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ABSTRACT 

Predicting failure occurrences is vital for ensuring operational efficiency 

and minimizing downtime in production systems. This study characterizes 

the reliability parameters of a High-Pressure Compressor (HPC-2) using a 

Weibull Bayesian framework and estimates its annual maintenance cost. 

Operational data including shutdown and start times were obtained from a 

major crude oil and gas company in the Niger Delta, from which relevant 

secondary data were extracted. The developed Bayesian model under the 

Weibull distribution estimated an expected failure rate of 0.008749 failures 

per hour (standard error, SE = 3.74×10⁻⁵) with a 95% two-tail Bayesian 

prediction interval of [0.00866, 0.00893]. At 36 hours of operation, 

reliability was 72.98% (SE = 9.91×10⁻⁴; 95% prediction interval, PI [0.725, 

0.732]). The non-informative prior produced a mean time to failure (MTTF) 

of 105.89 hours (95% PI [68.42, 161.20]), while the Gamma prior estimated 

150.95 hours. The annual maintenance cost was estimated at 41,954.65 

USD. 
 

 

 

 

1. INTRODUCTION  

As the world transitions toward cleaner energy, natural gas has emerged as a crucial bridging fuel, 

offering significantly lower carbon emissions than coal and oil. With growing demand for 

supporting infrastructure, the reliability, maintainability, and economic viability of natural gas 

equipment are now more vital than ever.  Equipment failures not only pose serious safety risks but 

also threaten environmental integrity and can result in substantial financial consequences [1]. 

Traditional reliability assessments often rely on static models that assume constant failure and 

repair rates. However, real-world systems are dynamic, influenced by aging, operational 

variability, and environmental conditions.  
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This complexity has led to the adoption of Bayesian statistical frameworks, which allow for 

probabilistic modeling and continuous updating of system knowledge as new data becomes 

available [2]. 

 

Bayesian networks (BNs) and hierarchical Bayesian models have proven effective in modeling 

complex systems like natural gas pipelines and purification plants. For example, Guo et al. [2] 

developed a discrete-time Bayesian network to analyze dynamic systems with common cause 

failures, demonstrating its relevance to safety-critical systems like nuclear power and gas systems. 

Similarly, Gong et al. [3] integrated interpretive structural modeling with Bayesian networks to 

identify key risk factors in natural gas purification plants, emphasizing the method’s ability to 

capture interdependencies among variables. 

 

Bayesian statistical analysis techniques are useful for a wide range of applications [4]. Singh et al. 

[5] presented an algorithm for reliability prediction that permits the system engineer to analyze 

system reliability before it is built while considering the estimates of component reliability and 

their expected use. This method enables the identification of crucial components and the influence 

of their replacement on the system when they are replaced. The method was incorporated on a 

unified modelling language, UML. 

 

Although Bayes theorem that was introduced in the 1770s is still somewhat complex, it is 

continually attracting attention and is being applied in different fields of researches. "Bayesian 

statistics" is a mathematical method that applies probabilities to statistical problems [6]. This 

methodology makes use of well known, statistically accurate, and logically sensible techniques to 

combine different types of data. Paul and Bani [7] stated that Bayesian statistics has become 

increasingly popular in engineering, and one reason for its increased application is that it allows 

researchers to input expert opinion as a key input in the analysis (through the prior distribution). 

Most “reliability assessment algorithms”, employs these estimates as "prior probabilities" [4].  

 

In this study, the systems considered for analysis are repairable. For a repairable system, the focus 

is not on the time to first failure. Instead, the primary interest is on the probability of system failure 

as a function of system age. Exact reliability analyses for complex, repairable systems are often 

difficult because of the complicated failure process that may result from the replacement or repair 

policy [4]. A common procedure in practice is to approximate the complicated stochastic process 

by a simpler stochastic process, which although not exact, still yield useful practical results.  

Therefore, this study is the application of a Bayesian statistical framework for reliability, 

maintainability, and maintenance cost modeling of natural gas compressors. 

 

2. METHODOLOGY 

This study employs a structural approach in solving the research problem. The equipment 

operational information is acquired from a major crude oil and gas company in the Niger delta area 

of Nigeria, from which the failure and repair time data are extracted.  The data collected is a 

reflection of the operational performance of the equipment at the customer’s use end. 

Consequently, the research design proceeded in the following order: 

1) First, equipment failure and repair time data, along with cost information related to 

preventive and corrective maintenance actions, are collected. 

