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ABSTRACT 

Analysis of lifetime data is fundamental in reliability and survival studies, 

yet classical distributions often fail to capture complex failure-rate patterns. 

To address this, we introduce the Paralogistic-Chen (PCh) distribution, a 

new lifetime model generated via the Transformed-Transformer (T-X) 

method, using the Paralogistic family as a generator and the Chen 

distribution as a baseline. Key mathematical properties are derived and a 

comprehensive Monte Carlo simulation study evaluates the finite-sample 

and asymptotic performance of the estimators, confirming their accuracy, 

stability, and convergence. Parameters are estimated using maximum 

likelihood estimation (MLE). Applications to real datasets, along with 

comparisons to existing models, demonstrate that the PCh distribution 

provides superior goodness-of-fit and flexibility in modeling diverse lifetime 

behaviors. Overall, the PCh distribution offers a versatile and robust 

alternative for reliability and survival analysis. 
 

 

 

 

 

 

1. INTRODUCTION  

Probability distributions are crucial techniques in statistical modeling and inference, especially in 

the context of lifetime data analysis. In many real-world applications, such as engineering 

reliability, biomedical studies, and risk analysis, there is a growing need for flexible probability 

models that can accurately capture various patterns in empirical data, including increasing, 

decreasing, bathtub-shaped, and unimodal hazard rates. 

 
*Corresponding author: SUNDAY A. OSAGIE 
E-mail address: sunday.osagie@uniben.edu 

 https://doi.org/10.60787/tnamp.v23.618 

1115-1307 © 2025 TNAMP. All rights reserved

mailto:sunday.osagie@uniben.edu
https://doi.org/10.60787/tnamp.v23.618


Osagie and Musa - Transactions of NAMP 23, (2025) 27-40 

28 

Most times, widely-used classical lifetime distributions often fail to adequately describe datasets 

with non-monotonic features. In addressing this issue, researchers have proposed generalized 

distributions that introduce additional parameters or utilize transformation techniques. One such 

powerful transformation technique is the Transformed–Transformer (T-X) method proposed by 

Alzaatreh et al. (2013), which generates family of distributions or new distributions by 

transforming a baseline distribution via a secondary distribution (the transformer), thereby 

enhancing flexibility and modeling capability. 

The Transformed–Transformer (T-X) family of distributions provides a general method for 

constructing flexible continuous probability models. This is achieved by replacing the beta 

distribution in beta-generated families with the pdf, f(t), of any continuous random variable and 

applying an additional transformation, )]([ xMH , to a baseline distribution, M(x), where 

• ],[)]([ baxMH  , 

• H is differentiable and monotonically non-decreasing, 

• axMH →)]([  as 0→x  and bxMH →)]([   as →x x→∞. 

Here, [a,b] defines the support of the transformer random variable T. The cumulative distribution 

function (cdf) of the T–X family is given by: 

)])([()()(
)]([

0
xMHFdttfxG

xMH

==                                                                                             (1) 

where F and f are the cdf and pdf of random variable T. The corresponding pdf (if it exists) is 

)]([)])([()()(
)]([

0
xMH

dx

d
xMHfdttfxg

xMH

==  .                                                                            (2) 

This method has since gained attraction and inspired the development of several new distributions. 

Alizadeh et al. (2015) introduced the Beta–Marshall–Olkin family, Bourguignon et al. (2014) 

proposed the Weibull–G family, and Alzaatreh et al. (2016) explored the generalized Cauchy–Y 

family. Further contributions include the Poisson–X family by Tahir et al. (2016) and the 

Quadratic–Transmuted–T–X family by Shaw and Buckley (2014). Aljarrah et al. (2014) extended 

the T–X approach using quantile functions, while Alzaatreh et al. (2014) introduced the Weibull–

Normal{Exponential} distribution, enriching the flexibility of the T–Normal{Y} family. Nasir et 

al. (2019) contributed the T–Burr family, further broadening the applications of the T–X 

methodology. These studies collectively demonstrate the versatility and wide applicability of the 

T–X framework in generating new models for lifetime and reliability data. Osagie et al. (2023) 

developed the inverse Burr-Generalized family of distributions, derived the properties and applied 

a submodel of the family to illustrate the usefulness and flexibility of the new family in lifetime 

analysis. 

Briefly, a new family of distributions shall be proposed using the paralogistic distribution as the 

pdf of the transformed variable X and )(ln)]([ xSxMH −=  as the upper bound of the support of the 

transformer random variable T in (1).  

