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ARTICLE INFO ABSTRACT
Predicting failure occurrences is vital for ensuring operational efficiency
Article history: and minimizing downtime in production systems. This study characterizes
Rece_ziveoI XXXXX the reliability parameters of a High-Pressure Compressor (HPC-2) using a
Revised ~ XXxxX Weibull Bayesian framework and estimates its annual maintenance cost.
Accepted 00X Operational data including shutdown and start times were obtained from a
Available online xxXxxx  maior crude oil and gas company in the Niger Delta, from which relevant
Keywords: secondary data were extracted. The developed Bayesian model under the
Bayesian Prediction  \yeipull distribution estimated an expected failure rate of 0.008749 failures
Interval (BPI), per hour (standard error, SE = 3.74x10~) with a 95% two-tail Bayesian
High Pressure prediction interval of [0.00866, 0.00893]. At 36 hours of operation,
Compressor -2 reliability was 72.98% (SE = 9.91 %107, 95% prediction interval, PI [0.725,
(HPC-2_), ) 0.732]). The non-informative prior produced a mean time to failure (MTTF)
Mean time to failure £ 105 89 hours (95% PI [68.42, 161.20]), while the Gamma prior estimated
(MTT'_:); 150.95 hours. The annual maintenance cost was estimated at 41,954.65
Reliability (R), USD.
Time to Failure
(TTF),
Weibull distribution
(W~).
1. INTRODUCTION

As the world transitions toward cleaner energy, natural gas has emerged as a crucial bridging fuel,
offering significantly lower carbon emissions than coal and oil. With growing demand for
supporting infrastructure, the reliability, maintainability, and economic viability of natural gas
equipment are now more vital than ever. Equipment failures not only pose serious safety risks but
also threaten environmental integrity and can result in substantial financial consequences [1].
Traditional reliability assessments often rely on static models that assume constant failure and
repair rates. However, real-world systems are dynamic, influenced by aging, operational
variability, and environmental conditions.
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This complexity has led to the adoption of Bayesian statistical frameworks, which allow for
probabilistic modeling and continuous updating of system knowledge as new data becomes
available [2].

Bayesian networks (BNs) and hierarchical Bayesian models have proven effective in modeling
complex systems like natural gas pipelines and purification plants. For example, Guo et al. [2]
developed a discrete-time Bayesian network to analyze dynamic systems with common cause
failures, demonstrating its relevance to safety-critical systems like nuclear power and gas systems.
Similarly, Gong et al. [3] integrated interpretive structural modeling with Bayesian networks to
identify key risk factors in natural gas purification plants, emphasizing the method’s ability to
capture interdependencies among variables.

Bayesian statistical analysis techniques are useful for a wide range of applications [4]. Singh et al.
[5] presented an algorithm for reliability prediction that permits the system engineer to analyze
system reliability before it is built while considering the estimates of component reliability and
their expected use. This method enables the identification of crucial components and the influence
of their replacement on the system when they are replaced. The method was incorporated on a
unified modelling language, UML.

Although Bayes theorem that was introduced in the 1770s is still somewhat complex, it is
continually attracting attention and is being applied in different fields of researches. "Bayesian
statistics” is a mathematical method that applies probabilities to statistical problems [6]. This
methodology makes use of well known, statistically accurate, and logically sensible techniques to
combine different types of data. Paul and Bani [7] stated that Bayesian statistics has become
increasingly popular in engineering, and one reason for its increased application is that it allows
researchers to input expert opinion as a key input in the analysis (through the prior distribution).
Most “reliability assessment algorithms”, employs these estimates as "prior probabilities” [4].

In this study, the systems considered for analysis are repairable. For a repairable system, the focus
is not on the time to first failure. Instead, the primary interest is on the probability of system failure
as a function of system age. Exact reliability analyses for complex, repairable systems are often
difficult because of the complicated failure process that may result from the replacement or repair
policy [4]. A common procedure in practice is to approximate the complicated stochastic process
by a simpler stochastic process, which although not exact, still yield useful practical results.
Therefore, this study is the application of a Bayesian statistical framework for reliability,
maintainability, and maintenance cost modeling of natural gas compressors.