2) The data are presented in the required format for analysis, including the TTF, TTR, spare 

parts and labor cost per maintenance interval. 

3) Verification of the independence of the data. 
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4) A quantitative research design is adopted to analyze system behavior – implemented using 

Bayesian modeling framework. 

5) Annual maintenance cost – preventive, corrective and overall cost estimation 

The Bayesian and cost estimation analysis was performed using a combination of Excel formulas 

and functions: This process facilitated the analysis efficiently and reduced the tedious nature of 

manual computation, and it is time-saving. The required formula has presented in Equation (1.1) 

through (1.40) was imputed in Excel and used for all the Bayesian and cost estimation analysis 

performed in this study 

 

Bayesian Estimation in Weibull Distribution 

In the case were scale parameter, λ is random it is easily only shown that, if the failure times, T 

has a Weibull distribution, w ~ (λ, β), then (Martz and Waller, 2020): Tβ is exponentially 

distributed, ε(λ). 

Considering a life test of n items  in which s items have failed at ordered times t1,…,ts and n – s 

items have operated for times 𝑡𝑠+1,…,
∗ 𝑡𝑛

∗  without failing; thus 𝑇𝑠+1 > 𝑡𝑠+1
∗ , … , 𝑇𝑛 > 𝑡𝑛

∗ . The times 

𝑡𝑠+1,…,
∗ 𝑡𝑛

∗  are the withdrawer times of the non-failed items. Then this statistic [8]: 

                                                  𝝎 =  ∑ 𝑻𝒊
𝜷

+ ∑ 𝑻𝒊
∗𝜷𝒏

𝒊=𝒔+𝟏
𝒔
𝒊=𝟏       (1.1) 

is for estimating λ (or θ) if s is fixed. This seen by the examination of the likelihood corresponding 

to the above sampling scheme which is expressed as [8]: 

         𝑳(𝝀|𝒁) ∝  𝝀𝒔𝜷𝒔(∏ 𝒕𝒊
𝒔
𝒊=𝟏 )𝜷−𝟏𝒆𝒙𝒑[−𝝀(∑ 𝒕𝒊

𝜷𝒔
𝒊=𝟏 + ∑ 𝒕𝒊

∗𝜷𝒏
𝒊=𝒔+𝟏 )]    (1.2) 

If there are withdrawals prior to test termination, we find that equation (1.1) becomes 

                                            𝝎 =  ∑ 𝑻𝒊
𝜷

+ (𝒏 − 𝒔)𝒔
𝒊=𝟏 𝑻𝒔

𝜷
      (1.3) 

The posterior distribution of the failure rate, λ is expressed as [8]: 

                   𝒈(𝝀|𝝎; 𝒔, 𝜶𝟎, 𝜷𝟎) =
𝝎𝒔+𝟏𝝀𝒔𝐞𝐱𝐩 (−𝝀𝝎)

𝚪(𝒔+𝟏,𝜷𝟎𝝎)−𝚪(𝒔+𝟏,𝜶𝟎𝝎)
,              𝜶𝟎 < 𝜷𝟎    (1.4) 

The posterior mean of equation ( ) is computed to be 

                        𝚬(𝝀|𝝎; 𝒔, 𝜶𝟎, 𝜷𝟎) =  
𝚪(𝒔+𝟐,𝜷𝟎𝝎)−𝚪(𝒔+𝟐,𝜶𝟎𝝎)

𝝎[𝚪(𝒔+𝟏,𝜷𝟎𝝎 −𝚪(𝒔+𝟏,𝜶𝟎𝝎)]
      (1.5) 

and the posterior variance can be calculated using the relationship 

            𝑽𝒂𝒓(𝝀|𝝎; 𝒔, 𝜶𝟎, 𝜷𝟎) = 𝑬(𝝀𝟐|𝝎; 𝒔, 𝜶𝟎, 𝜷𝟎) − 𝑬𝟐(𝝀|𝝎; 𝜶𝟎, 𝜷𝟎)    (1.6) 

A symmetric 100(1-ℽ)% TBPI estimate for λ is expressed as: 

           Pr((𝝀 ≤ 𝝀∗|𝝎;  𝒔, 𝜶𝟎, 𝜷𝟎) =
𝚪(𝒔+𝟏,   𝝀∗𝝎)−𝚪(𝒔+𝟏,    𝜶𝟎𝒘)

𝚪(𝒔+𝟏,   𝜷𝟎𝝎)−𝚪(𝒔+𝟏,    𝜶𝟎𝒘)
=

𝜸

𝟐
     (1.7) 

and 

           Pr((𝝀 ≥ 𝝀∗|𝝎;  𝒔, 𝜶𝟎, 𝜷𝟎) =
𝚪(𝒔+𝟏,   𝜷𝟎𝝎)−𝚪(𝒔+𝟏,    𝝀∗𝒘)

𝚪(𝒔+𝟏,   𝜷𝟎𝝎)−𝚪(𝒔+𝟏,    𝜶𝟎𝒘)
=

𝜸

𝟐
     (1.8) 

where, 

α0 and β0 = uniform prior distribution parameters. 

