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ABSTRACT
Analysis of lifetime data is fundamental in reliability and survival studies,
yet classical distributions often fail to capture complex failure-rate patterns.
To address this, we introduce the Paralogistic-Chen (PCh) distribution, a
new lifetime model generated via the Transformed-Transformer (T-X)
method, using the Paralogistic family as a generator and the Chen
distribution as a baseline. Key mathematical properties are derived and a
comprehensive Monte Carlo simulation study evaluates the finite-sample
and asymptotic performance of the estimators, confirming their accuracy,
stability, and convergence. Parameters are estimated using maximum
likelihood estimation (MLE). Applications to real datasets, along with
comparisons to existing models, demonstrate that the PCh distribution
provides superior goodness-of-fit and flexibility in modeling diverse lifetime
behaviors. Overall, the PCh distribution offers a versatile and robust
alternative for reliability and survival analysis.

1. INTRODUCTION

Probability distributions are crucial techniques in statistical modeling and inference, especially in
the context of lifetime data analysis. In many real-world applications, such as engineering
reliability, biomedical studies, and risk analysis, there is a growing need for flexible probability
models that can accurately capture various patterns in empirical data, including increasing,
decreasing, bathtub-shaped, and unimodal hazard rates.
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Most times, widely-used classical lifetime distributions often fail to adequately describe datasets
with non-monotonic features. In addressing this issue, researchers have proposed generalized
distributions that introduce additional parameters or utilize transformation techniques. One such
powerful transformation technique is the Transformed—Transformer (T-X) method proposed by
Alzaatreh et al. (2013), which generates family of distributions or new distributions by
transforming a baseline distribution via a secondary distribution (the transformer), thereby
enhancing flexibility and modeling capability.

The Transformed—Transformer (T-X) family of distributions provides a general method for
constructing flexible continuous probability models. This is achieved by replacing the beta
distribution in beta-generated families with the pdf, f(t), of any continuous random variable and
applying an additional transformation, H[M (x)], to a baseline distribution, M(x), where

e H[MX)]ela,b],
o H is differentiable and monotonically non-decreasing,
e H[M((X)]—>aas x—0and HM(x)] >b as X — o x—o0.

Here, [a,b] defines the support of the transformer random variable T. The cumulative distribution
function (cdf) of the T-X family is given by:

HIM (x)

G =["""" ft)dt=F(HM ] (1)
where F and f are the cdf and pdf of random variable T. The corresponding pdf (if it exists) is
g(=[""" f(tdt= f(H[M(x)])%H[M(x)]- (2)

This method has since gained attraction and inspired the development of several new distributions.
Alizadeh et al. (2015) introduced the Beta—Marshall-Olkin family, Bourguignon et al. (2014)
proposed the Weibull-G family, and Alzaatreh et al. (2016) explored the generalized Cauchy-Y
family. Further contributions include the Poisson—X family by Tahir et al. (2016) and the
Quadratic-Transmuted—T—X family by Shaw and Buckley (2014). Aljarrah et al. (2014) extended
the T-X approach using quantile functions, while Alzaatreh et al. (2014) introduced the Weibull-
Normal{Exponential} distribution, enriching the flexibility of the T-Normal{Y} family. Nasir et
al. (2019) contributed the T-Burr family, further broadening the applications of the T-X
methodology. These studies collectively demonstrate the versatility and wide applicability of the
T—X framework in generating new models for lifetime and reliability data. Osagie et al. (2023)
developed the inverse Burr-Generalized family of distributions, derived the properties and applied
a submodel of the family to illustrate the usefulness and flexibility of the new family in lifetime
analysis.

Briefly, a new family of distributions shall be proposed using the paralogistic distribution as the
pdf of the transformed variable X and H[M (x)]=—InS(x) as the upper bound of the support of the
transformer random variable T in (1).