The proposed generator offers distinct practical advantages over existing transformation families 

such as the Weibull-X and Gamma-X generators, making it particularly effective for lifetime and 

reliability analyses. Its single, adaptable shape parameter enables precise control over tail thickness 

and distributional asymmetry, allowing the model to capture both heavy-tailed and light-tailed 

behaviours observed in real data. Compared with other T-X transformers such as Weibull-X or 

Gamma-X, the paralogistic generator provides heavier and more adjustable tail behaviour through 

a single shape parameter. This facilitates improved modelling of datasets exhibiting extreme events 

or irregular hazard shapes. Furthermore, the Paralogistic-{ )(ln xS− } family produces a wide 

variety of hazard function shapes without requiring additional parameters. These characteristics 

justify the practical usefulness and modelling capability of the new generator in representing 

complex lifetime patterns encountered in engineering and reliability applications. 
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The rationale for introducing the proposed family of distributions is grounded in the need to 

improve the flexibility and descriptive power of statistical models used in lifetime and reliability 

studies. Specifically, it aims  

(i) to enhance the modeling of tail behaviours in lifetime data, thereby addressing the limitations 

of classical distributions and offering greater adaptability in capturing tail characteristics, 

(ii) to develop new distributions, such as the Paralogistic–Chen model, that can accurately to 

represent a wide variety of hazard patterns, 

(iii) to provide improved control over tail heaviness along with an expanded range of skewness 

and kurtosis, 

(iv) to formulate submodels with mathematically tractable forms for ease of inference and 

(v) to demonstrate the applicability and robustness of the proposed distribution in modelling real-

world lifetime phenomena. 

Accordingly, the paper is organized into several sections. Section 2 presents the construction of 

the Paralogistic-{−ln S(x)} family as a generator and outlines key properties of the proposed 

family. Section 3 focuses on the Paralogistic-{Chen} distribution as a specific submodel and 

derives several of its statistical properties. Section 4 addresses parameter estimation and includes 

a simulation study for the Paralogistic-{Chen} distribution. Finally, Section 5 demonstrates the 

practical applicability and flexibility of the proposed model by fitting it, alongside some existing 

competing distributions, to two real-life datasets. Section 6 presents the conclusion to the paper. 

2. METHODOLOGY  

The pdf of the random variable T following a paralogistic distribution (McDonald, 1984) is defined 

as 

0,0,)1()( 2 += −   tttf ,            (3) 

where   is a shape parameter. Suppose )(ln)]([ xSxMH −=  and substituting (3) in (1) defines 

the cdf of the Paralogistic-{−ln S(x)} family of distributions as  

0,))}(ln{1(1)1()(
)(ln

0

2 −+−=+= −
−

−

 xxSdttxG
xS

PX

                                                   (4) 

where S(x)=1-F(x) is the survival function of any baseline distribution. 

The corresponding pdf, survival and hazard functions to (4) are given as

12 ))}(ln{1(
)}(ln{

)( −−−+
−

=  xS
dx

xSd
xgPX

 ,                                                                         (5)
 

 −−+= ))}(ln{1()( xSxGPX   

and  

12 ))}(ln{1(
)}(ln{

)(

)(
)( −−+

−
==  xS

dx

xSd

xG

xg
xh

PX

PX
PX

 . 

The new generator in (4) has the ability to generate new submodels from existing distributions. 

Some new submodels are presented in Table 1. 

Table 1: Some submodels of Paralogistic-{−ln S(x)} family 
Baseline 

distribution 

Survival function, 

S(x) 
New cdf, )(xGPX  Submodel Remark 

Weibull xe−
 

 −+− ))(1(1 x  Paralogistic-Weibull  New 

Lomax  −+ )1( x  
 −++− )))1ln((1(1 x  Paralogistic-Lomax New 

Weibull-

Exponetial 

 )1(exp( −− xe  
 −−+− )))1(exp((1(1 x  Paralogistic-Weibull 

Exponential 

New 
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Gompertz 
)1(exp( −− x

e






 




 −−+− )))1(exp((1(1 x  
Paralogistic-Gompertz New 

Burr III  −+ )1( x  
 −−++− )))1ln((1(1 x  Paralogistic-Burr III New 

Additive Weibull cxxe   −−
 

  −++− ))(1(1 cxx  Paralogistic-Additive 

Weibull 

New 

 

From Table 1, it is evident that several new distributions can be derived as submodels of 

Paralogistic-{-ln S(x)} family, provided the survival function of the baseline distribution exists. In 

the next section, we focus on a notable submodel of the proposed family, the Paralogistic-Chen 

distribution, and explore its statistical properties in detail. 