β = specified Weibull shape parameter obtained from a preliminary analysis of data. 

s = number of failures. 

ℽ = specified significant level (5%). 

λ = failure rate 

Weighted Square – Error Loss Function: Minimizing the posterior expected loss yields the 

Bayesian point estimator for λ given by [8]: 

                                                                  𝝀̂ =
𝑬[𝝀𝒉(𝝀)|𝝎]

𝑬[𝒉(𝝀)|𝝎]
        (1.9) 

If h(λ) = λ-2 , then there is a special case for 𝜆̂ given by [8]: 

                                                          𝝀̂ =
𝒔+𝜶𝟎−𝟐

𝜷𝟎+𝝎
       (1.10) 
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for a Gamma prior distribution on λ, [G1(α0, β0)]. 

Reliability Estimation: The Bayesian estimation of the Weibull reliability function is expressed 

as [8]: 

                                                   𝒓(𝒕𝟎;  𝝀, 𝜷) = 𝐞𝐱𝐩 (−𝝀𝒕𝟎
𝜷

),      (1.11) 

in the case of Weibull distribution with parameters λ and β, [W1(λ, β)] or  

                                                    𝒓(𝒕𝟎;  𝜽, 𝜷) = 𝐞𝐱𝐩 (−
𝒕𝟎
𝜷

𝜽
),      (1.12) 

in the case of Weibull distribution with parameter θ and β, [W1(θ, β)]. 

Letting 𝑔𝜆(. ) 𝑎𝑛𝑑 𝑔𝜃(. ) represent either the prior or posterior distribution of λ and θ respectively, 

the corresponding prior or posterior distribution of R, denoted by 𝑔𝑟(. ) may be obtained as 

                                                      𝒈𝒓(𝒓) = 𝒈𝝀 (−
𝐥𝐧 𝒓

𝒕𝟎
𝜷 ) (

𝟏

𝒕𝟎
𝜷)      (1.13) 

or 

                                                      𝒈𝒓(𝒓) = 𝒈𝜽 (−
𝒕𝟎

𝜷

𝐥𝐧 𝒓
) (

𝒕𝟎
𝜷

𝒓 𝒍𝒏𝟐𝒓
)      (1.14) 

The induced prior and posterior distribution on R for a uniform prior distribution on λ is expressed 

as [8]: 

Prior distribution is 

                            𝒈𝒓(𝒓; 𝜶𝟎, 𝜷𝟎) =
𝟏

(𝜷𝟎−𝜶𝟎)𝒓(𝒕𝟎
𝜷

)
,          𝒆𝜷𝟎𝒕𝟎

𝜷

< 𝒓 < 𝒆𝜶𝟎𝒕𝟎
𝜷

   (1.15) 

and 

Posterior distribution is 

              𝒈𝒓(𝒓|𝒘: 𝜶𝟎, 𝜷𝟎) =
𝒘𝒔+𝟏[− 𝐥𝐧 𝒓/𝒕𝟎

𝜷
]𝒆

𝒘 𝐥𝐧 𝒓 𝒕𝟎
𝜷

⁄

[𝚪(𝒔+𝟏,𝜷𝟎𝒘)−𝚪(𝒔+𝟏,𝜶𝟎𝒘)]𝒓 𝒕𝟎
𝜷,     𝒆𝜷𝟎𝒕𝟎

𝜷

< 𝒓 < 𝒆𝜶𝟎𝒕𝟎
𝜷

   (1.16) 

The Bayesian point estimate of 𝑟(𝑡0) is expressed as [8]: 

The posterior mean of R given t0 is 

                                  𝑬(𝑹|𝒘; 𝒔, 𝒕𝟎, 𝜶𝟎, 𝜷𝟎) =  (
𝒘

𝒘+𝒕𝟎
) 𝒔+𝟏 ×  

                                      
𝚪[𝒔+𝟏,𝜷𝟎(𝒘+𝒕𝟎)]−𝚪[𝒔+𝟏,𝜶𝟎(𝒘+𝒕𝟎)]