The proposed generator offers distinct practical advantages over existing transformation families
such as the Weibull-X and Gamma-X generators, making it particularly effective for lifetime and
reliability analyses. Its single, adaptable shape parameter enables precise control over tail thickness
and distributional asymmetry, allowing the model to capture both heavy-tailed and light-tailed
behaviours observed in real data. Compared with other T-X transformers such as Weibull-X or
Gamma-X, the paralogistic generator provides heavier and more adjustable tail behaviour through
asingle shape parameter. This facilitates improved modelling of datasets exhibiting extreme events
or irregular hazard shapes. Furthermore, the Paralogistic-{—InS(x)} family produces a wide

variety of hazard function shapes without requiring additional parameters. These characteristics
justify the practical usefulness and modelling capability of the new generator in representing
complex lifetime patterns encountered in engineering and reliability applications.
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The rationale for introducing the proposed family of distributions is grounded in the need to
improve the flexibility and descriptive power of statistical models used in lifetime and reliability
studies. Specifically, it aims

(1) to enhance the modeling of tail behaviours in lifetime data, thereby addressing the limitations
of classical distributions and offering greater adaptability in capturing tail characteristics,

(i) to develop new distributions, such as the Paralogistic—Chen model, that can accurately to
represent a wide variety of hazard patterns,

(iii) to provide improved control over tail heaviness along with an expanded range of skewness
and kurtosis,

(iv) to formulate submodels with mathematically tractable forms for ease of inference and

(v) to demonstrate the applicability and robustness of the proposed distribution in modelling real-
world lifetime phenomena.

Accordingly, the paper is organized into several sections. Section 2 presents the construction of
the Paralogistic-{—In S(x)} family as a generator and outlines key properties of the proposed
family. Section 3 focuses on the Paralogistic-{Chen} distribution as a specific submodel and
derives several of its statistical properties. Section 4 addresses parameter estimation and includes
a simulation study for the Paralogistic-{Chen} distribution. Finally, Section 5 demonstrates the
practical applicability and flexibility of the proposed model by fitting it, alongside some existing
competing distributions, to two real-life datasets. Section 6 presents the conclusion to the paper.

2. METHODOLOGY
The pdf of the random variable T following a paralogistic distribution (McDonald, 1984) is defined
as

ft)=9"A+t")*,t>0,9>0, (3)
where 4 is a shape parameter. Suppose H[M (x)] =—InS(x) and substituting (3) in (1) defines
the cdf of the Paralogistic-{—/n S(x)} family of distributions as

Goy (X) =jo"”s“’192(1+t9)*9dt —1-@+{-INS(X)})?, x>0 (4)

where S(x)=1-F(x) is the survival function of any baseline distribution.
The corresponding pdf, survival and hazard functions to (4) are given as

Uy (X) = Wm{—ln S(O¥) (%)
Gex (¥) = @+ {~InS(x)}")

and
_ O (%) _ 2 d{=InS(X)} 3 PN
hex (X) = G, () =3 ix A+{-InS(x)}")

The new generator in (4) has the ability to generate new submodels from existing distributions.
Some new submodels are presented in Table 1.

Table 1: Some submodels of Paralogistic-{—/n S(x)} family

Baseline Survival function, New cdf. G (X) Submaodel Remark
distribution S(x) PP

Weibull o 1-(1+ (5X’()‘9)_3 Paralogistic-Weibull New

Lomax 1+ &)~ 1- 1+ (xIn@L+ 5)())9)—9 Paralogistic-Lomax New

Weibull- —5(exp(ax-1)? 1— 1+ (05(exp(xx —1))*)* Paralogistic-Weibull New
Exponetial € (L+(6(exp( )") Exponential
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Gompertz K ~ o Paralogistic-Gompertz New

e = 1= C (xp(ex-1) ")
Burr 111 1+ Xg),,( 1- 1+ (xIn(L+ X0 ))3)—3 Paralogistic-Burr 111 New
Additive Weibull o K6 1— 1+ (X" + @(C)S )—9 Paralog\z/i\?;ii(é-ﬁdditive New

From Table 1, it is evident that several new distributions can be derived as submodels of
Paralogistic-{-/n S(x)} family, provided the survival function of the baseline distribution exists. In
the next section, we focus on a notable submodel of the proposed family, the Paralogistic-Chen
distribution, and explore its statistical properties in detail.

The Chen distribution is chosen for its flexibility, mathematical tractability and ability to capture
diverse hazard rate shapes. Its parameters have clear, interpretable effects on model behaviour,
making it a suitable baseline for integration into the Paralogistic-{-/n S(x)} generator.
Consequently, the resulting Paralogistic—Chen distribution forms a versatile and elegant submodel
capable of capturing both light- and heavy-tailed behaviours within the lifetime analysis
framework.