2. METHODOLOGY
This study employs a structural approach in solving the research problem. The equipment
operational information is acquired from a major crude oil and gas company in the Niger delta area
of Nigeria, from which the failure and repair time data are extracted. The data collected is a
reflection of the operational performance of the equipment at the customer’s use end.
Consequently, the research design proceeded in the following order:
1) First, equipment failure and repair time data, along with cost information related to
preventive and corrective maintenance actions, are collected.
2) The data are presented in the required format for analysis, including the TTF, TTR, spare
parts and labor cost per maintenance interval.
3) Verification of the independence of the data.
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4) A quantitative research design is adopted to analyze system behavior — implemented using
Bayesian modeling framework.

5) Annual maintenance cost — preventive, corrective and overall cost estimation
The Bayesian and cost estimation analysis was performed using a combination of Excel formulas
and functions: This process facilitated the analysis efficiently and reduced the tedious nature of
manual computation, and it is time-saving. The required formula has presented in Equation (1.1)
through (1.40) was imputed in Excel and used for all the Bayesian and cost estimation analysis
performed in this study

Bayesian Estimation in Weibull Distribution

In the case were scale parameter, A is random it is easily only shown that, if the failure times, T
has a Weibull distribution, w ~ (A, B), then (Martz and Waller, 2020): T# is exponentially
distributed, &(4).

Considering a life test of n items in which s items have failed at ordered times ty,...,tsand n —s
items have operated for times t;, 4 t; without failing; thus Ty > tg,q, ..., Ty > t;. The times
ts+1,..tn are the withdrawer times of the non-failed items. Then this statistic [8]:

®= Y T+ 30 TP (1.1)
is for estimating A (or 0) if s is fixed. This seen by the examination of the likelihood corresponding

to the above sampling scheme which is expressed as [8]:

L(A|Z) & 2585 ([T t)P texp[-A(Ti, tf + 30 1 69)] (1.2)
If there are withdrawals prior to test termination, we find that equation (1.1) becomes
w= Y TP +(n-sTE (1.3)

The posterior distribution of the failure rate, A is expressed as [8]:
w1 )5exp (—Aw)

g(alw‘ S’ a()’ ﬁO) = F(s+1,ﬂ0w)—[’(s+1,a0w)' aO < BO (1'4)
The posterior mean of equation () is computed to be
E(ll(x); s, g, Bo) _ I'(s+2,Bow)-T(s+2,aqw) (1.5)

o[l(s+1,Bow -T(s+1,agw)]

and the posterior variance can be calculated using the relationship
Var(dlw;s, ag, Bo) = E(A|w; s, ay, Bo) — E2(A|w; ag, Bo) (1.6)

A symmetric 100(1-y)% TBPI estimate for A is expressed as:

. _ T(s+1, L,w)-T(s+1, apw) b4
Pr((4 < 4.|w; 5,0, Bo) = [(s+1, Bow)-T(s+1, agw) 2

1.7

and

Pr((A = A'|w; 5,0, By) = otk Bol TG Aw) _y (1.8)

I'(s+1, Bow)-T(s+1, agw) T2

where,

ao and Po = uniform prior distribution parameters.

B = specified Weibull shape parameter obtained from a preliminary analysis of data.

s = number of failures.

v = specified significant level (5%).