𝚪(𝒔+𝟏,𝜷𝟎𝒘)−𝚪(𝒔+𝟏,𝜶𝟎𝒘)
        (1.17) 

The second moment of R given t0 is 

                                              𝑬(𝑹𝟐|𝒘; 𝒔, 𝒕𝟎, 𝜶𝟎, 𝜷𝟎) =  (
𝒘

𝒘+𝒕𝟐𝟎
) 𝒔+𝟏 ×  

                                               
𝚪[𝒔+𝟏,𝜷𝟎(𝒘+𝟐𝒕𝟎)]−𝚪[𝒔+𝟏,𝜶𝟎(𝒘+𝟐𝒕𝟎)]

𝚪(𝒔+𝟏,𝜷𝟎𝒘)−𝚪(𝒔+𝟏,𝜶𝟎𝒘)
      (1.18) 

The posterior variance (risk) of R given t0 is   

   𝑽𝒂𝒓(𝑹|𝒘; 𝒔, 𝒕𝟎, 𝜶𝟎, 𝜷𝟎) = 𝑬(𝑹𝟐|𝒘; 𝒔, 𝒕𝟎, 𝜶𝟎, 𝜷𝟎) −  𝑬𝟐(𝑹|𝒘; 𝒔, 𝒕𝟎, 𝜶𝟎, 𝜷𝟎)   (1.19) 

The 95% LBPI (lower Bayesian prediction interval) and the 95% UBPI (upper Bayesian interval) 

is expressed as follows (Martz and Walker, 2020): 
                                      𝑹(𝒕𝟎, 𝝀∗) = 𝐞𝐱𝐩 (−𝝀∗𝒕𝟎)       (1.20) 

and, 
                                     𝑹(𝒕𝟎, 𝝀∗) = 𝐞𝐱𝐩 (−𝝀∗𝒕𝟎)       (1.21) 

MTTF Estimation: A Bayesian estimation of the Weibull [W1 ~(λ, β)] MTTF is expressed as 

(Martz and Walker, 2020): 

                      MTTF = E(T; λ, β) = 𝝀
−𝟏

𝜷 𝚪 (𝟏 +
𝟏

𝜷
)       (1.22) 

Uniform Prior Distribution on λ: If the failure rate, λ has uniform prior distribution [U~(α0, β0)] 

then the posterior distribution of λ is given by [8]: 

                   𝒈(𝝀|𝒘; 𝜶𝟎, 𝜷𝟎) = 𝒘𝒔+𝟏𝝀𝒔𝐞𝐱𝐩 (−𝝀𝒘)

𝚪(𝒔+𝟏, 𝜷𝟎𝒘)−𝚪(𝒔+𝟏,𝜶𝟎𝒘)
,   𝜶𝟎 < 𝝀 < 𝜷𝟎     (1.23) 
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The posterior expectation of MTTF under the squared – error loss function is expressed as (Martz 

and Walker, 2020): 

 𝐄{𝐌𝐓𝐓𝐅 | 𝐰; 𝛂𝟎, 𝛃𝟎) =  
𝒘

𝟏
𝜷⁄

𝚪(𝟏+𝟏 𝜷)[𝚪(𝒔+𝟏−𝟏
𝜷⁄  ,𝜷𝟎)−𝚪(𝒔+𝟏−𝟏

𝜷⁄ ,   𝜶𝟎𝒘]⁄

𝚪(𝒔+𝟏,   𝜷𝟎𝒘)−𝚪(𝒔+𝟏, 𝜶𝟎𝒘)
    (1.24) 

The posterior risk is proportional to the posterior variance of MTTF and is expressed as (Martz 

and Walker, 2020): 

Var[MTTF | w; α0, β0] = 

        
𝒘𝟐 𝜷⁄ 𝚪𝟐(𝟏+𝟏 𝜷⁄ )𝚪(𝒔+𝟏−𝟐 𝜷,   𝜷𝟎𝒘)−𝚪(𝒔+𝟏−𝟐 𝜷⁄ ,  𝜶𝟎𝒘)⁄

𝚪(𝒔+𝟏, 𝜷𝟎𝒘)−𝚪(𝒔+𝟏, 𝜶𝟎𝒘)
− 𝑬𝟐[𝑴𝑻𝑻𝑭 | 𝒘; 𝜶𝟎,  𝜷𝟎]   (1.25) 