3. PARALOGISTIC-CHEN DISTRIBUTION

The Chen distribution (Chen, 2000) is a flexible lifetime distribution capable of modeling both
monotonic and non-monotonic hazard functions, making it suitable for diverse applications such
as modeling heart failure times, equipment lifespans, or counts of road accidents over a period
(e.g., weekly, monthly, or annually). The cdf of the Chen distribution is given as

F(x)=1-e7°" x>0,8,x>0 (6)
where 6 and x are the shape parameters respectively. Then, the cdf of the Paralogistic-Chen
distribution is given as

G(X)=1-(1+ (5" -1))")? x>0,9,6,x>0. (7
The corresponding pdf, survival and hazard functions of the three-parameter distribution are given
as

g(x) = 8ok e (3" ~1)" A+ (6 ~1)") T, ®)
S(x) =1+ (5" -1)")~
and

h(x) = $2orx*e* (5(e* -1)* @A+ (5" -1)%) ™.
Plots of the pdf and hazard function for the Paralogistic-Chen distribution are shown in Figure 1.

(a) The Paralogistic-Chen pdf b) The Paralogistic-Chen hazard function

Figure 1: Plots of the probability density and hazard functions of Paralogistic-Chen distribution

30



Osagie and Musa - Transactions of NAMP 23, (2025) 27-40

Figure 1 presents selected monotonic and nonmonotonic shapes of the probability density function
(pdf) and hazard function of the Paralogistic—-Chen distribution. It demonstrates that the
Paralogistic—Chen distribution can effectively model a wide variety of failure rate behaviors which
include bimodal, increasing, decreasing, skewed, and bathtub-shaped hazard rates commonly
observed in nonmonotonic lifetime data from real-world applications.

3.1 Linear expansion of the pdf of the Paralogistic-Chen distribution
The pdf of Paralogistic-Chen distribution can be expressed in series expansion. From (8), the pdf
IS given as

g(x) = 9?5 e (5(e* ~1)" L+ (5" ~1)*)

Using series expansion,
(X) 19 §KXK 1ex Z( 1) ( ]53(]{0 1(e 1)9(j+l)—l
. 9+ ] } '
:192]()(1( 12(_1) 59(]+1) [9(j+1)]1x* (l e X" )9(J+1) -1
= j

Substituting et

into the above series expansion gives

0 19 H 1 x|
5l (J+”)]X)

g(x) = 9 rx* 2 i( 1)‘(9-; JJM@‘&(J&XM (- )2t

J(j+1)-1 .
Further substitution of (1—e™ )0 = Z/( (= j( 1)™e ™" gives the linear expansion

of the pdf of the Paralogistic-Chen distribution, WhICh is given as

g(X) — gzKiii(‘g—l_ JJ(S(J +1) _1]( 1)]+m —mx~ ([‘9(J +1)]) 5.9(J+1)XK(I+1) le—mx ) (9)

=0 1=0 m=0 m !

3.2 Asymptotic behaviour of the Paralogistic-Chen distribution

The behavior of the proposed Paralogistic-Chen distribution is considered as x —» 0 and X — .
This is to determine the tail decay and type of mode the proposed distribution possesses. The pdf
of the Paralogistic-Chen distribution is given in (8) as

g(x) = 92oxx" e (5(e* -1)" 1+ (5 -1)*)
(i) As x >0, 5" —1) = X" since e¥ ~ x*. It follows that g(x) ~ 925 kx**,

It is seen thatas x — 07,

(@) g(x) >0 if x9>1.

(b) g(x) is finite, if x3=1.

(©) g(x) > o, If k¥ <1.

From (c), the mode is near zero and g(x) has a peak at the origin.

(i) As X > 00, (¥ —1) ~e* and e — oo. It follows that g(x) ~ 25 @D xx*1e > 0.
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Remarks

For tail behavior of the Paralogistic-Chen distribution, the following conclusions will be made.
() Thinner tails are obtained if « has larger values or ¢ has smaller values and otherwise.

(b) Thickest tails occur when x and ¢ have large values or thinnest tails occur when « and 4
have smaller values.

(c) The parameters x and ¢ are important in the modeling of extreme events, light-tailed or
heavy-tailed data in lifetime analysis. This is presented in Figure 2.

() x=05,56 =15 (b) x=2,6=7

() x=0.15=21 (d) x=0.1,6 =0.01

Figure 2: Plots of the tail thickness of the pdf of the Paralogistic-Chen distribution at values of
X,0,K,3.