The Chen distribution is chosen for its flexibility, mathematical tractability and ability to capture 

diverse hazard rate shapes. Its parameters have clear, interpretable effects on model behaviour, 

making it a suitable baseline for integration into the Paralogistic-{-ln S(x)} generator. 

Consequently, the resulting Paralogistic–Chen distribution forms a versatile and elegant submodel 

capable of capturing both light- and heavy-tailed behaviours within the lifetime analysis 

framework. 

 

3. PARALOGISTIC-CHEN DISTRIBUTION 

The Chen distribution (Chen, 2000) is a flexible lifetime distribution capable of modeling both 

monotonic and non-monotonic hazard functions, making it suitable for diverse applications such 

as modeling heart failure times, equipment lifespans, or counts of road accidents over a period 

(e.g., weekly, monthly, or annually). The cdf of the Chen distribution is given as 

0,,0,1)( )1( −= −− 


 xexF
cxe                                                                                               (6) 

where   and   are the shape parameters respectively. Then, the cdf of the Paralogistic-Chen 

distribution is given as 

0,,,0,)))1((1(1)( −+−= −  

xexG x .                                                                   (7) 

The corresponding pdf, survival and hazard functions of the three-parameter distribution are given 

as 
1112 )))1((1())1(()( −−−− −+−=  

 xxx eeexxg ,                                                            (8) 



 −−+= )))1((1()( xexS  

and 
1112 )))1((1())1(()( −−− −+−=  

 xxx eeexxh . 

Plots of the pdf and hazard function for the Paralogistic-Chen distribution are shown in Figure 1. 

         
 (a) The Paralogistic-Chen pdf     b) The Paralogistic-Chen hazard function   

Figure 1: Plots of the probability density and hazard functions of Paralogistic-Chen distribution 
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Figure 1 presents selected monotonic and nonmonotonic shapes of the probability density function 

(pdf) and hazard function of the Paralogistic–Chen distribution. It demonstrates that the 

Paralogistic–Chen distribution can effectively model a wide variety of failure rate behaviors which 

include bimodal, increasing, decreasing, skewed, and bathtub-shaped hazard rates commonly 

observed in nonmonotonic lifetime data from real-world applications. 

3.1 Linear expansion of the pdf of the Paralogistic-Chen distribution 

The pdf of Paralogistic-Chen distribution can be expressed in series expansion. From (8), the pdf 

is given as     
1112 )))1((1())1(()( −−−− −+−=  

 xxx eeexxg  

Using series expansion,  







=

−+−++−



=

−+−+−

−






 +
−=

−






 +
−=

0

1)1()]1([)1(12

0

1)1(1)1(12

)1()1(

)1()1()(

j

jxxjjj

j

jxjjx

ee
j

j
x

e
j

j
exxg



















.              

Substituting 


=

+ +
=

0

)]1([

!

))]1(([

l

l
xj

l

xj
e


 

 into the above series expansion gives 

 


=



=

−+−+− −
+








 +
−=

0 0

1)1()1(12 )1(
!

)])1(([
)1()(

j l

jxlj
l

j ex
l

j

j

j
xxg  




 . 

Further substitution of 


=

−−+− −






 −+
=−

0

1)1( )1(
1)1(

/)1(
m

mxmjx e
m

j
e

 


gives the linear expansion 

of the pdf of the Paralogistic-Chen distribution, which is given as 




=



=



=

−−++−+ +
−







 −+







 +
==

0 0 0

1)1()1(2

!

)])1(([
)1(

1)1(
)(

j l m

mxlj
l

mxmj ex
l

j
e

m

j

j

j
xg

 


 .          (9) 

3.2 Asymptotic behaviour of the Paralogistic-Chen distribution 

The behavior of the proposed Paralogistic-Chen distribution is considered as 0→x  and →x . 

This is to determine the tail decay and type of mode the proposed distribution possesses. The pdf 

of the Paralogistic-Chen distribution is given in (8) as 

1112 )))1((1())1(()( −−−− −+−=  

 xxx eeexxg  

(i) As 0→x , 




xe x − )1(  since 

xe x  . It follows that 12)( −  xxg . 