A symmetric 100(1-ℽ) % two tail Bayesian prediction interval (TBPI) is expressed as [8]: 

The upper limit of the 100(1-ℽ) % TBPI estimate for MTTF is 

                                        𝑴𝑻𝑻𝑭∗ = 𝚪(𝟏 + 𝟏 𝜷)(𝝀∗)−𝟏 𝜷⁄⁄       (1.26) 

Similarly, the lower limit of the desired TBPI estimate is 

                                       𝑴𝑻𝑻𝑭∗ = 𝚪(𝟏 + 𝟏 𝜷)(𝝀∗)−𝟏 𝜷⁄⁄       (1.27) 

where, 

ℽ = significant level (normally set at 5%). 

λ* = upper limit of failure rate. 

λ* = lower limit of failure rate. 

Non-informative Prior Distribution on λ: If the probability distribution of λ, g(λ) is non-

informative, then the posterior distribution of λ given 𝜔 is given by [8]: 

                                     𝒈(𝝀) =
𝝎𝒔

𝚪(𝒔)
𝝀𝒔−𝟏𝐞𝐱𝐩 (−𝝀𝝎)       (1.28) 

And this is a gamma distribution with parameter s and 𝑤 [𝐺1(𝑠, 𝜔)]. The posterior expected MTTF 

is: 

                           𝑬[𝑴𝑻𝑻𝑭|𝝎] =
𝝎𝟏 𝜷⁄ 𝚪(𝟏+𝟏 𝜷)𝚪(𝒔−𝟏 𝜷)⁄⁄

𝚪(𝒔)
                                                (1.29) 

The posterior variance is expressed as: 

              𝑽𝒂𝒓[𝑴𝑻𝑻𝑭|𝝎] =
𝝎𝟐 𝜷⁄ (𝟏+𝟏 𝜷)𝚪(𝒔−𝟐 𝜷)⁄⁄

𝚪(𝒔)
−  𝑬𝟐[𝑴𝑻𝑻𝑭|𝝎]     (1.30) 

Also, the symmetric 100(1-ℽ) % TBPI estimate for MTTF is: 

         LBPI for MTTF:    𝑴𝑻𝑻𝑭∗ = 𝚪 (𝟏 +
𝟏

𝜷
) [

𝝌𝜸 𝟐⁄
𝟐  (𝟐𝒔)

𝟐𝝎
]

−𝟏 𝜷⁄

   (1.31) 

and  

           UBPI for MTTF:   𝑴𝑻𝑻𝑭∗ = 𝚪 (𝟏 +
𝟏

𝜷
) [

𝝌𝟏−𝜸 𝟐⁄
𝟐  (𝟐𝒔)

𝟐𝝎
]

−𝟏 𝜷⁄

    (1.32) 

Gamma Prior Distribution on λ: If has a gamma distribution [G(α0, β0)] prior distribution, then 

the posterior distribution of λ given 𝜔 is 𝐺[𝛼0 + 𝑠, 𝛽0 (𝛽0𝜔 + 1)⁄ ] [8]: 

Therefore, the posterior MTTF is: 

                  𝑬[𝑴𝑻𝑻𝑭|𝝎; 𝜶𝟎, 𝜷𝟎] =
𝚪(𝜶𝟎+𝒔−𝟏 𝜷)𝚪(𝟏+𝟏 𝜷)⁄⁄

𝚪(𝜶𝟎+𝒔)[𝜷𝟎 (𝜷𝟎𝝎+𝟏)⁄ ]𝟏 𝜷⁄        (1.33) 

And the posterior variance of MTTF is 

            𝑽𝒂𝒓[𝑴𝑻𝑻𝑭|𝝎; 𝜶𝟎, 𝜷𝟎] =  

                                   
𝚪(𝜶𝟎+𝒔−𝟐 𝜷)𝚪(𝟏+𝟏 𝜷)⁄⁄

𝚪(𝜶𝟎+𝒔)[𝜷𝟎 (𝜷𝟎𝝎+𝟏)⁄ ]𝟐 𝜷⁄ − 𝑬𝟐[𝑴𝑻𝑻𝑭|𝝎; 𝜶𝟎, 𝜷𝟎]     (1.34) 

The Two tail Bayesian prediction interval (TBPI) for MTTF is: 