A = failure rate

Weighted Square — Error Loss Function: Minimizing the posterior expected loss yields the

Bayesian point estimator for A given by [8]:
5 _ E[Ah@)|w]

~ Elh@)0] (1.9)
If h(L) = A2, then there is a special case for A given by [8]:
1= S;;"—i;z (1.10)
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for a Gamma prior distribution on A, [G1(awo, Po)].
Reliability Estimation: The Bayesian estimation of the Weibull reliability function is expressed
as [8]:

(to; 4, B) = exp (—Ath), (1.11)
in the case of Weibull distribution with parameters A and 8, [W1(A, B)] or
B
r(ty; 0,B) = exp (—2), (1.12)

in the case of Weibull distribution with parameter 6 and 3, [W1(6, B)].
Letting g, (.) and go(.) represent either the prior or posterior distribution of A and 0 respectively,
the corresponding prior or posterior distribution of R, denoted by g,-(.) may be obtained as

9= 9:(~%) (3) (113
or
9. = go (12 (-2 (114)

The induced prior and posterior distribution on R for a uniform prior distribution on A is expressed
as [8]:
Prior distribution is

1
gr(r; Qy, ﬁO) =

B B
— ePoto < 1 < e%oto (1.15)
(Bo—ao)r(ty)
and

Posterior distribution is

B
ws+1[— lnr/tg]e“’]“r/to
gr(er. aO'ﬂO) - [T(s+1,Bow)-T(s+1,agw)]r tg’

The Bayesian point estimate of r(t,) is expressed as [8]:
The posterior mean of R given to is

E(R|w; s, tg, ap, Bo) = (L) s+l

w+tg
F[s+1,BO(w+t0)]—F[s+1,a0 (W+t0)]

8 8
ePoto < r < e%oto (1.16)

I'(s+1,B8ow)—T(s+1,aqw) (1.17)
The second moment of R given to is

E(R*|w; s, to, ao, Bo) = (ﬁtzo) st x

[‘[s+1,[30(w+2t0)]—[‘[s+1,a0(w+2t0)] (1 18)

I'(s+1,Bow)-T(s+1,agw)
The posterior variance (risk) of R given to is
Var(R|W; S, tO! Qy, 30) = E(RZ |W; S, tOl Qy, BO) - EZ (lel S, tO' Qy, BO) (119)

The 95% LBPI (lower Bayesian prediction interval) and the 95% UBPI (upper Bayesian interval)
is expressed as follows (Martz and Walker, 2020):

R(ty, 1*) = exp (—A"tp) (1.20)
and,

R(to, 4.) = exp (—A.tp) (1.21)
MTTF Estimation: A Bayesian estimation of the Weibull [W1 ~(A, B)] MTTF is expressed as
(Martz and Walker, 2020):

MTTF = E(T; 4, B) = A# T (1+ %) (1.22)

Uniform Prior Distribution on A: If the failure rate, A has uniform prior distribution [U~(ct0, o)]
then the posterior distribution of A is given by [8]:

wSt1,s

gAlw; ag, Bo) = r(s+1,,;owfflr’((sﬂvzow)y g <A< By (1.23)
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The posterior expectation of MTTF under the squared — error loss function is expressed as (Martz
and Walker, 2020):
wl/ﬁl“(1+1/ﬁ)[[‘(s+1—1/ﬁ,ﬁo)—I‘(s+1—1/ﬁ, aow|
E{MTTF | W; O, Bo) = [(s+1, Bow)—T(s+1, agw) (124)
The posterior risk is proportional to the posterior variance of MTTF and is expressed as (Martz
and Walker, 2020):
Var[MTTF | w; ao, po] =

w2/Br2(1+1/B)I(s+1-2/B, Bow)-T(s+1-2/B, agw)

I(s+1, Bow)-T(s+1, agw) —E [MTTF | w; ao, Bol (1.25)

A symmetric 100(1-y) % two tail Bayesian prediction interval (TBPI) is expressed as [8]:
The upper limit of the 100(1-y) % TBPI estimate for MTTF is