It is seen that as  
+→ 0x , 

(a) 0)( →xg  if 1 . 

(b) )(xg  is finite, if 1= . 

(c) →)(xg , if 1 . 

From (c), the mode is near zero and )(xg  has a peak at the origin. 

(ii) As →x , 
 xx ee − )1(  and →

xe . It follows that 0)(
21)1(2 → −−+−   xexxg . 
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Remarks 

For tail behavior of the Paralogistic-Chen distribution, the following conclusions will be made. 

(a) Thinner tails are obtained if   has larger values or   has smaller values and otherwise. 

(b) Thickest tails occur when   and   have large values or thinnest tails occur when   and   

have smaller values. 

(c) The parameters   and   are important in the modeling of extreme events, light-tailed or 

heavy-tailed data in lifetime analysis. This is presented in Figure 2. 

                   
                         (a) 15,5.0 == x                                                                   (b) 7,2 == x         

                                
                    (c) 1.2,1.0 == x                                                                 (d) 01.0,1.0 == x          

Figure 2: Plots of the tail thickness of the pdf of the Paralogistic-Chen distribution at values of 

 ,,,x . 

Figure 2 illustrates how the parameters of the Paralogistic–Chen (PCh) distribution influence the 

thickness of its tails. Tail thickness refers to how quickly the probability density declines as x 

increases. A thicker tail indicates a slower decay rate and therefore a higher likelihood of extreme 

values, while a thinner tail reflects a faster decay and fewer extremes. In plots (a) - (d), the curves 

show that the PCh distribution can produce both heavy and light tails depending on the parameter 

settings. This flexibility makes the PCh distribution suitable for modeling diverse datasets, 

particularly those that may exhibit significant tail behavior. 

 

3.3 Quantile function 

Theorem 

If 10  u , then the quantile function is obtained from (7) as 






1
11

)1)1((
1ln)(



























 −−
+=

−
u

uQ                                                                                    (10) 

Proof 

Let 10  u , then the quantile function of any continuous lifetime distribution is defined as 

uxG u =)( . 



Osagie and Musa - Transactions of NAMP 23, (2025) 27-40 

33 

Replacing )(xG  with the cdf of the Paralogistic-Chen distribution in (7) gives 

ue ux
=−+− −

 )))1((1(1 . 

After some algebraic simplification, 






11

)1)1((
1

−−
=−

−
u

e ux . 

It follows that 































−−
+=

−




11

)1)1((
1ln

u
xu . 

Hence, the quantile function of the Paralogistic-Chen distribution is given as 






1
11

)1)1((
1ln)(



























 −−
+==

−
u

xuQ u
.  

The proof is complete. 

Remark: It is important to note that the median of a dataset modeled by the Paralogistic-Chen 

distribution can be given as; 






1
11

)12(
1ln)5.0(



























 −
+=Q .        

Table 2: Quantile values for sets of parameter values of the Paralogistic-Chen distribution 

u 
(  ,, ) 

(0.9,1.7,0.2) (2.3,1.8,3.5) (1.7,0.2,4.0) (0.06,0.3,0.9) (0.6,0.5,1.0) 

0.1 0.3452908 0.3470576 0.0004574016 0.907897 0.02884598 

0.2 2.1669064 0.3883210 0.0010360820 5.034477 0.12133510 

0.3 3.4235976 0.4166553 0.0017577325 12.587724 0.29051763 

0.4 4.4121628 0.4399700 0.0026621008 23.925058 0.55832935 

0.5 5.3443804 0.4610945 0.0038001157 40.167965 0.96202275 

0.6 6.3180691 0.4816921 0.0052736952 63.736385 1.56941504 

0.7 7.4221378 0.5032281 0.0072763270 99.945954 2.51843801 

0.8 8.8013398 0.5280902 0.0104065244 162.707691 4.14887133 

0.9 10.8605792 0.5623577 0.0164632471 306.396179 7.68724822 

Quantile Behaviour of the Paralogistic–Chen Distribution 

Table 2 presents the quantile values of the Paralogistic–Chen distribution under various parameter 

settings. It is observed that the quantile function is strictly increasing and exhibits remarkable 

flexibility. The distribution captures a wide range of behaviours across different parameter 

combinations, accommodating both light and heavy tails. This versatility enables it to model 

skewed, concentrated, and highly dispersed data effectively, making it particularly suitable for 

complex lifetime and reliability analyses where classical distributions may be inadequate. 