LBPI for MTTF:  𝑴𝑻𝑻𝑭∗ = 𝚪(𝟏 + 𝟏 𝜷)⁄ [
𝜷𝟎𝝌𝜸 𝟐⁄

𝟐 (𝟐𝒔+𝟐𝜶𝟎)

𝟐𝜷𝟎𝝎+𝟐
]

−𝟏 𝜷⁄

        (1.35) 

and 
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 UBPI for MTTF:  𝑴𝑻𝑻𝑭∗ = 𝚪(𝟏 + 𝟏 𝜷)⁄ [
𝜷𝟎𝝌𝟏−𝜸 𝟐⁄

𝟐 (𝟐𝒔+𝟐𝜶𝟎)

𝟐𝜷𝟎𝝎+𝟐
]

−𝟏 𝜷⁄

         (1.36) 

Standard Error (S.E): The standard error of a computed sample metric is expressed as follow 

[9]: 

                                          𝑺. 𝑬 = √
𝑺𝒂𝒎𝒑𝒍𝒆 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆

𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆
        (1.37) 

Maintenance Cost Estimation Models 

The cost of preventive maintenance is expressed as [10]: 

Preventive maintenance cost, 𝑷𝑴𝑪 =
(𝑺𝑻𝒑𝒎+𝑻𝑻𝒑𝒎)×𝑺𝑶𝑯×𝑳𝑪

𝑺𝑰𝒑𝒎
      (1.38) 

where, 

𝑆𝑇𝑝𝑚 = scheduled time for preventive maintenance (PM) 

𝑇𝑇𝑝𝑚 = expected travel time for PM 

SOH = equipment usage hours per time period 

𝑆𝐼𝑝𝑚 = scheduled time interval for PM 

LC = cost of labour 

The corrective maintenance cost (CMC) model is expressed as [10]: 

                              Model 1: CMC1 = 
𝑺𝑶𝑯×𝑳𝑪×𝑴𝑻𝑻𝑹

𝑴𝑻𝑻𝑭
      (1.39) 

where, 

MTTF = mean time to failure 

MTTR = mean time to repair 

                             Model 2: CMC1 = 
(𝑻𝑻𝒄𝒎+𝑴𝑻𝑻𝑹)×𝑺𝑶𝑯×𝑳𝑪

𝑴𝑻𝑻𝑭
     (1.39) 

where, 

𝑇𝑇𝑐𝑚 = expected travel time for CM 

and, 

Total Annual Cost per year = 𝑷𝑴𝑪 + 𝐦𝐚𝐱 [𝑪𝑴𝑪𝟏; 𝑪𝑴𝑪𝟐]     (1.40) 

 

RESULTS AND DISCUSSION 

In the Bayesian analysis of the HPC-2 TTF data using the Weibull distribution: scale parameter 

(ղ) is a random variable and shape parameter (β) is fixed (refer to Appendix 1, sample size: 42), 

the procedure is initiated by a preliminary fit of the data to the Weibull model. This fitting informs 

the use of a shape parameter, β = 0.71, which characterizes the observed failure times. The 

manufacturer’s failure rate specifications for this equipment with a range of 3.0E-3 to 9.0E-3 

failures per hour as obtained were translated into a uniform prior distribution on failure rate (ղ) by 

taking the minimum and maximum failure rate as the bound of the uniform prior distribution: ղ ~ 

uniform (0.003, 0.009) . The computed posterior distribution of the failure rate (λ) is presented in 

Table 1.1 (an extraction of Microsoft spreadsheet). 

 

Table 1.1: HPC-2 Posterior Distribution Failure Rate. 

Parameter: s = n = 42, w = 954.26, α0 = 0.003, β0 = 0.009, β =  0.71, 0.003<ղ<0.009 

Prior Distribution λ g(ղ/w; α0, β0) Pdf 

0.00300 1.078848E-14 2.401729E-18 

0.00350 4.340209E-12 9.662160E-16 

0.00400 7.344420E-10 1.635013E-13 

0.00450 6.414289E-08 1.427947E-11 

0.00500 3.324667E-06 7.401364E-10 
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0.00550 1.129864E-04 2.515299E-08 

0.00600 2.709759E-03 6.032457E-07 

0.00650 4.849804E-02 1.079662E-05 

0.00700 6.764971E-01 1.506016E-04 

0.00750 7.612134E+00 1.694611E-03 

0.00800 7.103917E+01 1.581472E-02 

0.00850 5.624687E+02 1.252166E-01 

0.00900 3.850117E+03 8.571120E-01 

0.07800 4491.965351 1.000000 

 

As seen in Table 1.1, the failure rate posterior probability density function, PDF is an increasing 

function of the prior distribution. Presented in Figure 1.1 is the graph of HPC-2 failure rate prior 

and posterior distribution. 