Figure 2 illustrates how the parameters of the Paralogistic—Chen (PCh) distribution influence the
thickness of its tails. Tail thickness refers to how quickly the probability density declines as x
increases. A thicker tail indicates a slower decay rate and therefore a higher likelihood of extreme
values, while a thinner tail reflects a faster decay and fewer extremes. In plots (a) - (d), the curves
show that the PCh distribution can produce both heavy and light tails depending on the parameter
settings. This flexibility makes the PCh distribution suitable for modeling diverse datasets,
particularly those that may exhibit significant tail behavior.

3.3 Quantile function

Theorem
If 0 <u <1, then the quantile function is obtained from (7) as
% s
Q) = {m{u (@-u) 5 D } (10)
Proof

Let 0 <u <1, then the quantile function of any continuous lifetime distribution is defined as
G(x,)=u.
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Replacing G(x) with the cdf of the Paralogistic-Chen distribution in (7) gives
1-@A+ (5™ 1))’ =u.
After some algebraic simplification,
_(@-u ¥
o

e —1

It follows that
Yo _117e
.n[1+«1u>a - ] |

X

u

Hence, the quantile function of the Paralogistic-Chen distribution is given as

_ %
(@-w "~ -n*
g .

Q) =x, = In{1+

The proof is complete.
Remark: It is important to note that the median of a dataset modeled by the Paralogistic-Chen

-y ]|"
distribution can be given as; Q(0.5) =<In 1+T :

Table 2: Quantile values for sets of parameter values of the Paralogistic-Chen distribution

(6,x,93)

u

(0.9,1.7,0.2) (2.3,1.8,3.5) (1.7,0.2,4.0) (0.06,0.3,09) | (0.6,05,10)
0.1 0.3452908 0.3470576 0.0004574016 0.907897 0.02884598
0.2 2.1669064 0.3883210 0.0010360820 5.034477 0.12133510
0.3 3.4235976 0.4166553 0.0017577325 12.587724 0.29051763
0.4 44121628 0.4399700 0.0026621008 23.925058 0.55832935
0.5 5.3443804 0.4610945 0.0038001157 40.167965 0.96202275
0.6 6.3180691 0.4816921 0.0052736952 63.736385 1.56941504
0.7 7.4221378 0.5032281 0.0072763270 99.945954 2.51843801
0.8 8.8013398 0.5280902 0.0104065244 162.707691 4.14887133
0.9 10.8605792 0.5623577 0.0164632471 306.396179 7.68724822

Quantile Behaviour of the Paralogistic-Chen Distribution

Table 2 presents the quantile values of the Paralogistic—Chen distribution under various parameter
settings. It is observed that the quantile function is strictly increasing and exhibits remarkable
flexibility. The distribution captures a wide range of behaviours across different parameter
combinations, accommodating both light and heavy tails. This versatility enables it to model
skewed, concentrated, and highly dispersed data effectively, making it particularly suitable for
complex lifetime and reliability analyses where classical distributions may be inadequate.

3.4 Raw moments
Theorem
If u =E(Xr):fxrg(x)dx defines the r™ raw moments for any continuous lifetime

distribution, then the raw moments of the Paralogistic-Chen distribution is given as
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W=y (_1){19; jJ ([9(1;1)])' ammB[LH +1,.9(] +1)). (11)
€ ! K

Substituting (9) into the expression of the r™ raw moment be defined as ! = .[: x"g(x)dx,

u = gzKiii[g—l-— Jj(lg(l +1) _1j(_1)j+m ([9(J|Tl)])l S .war+K(|+1)-1e-medX_

j=0 1=0 m=o\ m
If y=x*, then
2 & (3+ )Y+ -1 o ([9G +D)]) R o (P
r __ Q2 _yiem ALY T U)o 9(j+) " my
o ;;mzo( ] J( m j( ) TR Ly edy.

Hence, the raw moment for the Paralogistic-Chen distribution is given as

Iu; _ gziii(]g-i_ Jj[lg(J +1) —1j(_1) j+m Mag(jﬂ)r[i + (I +1)j )

ioi0omo\ | m It
The proof is complete.