MTTF* =T(1+1/8)(A,)"V# (1.26)
Similarly, the lower limit of the desired TBPI estimate is
MTTF,=T(1+1/B)(A")"VE (1.27)

where,
v = significant level (normally set at 5%).
A" = upper limit of failure rate.
A== lower limit of failure rate.
Non-informative Prior Distribution on A: If the probability distribution of A, g(A) is non-
informative, then the posterior distribution of A given w is given by [8]:
g = %As_lexp (—Aw) (1.28)

And this is a gamma distribution with parameter s and w [G; (s, w)]. The posterior expected MTTF
is:

1/8 _
E[MTTF|w] =2 F(”;ff))“s 1/6)
The posterior variance is expressed as:

2/p _
Var[MTTF|w] = “— (’3“5 2/B) _ 2 [MTTF|w] (1.30)
Also, the symmetric 100(1-y) % TBPI estimate for MTTF is:

2 -1/B
LBPI for MTTF: MTTF, =T (1 n 1_1;) [xm (25)]

(1.29)

(1.31)

2w
and
]—l/ﬂ

2
UBPI for MTTF: MTTF* =T (1+3) [’“Z—Z,“” (1.32)

Gamma Prior Distribution on A: If has a gamma distribution [G(ao, Bo)] prior distribution, then
the posterior distribution of A given w is G[ay + s, Bo/ (Bow + 1)] [8]:
Therefore, the posterior MTTF is:
. _ T(ap+s-1/B)r(1+1/P)
EIMTTF|w; a0, Bol = 1e, o5 Gowr )11/ (1.33)
And the posterior variance of MTTF is
Var|MTTF|w; ay, Bo] =
T(ao+s-2/Br(1+1/B) 2 .

Faq+5)Bo/ o 2/ £ IMTTF|@; o, Bo] (1.34)

The Two tail Bayesian prediction interval (TBPI) for MTTF is:

ﬁoxi/z(25+2“o) Nl
2ﬁ0w+2

LBPI for MTTF: MTTF, = T(1 + 1/B8) [
and

(1.35)
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2 -1/B
UBPI for MTTF: MTTF* = T(1 + 1/8) [”‘”‘12;/2—(?2”"“’) (1.36)
ow

Standard Error (S.E): The standard error of a computed sample metric is expressed as follow

[9]:

S E = \/Sample Variance (1.37)

Sample Size

Maintenance Cost Estimation Models
The cost of preventive maintenance is expressed as [10]:

. . ST, ;m+TT. XSOHXLC
Preventive maintenance cost, PMC = ST pm S’;’")
pm

(1.38)

where,

ST, = scheduled time for preventive maintenance (PM)
TT,m = expected travel time for PM

SOH = equipment usage hours per time period

SIym = scheduled time interval for PM

LC = cost of labour

The corrective maintenance cost (CMC) model is expressed as [10]:

_ SOHXLCxMTTR

Model 1: CMC; = =2 (1.39)

where,
MTTF = mean time to failure
MTTR = mean time to repair
_ (TTen+MTTR)XSOHXLC

Model 2: CMC; = TTTE

(1.39)

where,

TT,,, = expected travel time for CM

and,

Total Annual Cost per year = PMC + max [CMC4; CMC,] (1.40)
RESULTS AND DISCUSSION

In the Bayesian analysis of the HPC-2 TTF data using the Weibull distribution: scale parameter
(n) is a random variable and shape parameter () is fixed (refer to Appendix 1, sample size: 42),
the procedure is initiated by a preliminary fit of the data to the Weibull model. This fitting informs
the use of a shape parameter, p = 0.71, which characterizes the observed failure times. The
manufacturer’s failure rate specifications for this equipment with a range of 3.0E-3 to 9.0E-3
failures per hour as obtained were translated into a uniform prior distribution on failure rate (n) by
taking the minimum and maximum failure rate as the bound of the uniform prior distribution: n ~
uniform (0.003, 0.009) . The computed posterior distribution of the failure rate (1) is presented in
Table 1.1 (an extraction of Microsoft spreadsheet).

Table 1.1: HPC-2 Posterior Distribution Failure Rate.

