹3 describes Low level of openness and High level of 

conscientiousness, while 𝐹4 is High level of openness and High level of conscientiousness. We 

note that, the matrix ɸ of membership values is obtained based on the experts’ knowledge on the 

system understudy [13]. 

Data below concerning staff promotion 𝑃𝑖𝑗, recruitment 𝑟0𝑗, and wastage 𝐺𝐾+1) were obtained 

from CURTIX CABLE CONGLOMERATE, Nnewi, Anambra state, Nigeria between the year 

2020 to 2023, where 𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝑎𝑛𝑑 𝐺5 represent (1) Sales Associates (2) Assistant Supervisor 

(3) Supervisor (4) Senior Supervisor or Assistant Managers (5) Managers respectively in 
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hierarchical order. In the organization, promotion, as well as recruitment is done once every year. 

An employee is promoted if and only if he has satisfied all the promotion requirements peculiar to 

the initial grade set by the organization. This depends on the employee’s innovative capability and 

job performance levels. The maximum number of years an employee can serve in the organization 

is 35 years and the maximum age of an employee is 65 years. Data for personnel recruitments, 

promotion flows, as well as wastages were collected for period of 4 years and are presented in the 

table below. 

Table 1; Pooled staff flow based on recruitment, promotion and wastage from 2020 - 2023 

1              2            3               4               5             𝑊𝐷           𝑊𝑅               𝑛𝑖.(𝑡) 

1           262        96          0            0             0            8             0              366 

2            0          300       102          0             0           12             0               414 

3            0            0         158         49            0           10            5               222 

4            0            0           0          122          32           7             8               109 

5            0            0           0            0            68           2            12                92 

𝑟𝑗             15           12           16               9               2                                                      54 

 

From table 1, and using Eq, (1), we calculated 𝑃(𝑡), 𝑃𝑊𝐷
(𝑡), 𝑃𝑊𝑅

(𝑡) and 𝑟(𝑡) as 

𝑃(𝑡) =

[
 
 
 
 
 
 

8293.00000

1893.07220.0000

02207.07117.000

002464.07246.00

0002623.07158.0

]
 
 
 
 
 
 

 

𝑃𝑊𝐷
(𝑡) =

[
 
 
 
 
 
 

0244.0

0414.0

0450.0

0290.0

0219.0

]
 
 
 
 
 
 

                      𝑃𝑊𝑅
(𝑡) =

[
 
 
 
 
 
 

1463.0

0473.0

0226.0

0000.0

0000.0

]
 
 
 
 
 
 

 

𝑟(𝑡) = [ 0370.01667.02963.02222.02778.0 ] 

Using Eq. (4), we calculated the matrix 𝑄 as 

lim
𝑡→⋯

𝑄(𝑡) = 𝑄 =

[
 
 
 
 
 
 

8356.00285.00506.00379.00474.0

1926.07368.00263.00197.00246.0

0025.02320.07317.00150.00188.0

0011.00048.02550.07310.00081.0

0008.00036.00065.02672.07219.0

]
 
 
 
 
 
 

 

Using Theorem 1, we obtained 𝑄∗ as 
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lim
𝑡→∞

𝑄𝑡 = 𝑄∗

[
 
 
 
 
0.0895 0.1591 0.2301 0.2378 0.2836
0.0895 0.1591 0.2301 0.2378 0.2836
0.0895 0.1591 0.2301 0.2378 0.2836
0.0895 0.1591 0.2301 0.2378 0.2835
0.0895 0.1591 0.2301 0.2378 0.2836]

 
 
 
 

 

ɸ =

[
 
 
 
 
 
 

8.01.01.00

5.01.03.01.0

2.03.04.01.0

03.01.06.0

02.01.07.0

]
 
 
 
 
 
 

 

To estimate the elements of 𝛾1, we use 𝜃11 = (∑ 𝑝𝑖
∗𝜇𝐹1

(𝑖)𝑘
𝑖=1 )

−1
= 0.0895 ∗ 0.7 + 0.1591 ∗

.0.6 + 0.2301 ∗ 0.1 + 0.2378 ∗ 0,1 + 0.2836 ∗ 0 = 4.8804. 

Others were similarly obtained, then 

𝛾1 = [

4.8804 0 0 0
0 4.6168 0 0
0 0 5.3533 0
0 0 0 2.5530

] 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝛾2 =

[
 
 
 
 
 
 

2836.00000

02378.0000

002301.000

0001591.00

00000895.0

]
 
 
 
 
 
 

 

Therefore, using Eq.(11), we calculated the matrix 𝑃𝐹 as 

lim
𝑡→∞

𝑃𝐹(𝑡) = 𝑃𝐹 =

[
 
 
 
 

5691.01033.01606.00329.0

2719.01648.02253.02240.0

3667.01589.02542.01245.0

1108.01570.01763.04341.0

]
 
 
 
 

 