Figure 3: Raw moments and related quantities for Paralogistic-Chen Distribution

£0) (6,%.9)
(0.5,0.8,0.6) (0.8,4.0,1.3) (0.7,1.9,0.3) (5.0,6.40.9) | (3.0,2.7,1.0)

EX) 3.847594 0.8957723 2.9787988 0.7914707 0.6770420
E(X) 33.306906 0.8392883 12.6799509 0.6654619 0.5656438
EX) 383.642245 0.8162494 63.4545746 0.5892582 0.5536941
E(XY) 5154.573546 0.8197326 358.2753333 0.5457430 0.6135625
EXY) 76050.697314 | 0.8468933 2234.1920922 0.5256287 0.7508024
sD 4.301503 0.1920426 1.9510788 0.1975755 0.3275025
CcV 1.117972 0.2143877 0.6549885 0.2496308 0.4837256
CsS 1.421117 -0.2307934 0.4045560 0.1002066 0.7257427
CK 4.530780 3.0676474 2.8343093 2.7351048 3.4258273

Table 3 presents the first five raw moments, along with standard deviation, coefficients of
variation, skewness, and kurtosis of the Paralogistic—Chen distribution across selected parameter
sets. The results illustrate the distribution’s flexibility, capturing a wide range of dispersion,
skewness, and tail behavior. This adaptability makes it particularly suitable for lifetime analysis,
risk assessment and reliability modeling, where control over higher-order moments is crucial.

4. PARAMETER ESTIMATION AND SIMULATION STUDY FOR PARALOGISTIC-
CHEN DISTRIBUTION

4.1 Parameter Estimation

Consider a lifetime random variable, X modeled by the Paralogistic-Chen (PCh) distribution
defined in (8). Estimation of the distribution’s parameters is based on the total log-likelihood
function, which serves as the foundation for applying classical estimation methods such as
Maximum Likelihood. Accurate parameter estimation is essential for capturing the underlying
lifetime behavior, assessing model fit, and enabling reliable inference in applications such as
reliability analysis and survival studies. Let the total log-likelihood function, Z = L(5,«,9), is

given by
Z =nIn(9%6k) + (x —1)Zn: Inx, +x* + (& —1)_an In(s(e* —1))— (9 +1)Zn: In(L+ (5(e* -1))%). (12)
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The partial derivatives of (12) with respect §,xand 9 are used to obtain the score functions given
as;

oZ n9 e¥ —1 5e*i” ~1))°*
9Z_19_ g9+ 1)2( )(S( )3 )
o6 6 7 1+(5(e" -1))
X i 9-1
92 D S Inx, +xE Inx, + (9 1)er X _ 599+ 1)er (@ (ST 1) Inx
oK K i=1 i= —1) i=1 1+(5(e _1))9
and
oZ 2n n G 1))9|n(5(exf' -1)
Z =205 e —0) =Y In(l+ (5 —1)?) - (9+1) .
o8 9 21: le 21: 1+ (5™ —1))°
The score functions, (a—z : 8_Z&_Zj are set to zero and solved numerically to obtain the maximum
06 Ok 09

likelihood estimates of the Paralogistic-Chen distribution using the AdequacyModel package in R
software.

4.2. SIMULATION STUDY

A comprehensive Monte Carlo simulation study will be conducted to evaluate the finite-sample
and asymptotic performance of three parameter estimation methods namely; the Maximum
Likelihood Estimator (MLE), the Anderson-Darling Estimator (ADE), and the Minimum Product
Spacing Estimator (MPSE) for the Paralogistic—-Chen (PCh) distribution. Empirically, this is to
validate the theoretical large-sample properties of these estimators, which are asymptotic
unbiasedness and consistency. The performance of the three estimators will be assessed in terms
of the bias and root mean square error (RMSE) of parameter estimates across varying sample sizes
(n = 25, 50, 100, 250, 500, 800). Each experimental setting was replicated R = 1,000 times.
Random samples were generated using the inversion method from the quantile function in (10).
The essence of this study is to determine the statistical robustness and practical applicability of the
PCh distribution in modeling lifetime data.

The expressions for the bias and RMSE are given as

. 1 n " l n n
Bias= =) Q.-Q andRMSE = |=) (Q. —-Q)?,
nZ . 1/n;( —Q)

where Q Is the estimated parameter vector to the true parameter vector, Q=(¢,5,«).

Tables 4 and 5 give the average mean estimates, bias and RMSE for the three estimators at two
sets of parameter values; $=0.5,5=0.1 and ¥=0.9 and $=1.5,5=3.2 and «=1.9 respectively.