3.4 Raw moments 

Theorem 

If 


==
0

)()( dxxgxXE rr

r  defines the thr  raw moments for any continuous lifetime 

distribution, then the raw moments of the Paralogistic-Chen distribution is given as 
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Proof  

Substituting (9) into the expression of  the thr  raw moment be defined as 


=
0

)( dxxgx r
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Hence, the raw moment for the Paralogistic-Chen distribution is given as 
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The proof is complete. 

Figure 3: Raw moments and related quantities for Paralogistic-Chen Distribution 

E(Xr) 
(  ,, ) 

(0.5,0.8,0.6) (0.8,4.0,1.3) (0.7,1.9,0.3) (5.0,6.4,0.9) (3.0,2.7,1.0) 

E(X) 3.847594 0.8957723 2.9787988 0.7914707 0.6770420 

E(X2) 33.306906 0.8392883 12.6799509 0.6654619 0.5656438 

E(X3) 383.642245 0.8162494 63.4545746 0.5892582 0.5536941 

E(X4) 5154.573546 0.8197326 358.2753333 0.5457430 0.6135625 

E(X5) 76050.697314 0.8468933 2234.1920922 0.5256287 0.7508024 

SD 4.301503 0.1920426 1.9510788 0.1975755 0.3275025 

CV 1.117972 0.2143877 0.6549885 0.2496308 0.4837256 

CS 1.421117 -0.2307934 0.4045560 0.1002066 0.7257427 

CK 4.530780 3.0676474 2.8343093 2.7351048 3.4258273 

Table 3 presents the first five raw moments, along with standard deviation, coefficients of 

variation, skewness, and kurtosis of the Paralogistic–Chen distribution across selected parameter 

sets. The results illustrate the distribution’s flexibility, capturing a wide range of dispersion, 

skewness, and tail behavior. This adaptability makes it particularly suitable for lifetime analysis, 

risk assessment and reliability modeling, where control over higher-order moments is crucial. 

4. PARAMETER ESTIMATION AND SIMULATION STUDY FOR PARALOGISTIC-

CHEN DISTRIBUTION 

4.1 Parameter Estimation 

Consider a lifetime random variable, X modeled by the Paralogistic-Chen (PCh) distribution 

defined in (8). Estimation of the distribution’s parameters is based on the total log-likelihood 

function, which serves as the foundation for applying classical estimation methods such as 

Maximum Likelihood. Accurate parameter estimation is essential for capturing the underlying 

lifetime behavior, assessing model fit, and enabling reliable inference in applications such as 

reliability analysis and survival studies. Let the total log-likelihood function, ),,( L= , is 

given by 
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The partial derivatives of (12) with respect  , and   are used to obtain the score functions given 

as; 
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The score functions, 





















,, , are set to zero and solved numerically to obtain the maximum 

likelihood estimates of the Paralogistic-Chen distribution using the AdequacyModel package in R 

software. 

4.2. SIMULATION STUDY  

A comprehensive Monte Carlo simulation study will be conducted to evaluate the finite-sample 

and asymptotic performance of three parameter estimation methods namely; the Maximum 

Likelihood Estimator (MLE), the Anderson-Darling Estimator (ADE), and the Minimum Product 

Spacing Estimator (MPSE) for the Paralogistic–Chen (PCh) distribution. Empirically, this is to 

validate the theoretical large-sample properties of these estimators, which are asymptotic 

unbiasedness and consistency. The performance of the three estimators will be assessed in terms 

of the bias and root mean square error (RMSE) of parameter estimates across varying sample sizes 

(n = 25, 50, 100, 250, 500, 800). Each experimental setting was replicated R = 1,000 times. 

Random samples were generated using the inversion method from the quantile function in (10). 
The essence of this study is to determine the statistical robustness and practical applicability of the 

PCh distribution in modeling lifetime data.  

The expressions for the bias and RMSE are given as 

Bias = 
=

−
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i

i
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 and RMSE = 
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−
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i
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2)ˆ(
1

, 

where ̂  is the estimated parameter vector to the true parameter vector, ),,( = . 

Tables 4 and 5 give the average mean estimates, bias and RMSE for the three estimators at two 

sets of parameter values; 5.0= , 1.0=  and 9.0=  and 5.1= , 2.3=  and 9.1=  respectively. 