Parameter: s =n =42, w = 954.26, ao = 0.003, o = 0.009, p = 0.71, 0.003<n<0.009
Prior Distribution A a(n/w; ao, Po) Pdf
0.00300 1.078848E-14 2.401729E-18
0.00350 4.340209E-12 9.662160E-16
0.00400 7.344420E-10 1.635013E-13
0.00450 6.414289E-08 1.427947E-11
0.00500 3.324667E-06 7.401364E-10
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0.00550 1.129864E-04 2.515299E-08
0.00600 2.709759E-03 6.032457E-07
0.00650 4.849804E-02 1.079662E-05
0.00700 6.764971E-01 1.506016E-04
0.00750 7.612134E+00 1.694611E-03
0.00800 7.103917E+01 1.581472E-02
0.00850 5.624687E+02 1.252166E-01
0.00900 3.850117E+03 8.571120E-01
0.07800 4491.965351 1.000000

As seen in Table 1.1, the failure rate posterior probability density function, PDF is an increasing
function of the prior distribution. Presented in Figure 1.1 is the graph of HPC-2 failure rate prior
and posterior distribution.

The Prior and Posterior Distribution of Failure Rate (HPC-2 TTF Data)
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Figure 1.1: HPC-2 failure rate prior and posterior distribution

As shown in Figure 1.1, the failure rate posterior pdf of HPC-2 is an increasing function of the
prior distribution. Present in Table 1.2 is an estimate of mean of failure rate, variance and 95%

TBPI of HPC-2 (an extraction of Microsoft spreadsheet).
Table 1.2: Estimate of mean of failure rate (n), variance and 95% TBPI of HPC-2

Weibull Prior Distribution on A Estimation

Parameter: s = n =42, w = 954.26, ao= 0.003, o = 0.009, 0.003<2<0.009

Bayesian Estimation

Posterior Mean , E(A/w; s, ao, o) 0.008749128
Posterior Variance , Var(A/w; s, oo, Bo) 5.8830355E-08
Standard Error (S.E) of n 0.00003743
95% LBPI, Pr(A<A+/w; s, oo, o) 0.008657802
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95% UBPIL, Pr(A>L"/w; s, ao, o)

0.008925668

LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval

As shown in Table 1.2, HPC-2 has an estimated posterior mean of failure rate of 0.008749128 with
a standard error of 3.743E-5. Also, the failure rate has a 95% lower and upper Bayesian probability
interval of 0.008657802 and 0.008925668 failures per hour respectively. Presented in Table 1.3 is
the prior and posterior distribution of weibull reliability (an extraction of Microsoft spreadsheet).

Table 1.3: HPC2 Posterior Reliability Distribution

Parameter: s =n =42, w = 954.26, ao = 0.003, o = 0.009, p = 0.7100, to = 36, 0.891715<r<0.962518
r Prior, gr(r; ao, o) Prior Pdf | posterior, gi(r/w; ao, Bo) Posterior Pdf
0.8917150 14.6773585 0.0493712 3.3906560E+02 4.2489424E-159
0.8952552 14.6193191 0.0491759 1.0369460E+02 1.2994311E-159
0.8987953 14.5617369 0.0489822 3.0199164E+01 3.7843563E-160
0.9023355 14.5046066 0.0487901 8.3467656E+00 1.0459606E-160
0.9058756 14.4479228 0.0485994 2.1811206E+00 2.7332339E-161
0.9094158 14.3916803 0.0484102 5.3659070E-01 6.7241943E-162
0.9129559 14.3358740 0.0482225 1.2369505E-01 1.5500633E-162
0.9164961 14.2804988 0.0480362 2.6576287E-02 3.3303618E-163
0.9200362 14.2255497 0.0478514 5.2899924E-03 6.6290632E-164
0.9235764 14.1710219 0.0476680 9.6886842E-04 1.2141208E-164
0.9271165 14.1169106 0.0474860 1.6200580E-04 2.0301478E-165
0.9306567 14.0632109 0.0473053 2.4510477E-05 3.0714883E-166
0.9341968 14.0099182 0.0471261 3.3205786E-06 4.1611261E-167
0.9377370 13.9570278 0.0469482 3.9797151E-07 4.9871116E-168
0.9412771 13.9045354 0.0467716 4.1598339E-08 5.2128245E-169
0.9448173 13.8524363 0.0465963 3.7285428E-09 4.6723593E-170
0.9483574 13.8007261 0.0464224 2.8082216E-10 3.5190747E-171
0.9518976 13.7494006 0.0462497 1.7340562E-11 2.1730027E-172
0.9554377 13.6984554 0.0460784 8.5170589E-13 1.0673006E-173
0.9589779 13.6478864 0.0459083 3.2040279E-14 4.0150726E-175
0.9625180 13.5976893 0.0457394 8.7986450E-16 1.1025871E-176
19.4694465 0.6722338 0.0022612 7.9780050E+160 9.9975000E-01
297.2859994 1.0000000 7.98E+160 0.9997500