The elements of 𝛽1, were calculated using 𝜃31 = ∑ 𝑃𝑖𝑊𝐷
𝑃𝑖

∗𝜇𝐹1
(𝑖)𝐾

𝑖=1 = 0.0219 ∗ 0.0895 ∗ 0.7 +

0.0290 ∗ 0.1591 ∗ 0.6 + 0.0450 ∗ 0.2301 ∗ 0.1 + 0.0414 ∗ 0.2378 ∗ 0.1 + 0.0244 ∗ 0.2836 ∗
0 = 0.0061 

Other elements were similarly obtained 

𝛽1 =

[
 
 
 
 

0125.0

0065.0

0084.0

0061.0

]
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The elements of 𝛽2  were similarly calculated and we have  𝛽2 =

[
 
 
 
 

0398.0

0068.0

0095.0

0016.0

]
 
 
 
 

 

using Eqs. (15) and (16) respectively, we calculated the column vectors  𝑃𝐹𝑅𝑊𝐷
and 𝑃𝐹𝑟𝑊𝑅

 as 

𝑃𝐹𝑅𝑊𝐷
=

[
 
 
 
 

044.0

0464.0

0465..0

0264.0

]
 
 
 
 

              Similarly, 𝑃𝐹𝑟𝑊𝑅
=

[
 
 
 
 

1193.0

0255.0

0365.0

0116.0

]
 
 
 
 

 

 

(1 − 𝑃𝐹)−1 =

[
 
 
 
 

0877.54459.18839.12718.1

0343.48019.21452.28159.1

0957.46897.11102.35915.1

9888.30014.22410.22848.3

]
 
 
 
 

 

Using Eqs. (20) and (21) respectively, the column vector 𝑁 and matrix  𝜑 were calculated as 

𝑁 = (1 − 𝑃𝐹)−1𝑒′ =

[
 
 
 
 

6393.9

7973.10

4871.10

5160.11

]
 
 
 
 

                   𝜑 =

[
 
 
 
 

7256.02593.0

6521.03358.0

6637.03242.0

6472.03412.0

]
 
 
 
 

 

DISCUSSION 

From the transition probability matrix (𝑃𝐹) between the fuzzy states obtained, we observed that it 

is possible to move from one fuzzy state to another. That is, it is possible for a staff who possesses 

Low level of Openness and Low level of Conscientiousness to possess High level of Openness and 

High level of Conscientiousness at any time and so on, unlike the traditional non-homogeneous 

Markov manpower system where the transitions between the crisp states (grades) are only possible 

from the current grade to the next higher grade. 

The expected length of stay in the system and the long run absorption rates in each fuzzy states 

were obtained. The results are somewhat unique and interesting. The expected length of stay in 

fuzzy state 𝐹1 is approximately 12years and the expected length of stay in 𝐹2 is approximately 

11years years and so on. None of them is up to the maximum career length of 35years. The results 

show that none of the employees stays up to the maximum number of years (35years) in service. 

The reason could be that each fuzzy state consists of employees belonging to different grades who 

have different age brackets and have put up wide gap of years in service. The long run absorption 

rates show that employees possessing High level of openness and High level of conscientiousness 

have lowest rate of dropout and highest rate of retirement while employees possessing Low level 

of openness and Low level of conscientiousness have highest rate of dropout and lowest rate of 

retirement. 

In literature, it is assumed that every member of manpower system belonging to the same grade 

has equal transition rate to the next higher grade. But in reality, this is not so. They have different 
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transition rates. During promotion, we observed that not everybody belonging to the same grade 

is promoted. Most organizational manpower systems base their promotion (transition) 

conditions/requirements on innovative capability and job performance level. This results in 

employees to have different promotion behaviors although they belong to the same grade, since 

they have different personality traits capable of influencing their innovativeness and productivity 

in different ways. Also, no work in literature has considered the use of multi-absorbing states 

Markov chain in the analysis of fuzzy manpower systems. Previous studies [1] and [2] have used 

single absorbing state Markov chain in the analysis of fuzzy manpower systems where drop-out 

and retired staff were lumped in one absorbing state. However, to incorporate personality traits as 

well as dealing with the problem of ambiguity in the gradual transition of members between the 

crisp states of the manpower system and to unbundle the retired staff for better manpower planning, 

the proposed methodology in this study is highly recommended. The proposed Non-Homogeneous 

Markov fuzzy manpower model for modeling manpower systems will contribute functionally to 

the increasing literature of manpower planning based on fuzzy Markov approach. Disaggregating 

the population of an organization into distinct homogeneous groups is a must step for Markovian 

manpower planning analysis. Partitioning of aggregated manpower system into homogeneous 

groups (crisp states) based on the classical Markov approach still introduces vagueness concerning 

transition of members from one state to another. Therefore, this work will serve as a template that 

stimulates future readers and manpower planners to appreciate partitioning and analysis of 

manpower systems based on fuzzy set Markovian approach, since it has the capacity to address 

the vagueness introduced during gradation of the system and expresses gradual transitions from 

membership to non-membership and vice versa. 
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