 
Figure 1.1: HPC-2 failure rate prior and posterior distribution 

As shown in Figure 1.1, the failure rate posterior pdf of HPC-2 is an increasing function of the 

prior distribution. Present in Table 1.2 is an estimate of mean of failure rate, variance and 95% 

TBPI of HPC-2 (an extraction of Microsoft spreadsheet). 

Table 1.2: Estimate of mean of failure rate (ղ), variance and 95% TBPI of HPC-2 

Weibull Prior Distribution on λ Estimation 

Parameter: s = n = 42, w = 954.26, α0 = 0.003, β0 = 0.009, 0.003<λ<0.009 
 

Bayesian Estimation 

Posterior Mean , E(λ/w; s, α0, β0) 0.008749128 

Posterior Variance , Var(λ/w; s, α0, β0) 5.8830355E-08 

Standard Error  (S.E) of ղ 0.00003743 

95% LBPI, Pr(λ≤λ*/w; s, α0, β0) 0.008657802 
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95% UBPI, Pr(λ≥λ*/w; s, α0, β0) 0.008925668 

LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval 

As shown in Table 1.2, HPC-2 has an estimated posterior mean of failure rate of 0.008749128 with 

a standard error of 3.743E-5. Also, the failure rate has a 95% lower and upper Bayesian probability 

interval of 0.008657802 and 0.008925668 failures per hour respectively. Presented in Table 1.3 is 

the prior and posterior distribution of weibull reliability (an extraction of Microsoft spreadsheet). 

Table 1.3: HPC2 Posterior Reliability Distribution 

Parameter: s = n = 42, w = 954.26, α0 = 0.003, β0 = 0.009, β =  0.7100, t0 = 36, 0.891715<r<0.962518 

r Prior, gr(r; α0, β0) Prior Pdf Posterior, gr(r/w; α0, β0) Posterior Pdf 

0.8917150 14.6773585 0.0493712 3.3906560E+02 4.2489424E-159 

0.8952552 14.6193191 0.0491759 1.0369460E+02 1.2994311E-159 

0.8987953 14.5617369 0.0489822 3.0199164E+01 3.7843563E-160 

0.9023355 14.5046066 0.0487901 8.3467656E+00 1.0459606E-160 

0.9058756 14.4479228 0.0485994 2.1811206E+00 2.7332339E-161 

0.9094158 14.3916803 0.0484102 5.3659070E-01 6.7241943E-162 

0.9129559 14.3358740 0.0482225 1.2369505E-01 1.5500633E-162 

0.9164961 14.2804988 0.0480362 2.6576287E-02 3.3303618E-163 

0.9200362 14.2255497 0.0478514 5.2899924E-03 6.6290632E-164 

0.9235764 14.1710219 0.0476680 9.6886842E-04 1.2141208E-164 

0.9271165 14.1169106 0.0474860 1.6200580E-04 2.0301478E-165 

0.9306567 14.0632109 0.0473053 2.4510477E-05 3.0714883E-166 

0.9341968 14.0099182 0.0471261 3.3205786E-06 4.1611261E-167 

0.9377370 13.9570278 0.0469482 3.9797151E-07 4.9871116E-168 

0.9412771 13.9045354 0.0467716 4.1598339E-08 5.2128245E-169 

0.9448173 13.8524363 0.0465963 3.7285428E-09 4.6723593E-170 

0.9483574 13.8007261 0.0464224 2.8082216E-10 3.5190747E-171 

0.9518976 13.7494006 0.0462497 1.7340562E-11 2.1730027E-172 

0.9554377 13.6984554 0.0460784 8.5170589E-13 1.0673006E-173 

0.9589779 13.6478864 0.0459083 3.2040279E-14 4.0150726E-175 

0.9625180 13.5976893 0.0457394 8.7986450E-16 1.1025871E-176 

19.4694465 0.6722338 0.0022612 7.9780050E+160 9.9975000E-01 

  297.2859994 1.0000000 7.98E+160 0.9997500 

As seen in Table 1.3, the prior and posterior distribution of reliability in the interval of 0.891715 

< r < 0.962518 is both a decreasing and increasing function. Presented in Figure 1.2 is the graph 

of prior and posterior of Weibull reliability. 
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Figure 1.2: The Prior and Posterior of Weibull Reliability for HPC-2 

In Figure 1.2, HPC-2 has an increasing reliability pdf in the interval of 0.891715 < r < 0.962518. 