Table 4: Simulation study for $=0.5,56=0.1 and «=0.9

n QAV 5AAv K ay Bias( Bias(o') Bias( | RMSE( | RMSE(0) | RMSE(
4) K) 4) K)

MLE 11.6702 | 37887.5129 | 2.8433 | 10.1702 | 37884.3129 | 0.9433 | 19.2426 | 155366.4861 | 3.3979
ADE | 25 | 4.4332 | 8583.3470 | 2.7384 | 2.9332 | 8580.1470 | 0.8384 | 6.6451 | 44179.5586 | 2.9370
MPSE 6.0823 | 14189.3037 | 2.3569 | 4.5823 | 14186.1037 | 0.4569 | 10.9999 | 89357.6820 | 2.6014
MLE 8.0464 | 7844.731 | 2.2387 | 6.5464 | 7841.531 | 0.3387 | 14.4199 | 67719.4860 | 2.2307
ADE | 50 | 3.5462 | 2175.9673 | 2.2327 | 2.0462 | 2172.7673 | 0.3327 | 5.1734 | 19489.0734 | 2.0165
MPSE 4.6622 | 2198.3008 | 1.9727 | 3.1622 | 2195.1008 | 0.0727 | 8.6713 | 24430.8359 | 1.8043
MLE 4.0207 255.3888 | 2.1438 | 2.5207 252.1888 | 0.2438 | 8.2537 | 6788.7503 | 1.4072
ADE | 100 | 2.3619 39.2761 2.1621 | 0.8619 36.0761 0.2621 | 3.0114 366.4564 1.3517
MPSE 2.7413 62.7976 1.9553 | 1.2413 59.5976 | 0.0553 | 4.9256 1534.1366 | 1.1724
MLE | 250 | 2.1256 5.5132 1.9653 | 0.6256 2.3132 0.0653 | 3.4316 8.2344 0.7944
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ADE 1.7957 6.3193 | 1.9624 | 0.2957 3.1193 | 0.0624 | 1.3667 14.7576 | 0.8382
MPSE 1.8179 45070 | 1.8526 | 0.3179 1.3070 - 1.6826 5.6806 0.7132
0.0474
MLE 1.6023 4.0470 | 1.9283 | 0.1023 0.8470 | 0.0283 | 0.9046 3.1018 0.5363
ADE 1.5842 41668 | 1.9262 | 0.0842 0.9668 | 0.0262 | 0.4476 3.6332 0.5682
MPSE | >0 -
1.6098 3.6221 | 1.8434 | 0.1098 0.4221 | 0.0566 | 0.5656 2.5382 0.5090
MLE 1.5380 3.6477 | 1.9140 | 0.0380 0.4477 | 0.0140 | 0.2548 1.9604 0.4073
ADE 1.5456 3.6985 | 1.9136 | 0.0456 0.4985 | 0.0136 | 0.3063 2.0814 0.4330
MpsE | 50 -
1.5649 3.3684 | 1.8480 | 0.0649 0.1684 | 0.0520 | 0.2601 1.6956 0.3944
Table 5: Simulation study for $=1.5,5=3.2 and x=1.9
n QAV SAV Kay Bias( | Bias(d) | Bias( | RMSE( | RMSE(J) | RMSE(
3) K) 3) K)
MLE |25 |5.4896 | 9.8869 0.8347 | 4.9896 | 9.7869 - 14.0784 | 140.5972 | 0.4595
0.0653
ADE 1.8626 | 142.2555 | 0.8649 | 1.3626 | 142.1555 | - 5.1136 | 1918.8523 | 0.4432
0.0351
MPSE 1.9661 | 125.5115 | 0.8788 | 1.4661 | 125.4115 | - 6.6348 | 1678.9069 | 0.4080
0.0212
MLE |50 | 1.7818 | 0.3050 0.8615 | 1.2818 | 0.2050 - 6.5133 | 1.0505 0.3051
0.0385
ADE 0.9361 | 0.4494 0.8648 | 0.4361 | 0.3494 - 2.5618 | 3.7466 0.2966
0.0352
MPSE 0.9158 | 2.2252 0.8751 | 0.4158 | 2.1252 - 3.2241 | 55.9750 0.2780
0.0249
MLE | 100 | 0.8186 | 0.1487 0.8807 | 0.3186 | 0.0487 - 2.8427 | 0.1592 0.1994
0.0193
ADE 0.5871 | 0.1588 0.8801 | 0.0871 | 0.0588 - 0.4812 | 0.2157 0.2040
0.0199
MPSE 0.5823 | 0.1658 0.8809 | 0.0823 | 0.0658 - 1.1196 | 0.1916 0.1834
0.0191
MLE | 250 | 0.5184 | 0.1144 0.8976 | 0.0184 | 0.0144 - 0.1113 | 0.0549 0.1135
0.0024
ADE 0.5233 | 0.1170 0.8939 | 0.0233 | 0.0170 - 0.1256 | 0.0612 0.1233
0.0061
MPSE 0.5164 | 0.1200 0.8921 | 0.0164 | 0.0200 - 0.1084 | 0.0592 0.1123
0.0079
MLE | 500 | 0.5113 | 0.1061 0.8969 | 0.0113 | 0.0061 - 0.0770 | 0.0318 0.0823
0.0031
ADE 0.5131 | 0.1076 0.8959 | 0.0131 | 0.0076 - 0.0850 | 0.0351 0.0896
0.0041
MPSE 0.5122 | 0.1085 0.8917 | 0.0122 | 0.0085 - 0.0768 | 0.0327 0.0823
0.0083
MLE | 800 | 0.5060 | 0.1024 0.8995 | 0.0060 | 0.0024 -5e-04 | 0.0569 | 0.0223 0.0630
ADE 0.5072 | 0.1033 0.8989 | 0.0072 | 0.0033 - 0.0641 | 0.0237 0.0703
0.0011
MPSE 0.5072 | 0.1038 0.8954 | 0.0072 | 0.0038 - 0.0571 | 0.0226 0.0631
0.0046