As seen in Table 1.3, the prior and posterior distribution of reliability in the interval of 0.891715
<r<0.962518 is both a decreasing and increasing function. Presented in Figure 1.2 is the graph
of prior and posterior of Weibull reliability.
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The Prior and Posterior Distribution of Weibull Reliability for HPC-2
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Figure 1.2: The Prior and Posterior of Weibull Reliability for HPC-2
In Figure 1.2, HPC-2 has an increasing reliability pdf in the interval of 0.891715 < r < 0.962518.
Presented in Table 1.4 is the posterior estimate for HPC-2 expected reliability and 95% two tail
Bayesian prediction interval (TBPI) at 36 hours (an extraction of Microsoft spreadsheet).

Table 1.4: Posterior Estimate for HPC-2 Expected Reliability in Weibull Data Fitting

Parameter: s =n =42, w = 954.26, oo = 0.003, 3o = 0.009, B = 0.7100, to = 36, 0.891715<r<0.962518
Bayesian Estimation
Posterior Relability , E[R(36)/w; a, Bo] 0.7298398
Posterior Variance , Var(R(36)/w; s, a0, BO) 4.1264215E-05
Standard Error (S.E) of R(36 hrs) 0.00099120
95% LBPI estimate of R(to;A"B) 0.7251882
95% UBPI estimate of R(to;A+B) 0.7322152

LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval

As seen in Table 1.4, HPC-2 has an expected 72.98% reliability at 36 hours operating time, with a
standard error of 0.001. The 95% lower and upper Bayesian prediction interval is [0.7251882,
0.7322152]. . Presented in Table 1.5 are the expected posterior MTTF and the 95% TBPI for the
HPC- 2 using non-informative prior distribution on failure rate, under Weibull data fitting (an
extraction of Microsoft spreadsheet).

Table 1.5: MTTEF Estimation of HPC-2 (Non-informative Prior Distribution on n)
Noninformative Prior Case

Parameter: s =n =42, w = 954.24, ao= 0.003, Bo = 0.009, B = 0.7100

Bayesian Estimation

Posterior expected MTTF, EfIMTTF/w] | 105.8867594

Var[MTTF/w] 568.8150078
Standard Error (S.E) of MTTF 3.68011066
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95% LBPI for MTTF 68.4229243
95% UBPI for MTTF 161.196193
LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval

As shown in Table 1.5, the estimated MTTF of HPC-2 in Weinbull under a non-informative prior
distribution of failure rate is 105.89 hours with a standard error of 3.68 hours. Also, the estimated
95% lower and upper Bayesian probability interval is [68.4229243, 161.196193]. Presented in
Table 1.6 are the expected posterior MTTF and the 95% TBPI for the HPC- 2 under Gamma prior
distribution on failure rate (an extraction of Microsoft spreadsheet).