 

Table 4: Simulation study for 5.0= , 1.0=  and 9.0=  

 n 
AV̂  AV̂  AV̂  Bias(

 ) 

Bias( ) Bias(

 ) 

RMSE(

 ) 

RMSE( ) RMSE(

 ) 

MLE 

25 

11.6702 37887.5129 2.8433 10.1702 37884.3129 0.9433 19.2426 155366.4861 3.3979 

ADE 4.4332 8583.3470 2.7384 2.9332 8580.1470 0.8384 6.6451 44179.5586 2.9370 

MPSE 6.0823 14189.3037 2.3569 4.5823 14186.1037 0.4569 10.9999 89357.6820 2.6014 

MLE 

50 

8.0464 7844.731 2.2387 6.5464 7841.531 0.3387 14.4199 67719.4860 2.2307 

ADE 3.5462 2175.9673 2.2327 2.0462 2172.7673 0.3327 5.1734 19489.0734 2.0165 

MPSE 4.6622 2198.3008 1.9727 3.1622 2195.1008 0.0727 8.6713 24430.8359 1.8043 

MLE 

100 

4.0207 255.3888 2.1438 2.5207 252.1888 0.2438 8.2537 6788.7503 1.4072 

ADE 2.3619 39.2761 2.1621 0.8619 36.0761 0.2621 3.0114 366.4564 1.3517 

MPSE 2.7413 62.7976 1.9553 1.2413 59.5976 0.0553 4.9256 1534.1366 1.1724 

MLE 250 2.1256 5.5132 1.9653 0.6256 2.3132 0.0653 3.4316 8.2344 0.7944 
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Table 5: Simulation study for 5.1= , 2.3=  and 9.1=  

 
 n 

AV̂  AV̂  AV̂  Bias(

 ) 

Bias( ) Bias(

 ) 

RMSE(

 ) 

RMSE( ) RMSE(

 ) 

MLE 25 5.4896 9.8869 0.8347 4.9896 9.7869 -

0.0653 

14.0784 140.5972 0.4595 

ADE  1.8626 142.2555 0.8649 1.3626 142.1555 -

0.0351 

5.1136 1918.8523 0.4432 

MPSE  1.9661 125.5115 0.8788 1.4661 125.4115 -

0.0212 

6.6348 1678.9069 0.4080 

MLE 50 1.7818 0.3050 0.8615 1.2818 0.2050 -

0.0385 

6.5133 1.0505 0.3051 

ADE  0.9361 0.4494 0.8648 0.4361 0.3494 -

0.0352 

2.5618 3.7466 0.2966 

MPSE  0.9158 2.2252 0.8751 0.4158 2.1252 -

0.0249 

3.2241 55.9750 0.2780 

MLE 100 0.8186 0.1487 0.8807 0.3186 0.0487 -

0.0193 

2.8427 0.1592 0.1994 

ADE  0.5871 0.1588 0.8801 0.0871 0.0588 -

0.0199 

0.4812 0.2157 0.2040 

MPSE  0.5823 0.1658 0.8809 0.0823 0.0658 -

0.0191 

1.1196 0.1916 0.1834 

MLE 250 0.5184 0.1144 0.8976 0.0184 0.0144 -

0.0024 

0.1113 0.0549 0.1135 

ADE  0.5233 0.1170 0.8939 0.0233 0.0170 -

0.0061 

0.1256 0.0612 0.1233 

MPSE  0.5164 0.1200 0.8921 0.0164 0.0200 -

0.0079 

0.1084 0.0592 0.1123 

MLE 500 0.5113 0.1061 0.8969 0.0113 0.0061 -

0.0031 

0.0770 0.0318 0.0823 

ADE  0.5131 0.1076 0.8959 0.0131 0.0076 -

0.0041 

0.0850 0.0351 0.0896 

MPSE  0.5122 0.1085 0.8917 0.0122 0.0085 -

0.0083 

0.0768 0.0327 0.0823 

MLE 800 0.5060 0.1024 0.8995 0.0060 0.0024 -5e-04 0.0569 0.0223 0.0630 

ADE  0.5072 0.1033 0.8989 0.0072 0.0033 -

0.0011 

0.0641 0.0237 0.0703 

MPSE  0.5072 0.1038 0.8954 0.0072 0.0038 -

0.0046 

0.0571 0.0226 0.0631 

 

The simulation study assessed the Maximum Likelihood (MLE), Anderson–Darling (ADE), and 