The simulation study assessed the Maximum Likelihood (MLE), Anderson—Darling (ADE), and
Minimum Product Spacing (MPSE) estimators for the Paralogistic—Chen (PCh) distribution,
providing strong empirical support for their theoretical large-sample properties. Bias and RMSE
decrease consistently with increasing sample size, indicating numerical stability and convergence
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toward true parameter values. For small samples (n = 25, 50), the estimators show substantial
variability and notable bias, highlighting the challenges of reliable estimation with limited data.
As sample size grows, performance stabilizes rapidly, with bias and RMSE approaching negligible
levels, and all three methods effectively recover the underlying structure of the PCh distribution.
Overall, the results confirm the statistical robustness and parameter uniqueness of the proposed
distribution. While small-sample instability reflects its data-intensive nature, the strong large-
sample performance affirms its suitability for reliability, survival analysis, and related applications
requiring robust asymptotic behavior.

5. APPLICATIONS
This section presents an analysis of two lifetime datasets using the Paralogistic-Chen (PCh)
distribution alongside three non-nested Chen-based models, thereby demonstrating the flexibility
of the PCh as a novel parametric lifetime model. The competing distributions include the
Transmuted Chen (TCh) distribution (Khan et al., 2015), the Modified Extended Chen (MECh)
distribution (Anafo et al., 2022), and the original Chen (Ch) distribution (Chen, 2000). Model
performance is evaluated and compared using multiple statistical criteria, including the Akaike
Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian
Information Criterion (BIC), Hannan—Quinn Information Criterion (HQIC), as well as the Cramér-
von Mises (W*) and Anderson-Darling (A*) goodness-of-fit tests. The distribution with the best
fits exhibits the lowest values of the multiple statistical criteria. The defining cdf for each
competing distribution is presented as:

TCh: G(x) =[1—exp(s(L—exp(x“ N[+ 9) — H1L—exp(L—exp(x* )] , [9<15>0,x>0.

MECh: G(x) =[5(exp(x*) -1 +1]*, $>0,6>0,x>0.

Ch: F(x) =1—-exp(o(L—exp(x*)), §>0,x>0.
The first dataset consists of daily drought-related mortality rates in the United Kingdom, recorded
from 15 April to 30 June 2020 (Mubarak & Al-Metwally, 2021). The data is given as;
0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395, 0.2751, 0.2845, 0.2992,
0.3188, 0.3317, 0.3446, 0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690, 0.4954, 0.5139,
0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438, 1.0602, 1.1305, 1.1468,
1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017, 1.6083, 1.6324, 1.6998, 1.8164, 1.8392,
1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609, 3.3715, 3.7840, 3.9042,

4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500, 5.7522, 6.4241, 7.0657, 7.4456, 8.2307, 9.6315,
10.1870, 11.1429, 11.2019, 11.4584.

Table 6 presents the parameter estimates and statistical criteria for the first lifetime dataset,
enabling a comparison of the competing distributions to identify the model that provides the best
fit for the dataset.