Table 1.6: MTTEF Estimation of HPC-2 (Gamma Prior Distribution on n)
Gamma Prior Distribution on n for MTTF Estimation

Parameter: s =n =42, w = 954.26, ao= 2, fo = 0.003, B = 0.7100
Bayesian Estimation
Posterior expected MTTF , E[MTTF/w; a0, fo] | 150.9457796

Var[MTTF/w; ao, Bo] 3662.876149
Standard Error (S.E) of MTTF 9.33870180
95% LBPI for MTTF 98.55764617
95% UBPI for MTTF 227.609431

LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval

As seen in Table 1.6, the estimated MTTF of HPC-2 in Weibull under a Gamma prior distribution
of failure rate is 150.96 hours, with a standard error of 9.34 hours and the estimated 95% lower
and upper Bayesian probability interval is [98.57764617, 227.609431]. Presented in Table 1.7 is
the estimated cost of preventive and corrective maintenance of the high pressure compressor - 2
(HPC-2) per year (an extraction of Microsoft spreadsheet).

Table 1.7: HPC-2 Annual Maintenance Cost
Parameters: SOH = 8560hrs/yr; STom = 0.5hrs; TTpm = 0.25hrs; TTem = 0.25hrs and Slpm = 720hrs

Preventive Maintenance Cost (PMC) Corrective Maintenance Cost
PMC (USD/Year) Model 1 (USD/Year) Model 2 (USD/Year)
769.51 39388.48 41185.14

Notations: Slpm = schedule interval for PM, SOH = usage time of equipment/yr, STpm = schedule
time for PM, TTcm = expected travel time for CM, and TTpm = expected travel time for PM.

As seen in Table 1.7, the annual preventive maintenance cost is 761.51USD and corrective
maintenance cost for this same period is estimated to be 39,338.48 USD based on model 1 and
41,185.14 USD on model 2. Consequently, the expected annual maintenance cost is 41,954.65
USD.

CONCLUSION
The developed Bayesian reliability framework for the HPC-2 equipment, modeled under the

Weibull distribution, demonstrates a strong capacity for accurately estimating critical reliability
parameters under uncertainty. The analysis produced an expected failure rate of 0.008749 failures
per hour with a standard error of 3.743 x 1073, and a 95% two-tailed Bayesian prediction interval
(TBPI) of [0.0086578, 0.0089257]. The narrowness of this interval indicates a high level of
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precision in the posterior estimate, suggesting that the Weibull model effectively captures the
stochastic behavior of the system’s time-to-failure process. At 36 hours of operation, the estimated
reliability of 72.98% (with a standard error of 9.912 x 10~* and a 95% Bayesian reliability interval
of [0.7252, 0.7322]) implies that approximately one-quarter of the equipment population may
experience failure within this period. This finding aligns with established reliability theory, which
recognizes the Weibull model as one of the most flexible and empirically validated models for
analyzing complex mechanical systems with age-dependent failure mechanisms [11-13].

In terms of life expectancy, the Bayesian estimation of the mean time to failure (MTTF) under a
non-informative prior yielded a value of 105.89 hours, with a standard error of 3.68 hours and a
95% probability interval of [68.42, 161.20] hours. Conversely, the Gamma prior resulted in a
higher MTTF estimate of 150.95 hours with a standard error of 9.34 hours. The observed
differences across priors emphasize the sensitivity of Bayesian reliability inference to prior
selection - a phenomenon well-documented in the literature [14-15] - and highlight the importance
of aligning prior beliefs with realistic operational knowledge or manufacturer specifications. The
relatively wider Bayesian interval associated with the non-informative prior also reflects epistemic
uncertainty, particularly when limited failure data are available.