Minimum Product Spacing (MPSE) estimators for the Paralogistic–Chen (PCh) distribution, 

providing strong empirical support for their theoretical large-sample properties. Bias and RMSE 

decrease consistently with increasing sample size, indicating numerical stability and convergence 

ADE 1.7957 6.3193 1.9624 0.2957 3.1193 0.0624 1.3667 14.7576 0.8382 

MPSE 1.8179 4.5070 1.8526 0.3179 1.3070 -

0.0474 

1.6826 5.6806 0.7132 

MLE 

500 

1.6023 4.0470 1.9283 0.1023 0.8470 0.0283 0.9046 3.1018 0.5363 

ADE 1.5842 4.1668 1.9262 0.0842 0.9668 0.0262 0.4476 3.6332 0.5682 

MPSE 

1.6098 3.6221 1.8434 0.1098 0.4221 

-

0.0566 0.5656 2.5382 0.5090 

MLE 

800 

1.5380 3.6477 1.9140 0.0380 0.4477 0.0140 0.2548 1.9604 0.4073 

ADE 1.5456 3.6985 1.9136 0.0456 0.4985 0.0136 0.3063 2.0814 0.4330 

MPSE 

1.5649 3.3684 1.8480 0.0649 0.1684 

-

0.0520 0.2601 1.6956 0.3944 
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toward true parameter values. For small samples (n = 25, 50), the estimators show substantial 

variability and notable bias, highlighting the challenges of reliable estimation with limited data. 

As sample size grows, performance stabilizes rapidly, with bias and RMSE approaching negligible 

levels, and all three methods effectively recover the underlying structure of the PCh distribution. 

Overall, the results confirm the statistical robustness and parameter uniqueness of the proposed 

distribution. While small-sample instability reflects its data-intensive nature, the strong large-

sample performance affirms its suitability for reliability, survival analysis, and related applications 

requiring robust asymptotic behavior. 

5. APPLICATIONS 

This section presents an analysis of two lifetime datasets using the Paralogistic-Chen (PCh) 

distribution alongside three non-nested Chen-based models, thereby demonstrating the flexibility 

of the PCh as a novel parametric lifetime model. The competing distributions include the 

Transmuted Chen (TCh) distribution (Khan et al., 2015), the Modified Extended Chen (MECh) 

distribution (Anafo et al., 2022), and the original Chen (Ch) distribution (Chen, 2000). Model 

performance is evaluated and compared using multiple statistical criteria, including the Akaike 

Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian 

Information Criterion (BIC), Hannan–Quinn Information Criterion (HQIC), as well as the Cramér-

von Mises (W*) and Anderson-Darling (A*) goodness-of-fit tests. The distribution with the best 

fits exhibits the lowest values of the multiple statistical criteria. The defining cdf for each 

competing distribution is presented as:  

TCh: )))]exp(1(exp(1()1))][(exp(1(exp(1[)(   xxxG −−−+−−=  , 0,0,1   . 

MECh:  −+−= ]1)1)(exp([)( xxG , 0,0,0   . 

Ch: ))exp(1(exp(1)(  xxF −−= , 0,0   . 

The first dataset consists of daily drought-related mortality rates in the United Kingdom, recorded 

from 15 April to 30 June 2020 (Mubarak & Al-Metwally, 2021). The data is given as; 

0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395, 0.2751, 0.2845, 0.2992, 

0.3188, 0.3317, 0.3446, 0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690, 0.4954, 0.5139, 

0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438, 1.0602, 1.1305, 1.1468, 

1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017, 1.6083, 1.6324, 1.6998, 1.8164, 1.8392, 

1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609, 3.3715, 3.7840, 3.9042, 

4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500, 5.7522, 6.4241, 7.0657, 7.4456, 8.2307, 9.6315, 

10.1870, 11.1429, 11.2019, 11.4584.  

Table 6 presents the parameter estimates and statistical criteria for the first lifetime dataset, 

enabling a comparison of the competing distributions to identify the model that provides the best 

fit for the dataset.  