Table 6: Parameter estimates and discrepancy criteria for first lifetime dataset

Models o K 9 AIC CAIC BIC HQIC W* A*
(std. error)  (std.error)  (std. error)

PCh 0.46307 0.03770 14.57134 289.8485 290.1819 296.8407 292.6429 0.11221 0.75942
(0.11208) (0.05912) (22.26436)

TCh 0.19585 0.45103 0.55035 299.2964 299.6297 306.2886 302.0906 0.24596  1.57665
(0.04975) (0.02951) (0.29730)

MECh 3.13427 1.00772 0.36982 294.0187 294.3521 301.0109 296.8131 0.12201  0.87089
(2.23740) (0.15411) (0.12912)

Ch 0.29321 0.42286 298.9822 299.1466 303.6437 300.8452 0.26644  1.70262
(0.04453) (0.02814) )
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The second lifetime dataset comprises survival times of 121 breast cancer patients treated at a
major hospital between 1929 and 1938. Muhammed et al. (2025) previously applied their proposed
distribution to the dataset. The recorded survival times are as follows:
0.3,0.3,4.0,5.0,5.6,6.2,6.3,6.6,6.8, 7.4, 7.5, 8.4, 84, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4,
14.4,14.8, 155, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0,
21.1,23.0, 23.4,23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 1.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0,
38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 4.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0,
46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0,
60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0,
103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

Table 7 presents the parameter estimates and statistical criteria for the second lifetime data,
enabling a comparison of the competing distributions to identify the model that provides the best
fit. +

Table 7: Parameter estimates and statistical criteria for second lifetime dataset

Models o K 9 AIC CAIC BIC HQIC W* A*
(std. error) (std.error)  (std. error)

PCh 0.14795 0.14866 4.57640 1165.2866 1165.4921 1173.6739 1168.6930 0.05416 0.38269
(0.38999)  (0.29609)  (11.03925)

TCh 0.01285 0.35070 0.50235 1167.8440 1168.0490 1176.2310 1171.2500 0.13412 0.91490
(0.00382)  (0.01059)  (0.27747)

MECh | 299.02983 1.56311 0.83431 1195.4746 1195.6800 1203.8620 1198.8810 0.29131 1.92719
(146.63222)  (0.10303) (0.12623)

Ch 0.02145 0.33870 1167.5720 1167.6730 1173.1629 1169.8431 0.16243 1.08357
(0.00474)  (0.01061) ’

The unusual high standard errors in the analysis of the first and second datasets indicate mild
parameter correlation and near-flat likelihood regions, which is a common behaviour in models
with heavy right tails and sparse extreme observations.

5.1 DISCUSSION ON COMPARATIVE RESULTS

The analysis of the four competing models (PCh, TCh, MECh, and Ch) fitted to two independent
lifetime datasets consistently identifies the Paralogistic-Chen (PCh) distribution as the statistically
superior model. Across both datasets, PCh achieved the lowest values for all information criteria
(AIC, CAIC, BIC, and HQIC), confirming its optimal balance between model complexity and
goodness of fit. This superiority is strongly reinforced by the goodness-of-fit measures, where the
PCh model consistently yielded the smallest Anderson-Darling (A*) and Cramér—von Mises (W*)
statistics, indicating the closest agreement with the empirical data distribution. While the Ch and
TCh models showed moderate performance, and the MECh model proved competitive in one
dataset, their overall fit remained inferior to that of the PCh model. The unified results from both
the information criteria and discrepancy tests underscore the PCh distribution's exceptional
accuracy and flexibility as a robust alternative for lifetime data analysis.

CONCLUSION

This study introduced and comprehensively analyzed the Paralogistic—Chen (PCh) distribution as
a flexible model for lifetime data. Through rigorous derivations, its mathematical properties were
established, and maximum likelihood estimation was applied for parameter inference. The
simulation study confirmed the numerical stability of the MLE, ADE, and MPSE estimators, with
decreasing bias and RMSE across sample sizes. Real-data applications further demonstrated the
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PCh model’s superiority over existing Chen-based competitors. These findings highlight the value
of the paralogistic generator as a flexible and practically useful tool in lifetime modelling

The comparative analysis revealed that the PCh distribution consistently outperformed some well-
known competing models, achieving the lowest information criteria values and superior goodness-
of-fit measures. These results demonstrate that the PCh distribution is a flexible and adaptable
modeling choice, effectively capturing diverse data behaviors with minimal parameter complexity.
The ability of the distribution to model lifetime datasets with monotonic and nonmonotonic
characteristics underscores its potential for broad applications in reliability analysis, biomedical
studies, and other applied statistical domains. Future work may explore Bayesian estimation
techniques, regression extensions, and multivariate generalizations to further enhance its utility.
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