From a maintenance and operational perspective, the Bayesian cost model estimated the annual
maintenance expenditure for the HPC-2 equipment at approximately USD 41,954.65. This figure
reflects the combined expected cost of preventive and corrective maintenance interventions and
underscores the financial significance of reliability-driven decision-making in industrial
operations. The results suggest that preventive or condition-based maintenance strategies could
provide considerable cost savings by reducing the frequency and severity of unplanned failures -
an approach consistent with the reliability-centered maintenance (RCM) philosophy advocated by
Nowlan and Heap [16] and subsequent industrial maintenance optimization frameworks.

Overall, the developed Bayesian Weibull framework provides a comprehensive and
probabilistically grounded approach for reliability evaluation, predictive assessment, and
maintenance cost optimization of critical gas equipment. By integrating prior information,
observed data, and uncertainty quantification within a unified model, the framework supports more
informed engineering decisions, improved maintenance scheduling, and enhanced operational
dependability of the HPC-2 system.
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Appendix 1: Historical Information of HPC-2

S/N TTF (Hrs) | TTR (Hrs) |SPARES COST ($)| LABOUR ($) | TOTAL COST ($)
1 5.67 200 300 500
2 217.25 2.5 300 300
3 328.17 48.17 200 600 800
4 7.25 2.3 200 600 800
5 31.78 2.2 200 600 800
6 624.05 38.17 300 300
7 475.67 4.03 200 750 950
5] 69.97 51.83 750 750
9 120.83 1 200 600 800
10 74.5 3.6 600 600
11 93.23 1.67 600 600
12 43425 2.25 200 750 950
13 9.18 3.32 200 600 800
14 481.03 0.96 400 850 1250
15 46.9 0.63 200 750 950
16 77.03 0.47 200 600 800
17 41.07 0.6 200 600 800
18 1.7 213 200 600 B00
19 90.07 2.17 300 750 1050
20 103.67 26 300 750 1050
21 45.63 1.05 400 850 1250
22 61.75 35.17 400 600 1000
23 65.22 48.17 350 750 1100
24 98.4 2 200 450 650
25 2222 1.78 200 450 650
26 46.88 0.17 350 600 950
TTF: Time to Failure and TTR: Time to Repair
S/N TTF (Hrs) | TTR (Hrs) |SPARES COST ($)| LABOUR ($) | TOTAL COST ($)
27 24.18 3.25 400 600 1000
28 44.57 1.83 450 600 1050
29 20.63 0.67 450 600 1050
30 24.3 1.33 400 850 1250
31 20.63 1 - 600 600
32 25.3 2 450 650 1100
33 119.63 1.83 450 600 1050
34 18.82 1 - 600 600
35 23.6 1 - 600 600
36 0.52 2.25 200 750 950
37 67.67 1.83 450 600 1050
38 23.15 1.33 400 850 1250
39 70.4 0.5 - 600 600
40 0.52 0.5 400 850 1250
41 0.47 1.33 450 600 1050
42 114.73 1.38 450 600 1050
43 3.47 5.87 450 850 1300

TTF: Time to Failure and TTR: Time to Repair
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HPC-2 Maintenance Cost Estimation

Computing the total Labor Cost (TLC): The total labor cost, TLC for HPC-2 was computed by
summing the labor cost. Therefore, TLC is $27,350.00.

Computing the Total Repair time (TRT):

Total Repair time, TRT is computed was computed by summing the TTR variable. Therefore, TRT
is 316.91 hours

Computing the Labor Cost per hour (LC):

The labor cost per hour, LC was computed using the ratio of TLC to TRT. Therefore, LC =
27,350/316.91 = $86.30 per hour.

Computing Spare Parts Cost (SPC):

The spare parts cost, SPC was computed by summing the total costs of parts used in the studied
period. Therefore, SPC is $10,700.00.

Appendix 2: Bayesian Analysis in Spreadsheet
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All the Bayesian analysis and the estimated cost in this study are computed through a combination
of the spreadsheet function(s) and the required formula(s) expression as presented in Equation 1.1
to 1.40 for each analysis.
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