Table 6: Parameter estimates and discrepancy criteria for first lifetime dataset 
Models   

(std. error) 

  

(std. error) 
   

(std. error) 

AIC CAIC BIC HQIC W* A* 

PCh 0.46307 0.03770 14.57134 289.8485 290.1819 296.8407 292.6429 0.11221 0.75942 

 (0.11208) (0.05912) (22.26436)       

TCh 0.19585 0.45103 0.55035   299.2964 299.6297 306.2886 302.0906 0.24596 1.57665 

 (0.04975) (0.02951) (0.29730)       

MECh 3.13427 

(2.23740) 

1.00772 

(0.15411) 

0.36982 

(0.12912) 

294.0187 294.3521 301.0109 296.8131 0.12201 0.87089 

Ch 0.29321 

(0.04453) 

0.42286 

(0.02814) 
- 

298.9822 299.1466 303.6437 300.8452 0.26644 1.70262 



Osagie and Musa - Transactions of NAMP 23, (2025) 27-40 

38 

The second lifetime dataset comprises survival times of 121 breast cancer patients treated at a 

major hospital between 1929 and 1938. Muhammed et al. (2025) previously applied their proposed 

distribution to the dataset. The recorded survival times are as follows: 

0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 

14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 

21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 1.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 

38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 4.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 

46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 

60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 

103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0. 

Table 7 presents the parameter estimates and statistical criteria for the second lifetime data, 

enabling a comparison of the competing distributions to identify the model that provides the best 

fit. + 

Table 7: Parameter estimates and statistical criteria for second lifetime dataset 

Models   

(std. error) 

  
(std. error) 

  

  (std. error) 

AIC CAIC BIC HQIC W* A* 

PCh 0.14795 

(0.38999) 

0.14866 

(0.29609) 

4.57640 

(11.03925) 

1165.2866 1165.4921 1173.6739 1168.6930 0.05416 0.38269 

TCh 0.01285 

(0.00382) 

0.35070 

(0.01059) 

0.50235 

(0.27747) 

1167.8440 1168.0490 1176.2310 1171.2500 0.13412 0.91490 

MECh 299.02983 

(146.63222) 

1.56311 

(0.10303) 

0.83431 

(0.12623) 

1195.4746 1195.6800 1203.8620 1198.8810 0.29131 1.92719 

Ch 0.02145 

(0.00474) 

0.33870 

(0.01061) 
- 

1167.5720 1167.6730 1173.1629 1169.8431 0.16243 1.08357 

The unusual high standard errors in the analysis of the first and second datasets indicate mild 

parameter correlation and near-flat likelihood regions, which is a common behaviour in models 

with heavy right tails and sparse extreme observations. 

5.1 DISCUSSION ON COMPARATIVE RESULTS 

The analysis of the four competing models (PCh, TCh, MECh, and Ch) fitted to two independent 

lifetime datasets consistently identifies the Paralogistic-Chen (PCh) distribution as the statistically 

superior model. Across both datasets, PCh achieved the lowest values for all information criteria 

(AIC, CAIC, BIC, and HQIC), confirming its optimal balance between model complexity and 

goodness of fit. This superiority is strongly reinforced by the goodness-of-fit measures, where the 

PCh model consistently yielded the smallest Anderson-Darling (A*) and Cramér–von Mises (W*) 

statistics, indicating the closest agreement with the empirical data distribution. While the Ch and 

TCh models showed moderate performance, and the MECh model proved competitive in one 

dataset, their overall fit remained inferior to that of the PCh model. The unified results from both 

the information criteria and discrepancy tests underscore the PCh distribution's exceptional 

accuracy and flexibility as a robust alternative for lifetime data analysis. 

CONCLUSION 

This study introduced and comprehensively analyzed the Paralogistic–Chen (PCh) distribution as 

a flexible model for lifetime data. Through rigorous derivations, its mathematical properties were 

established, and maximum likelihood estimation was applied for parameter inference. The 

simulation study confirmed the numerical stability of the MLE, ADE, and MPSE estimators, with 

decreasing bias and RMSE across sample sizes. Real-data applications further demonstrated the 
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PCh model’s superiority over existing Chen-based competitors. These findings highlight the value 

of the paralogistic generator as a flexible and practically useful tool in lifetime modelling 

The comparative analysis revealed that the PCh distribution consistently outperformed some well-

known competing models, achieving the lowest information criteria values and superior goodness-

of-fit measures. These results demonstrate that the PCh distribution is a flexible and adaptable 

modeling choice, effectively capturing diverse data behaviors with minimal parameter complexity. 

The ability of the distribution to model lifetime datasets with monotonic and nonmonotonic 

characteristics underscores its potential for broad applications in reliability analysis, biomedical 

studies, and other applied statistical domains. Future work may explore Bayesian estimation 

techniques, regression extensions, and multivariate generalizations to further enhance its utility.  
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