Presented in Table 1.4 is the posterior estimate for HPC-2 expected reliability and 95% two tail 

Bayesian prediction interval (TBPI) at 36 hours (an extraction of Microsoft spreadsheet). 

Table 1.4: Posterior Estimate for HPC-2 Expected Reliability in Weibull Data Fitting 

Parameter: s = n = 42, w = 954.26, α0 = 0.003, β0 = 0.009, β =  0.7100, t0 = 36, 0.891715<r<0.962518 

  Bayesian Estimation 

Posterior Relability , E[R(36)/w; α0, β0] 0.7298398 

Posterior Variance , Var(R(36)/w; s, α0, β0) 4.1264215E-05 

Standard Error  (S.E) of  R(36 hrs) 0.00099120 

95% LBPI estimate of R(t0;λ*β) 0.7251882 

95% UBPI estimate of R(t0;λ*β) 0.7322152 

LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval 

As seen in Table 1.4, HPC-2 has an expected 72.98% reliability at 36 hours operating time, with a 

standard error of 0.001. The 95% lower and upper Bayesian prediction interval is [0.7251882, 

0.7322152]. . Presented in Table 1.5 are the expected posterior MTTF and the 95% TBPI for the 

HPC- 2 using non-informative prior distribution on failure rate, under Weibull data fitting (an 

extraction of Microsoft spreadsheet). 

Table 1.5: MTTF Estimation of HPC-2 (Non-informative Prior Distribution on ղ) 

Noninformative Prior Case 

Parameter: s = n = 42, w = 954.24, α0 = 0.003, β0 = 0.009, β =  0.7100 

  Bayesian Estimation 

Posterior expected MTTF , E[MTTF/w] 105.8867594 

Var[MTTF/w] 568.8150078 

Standard Error (S.E) of MTTF 3.68011066 
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95% LBPI for MTTF 68.4229243 

95% UBPI for MTTF 161.196193 

LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval 

 

As shown in Table 1.5, the estimated MTTF of HPC-2 in Weinbull under a non-informative prior 

distribution of failure rate is 105.89 hours with a standard error of 3.68 hours. Also, the estimated 

95% lower and upper Bayesian probability interval is [68.4229243, 161.196193]. Presented in 

Table 1.6 are the expected posterior MTTF and the 95% TBPI for the HPC- 2 under Gamma prior 

distribution on failure rate (an extraction of Microsoft spreadsheet). 

Table 1.6: MTTF Estimation of HPC-2 (Gamma Prior Distribution on ղ) 
Gamma Prior Distribution on ղ for MTTF Estimation 

Parameter: s = n = 42, w = 954.26, α0 = 2, β0 = 0.003, β =  0.7100 

  Bayesian Estimation 

Posterior expected MTTF , E[MTTF/w; α0, β0] 150.9457796 

Var[MTTF/w; α0, β0] 3662.876149 

Standard  Error (S.E) of MTTF 9.33870180 

95% LBPI for MTTF 98.55764617 

95% UBPI for MTTF 227.609431 

LBPI: Lower Bayesian Probability Interval and UBPI: Upper Bayesian Probability Interval 

As seen in Table 1.6, the estimated MTTF of HPC-2 in Weibull under a Gamma prior distribution 

of failure rate is 150.96 hours, with a standard error of 9.34 hours and the estimated 95% lower 

and upper Bayesian probability interval is [98.57764617, 227.609431]. Presented in Table 1.7 is 

the estimated cost of preventive and corrective maintenance of the high pressure compressor - 2 

(HPC-2) per year (an extraction of Microsoft spreadsheet). 

Table 1.7: HPC-2 Annual Maintenance Cost 

Parameters: SOH = 8560hrs/yr; STpm = 0.5hrs; TTpm = 0.25hrs; TTcm = 0.25hrs and SIpm  = 720hrs 

Preventive Maintenance Cost (PMC) Corrective Maintenance Cost 

PMC (USD/Year) Model 1 (USD/Year) Model 2 (USD/Year) 

769.51 39388.48 41185.14 

Notations: SIpm = schedule interval for PM, SOH = usage time of equipment/yr, STpm = schedule 

time for PM, TTcm = expected travel time for CM, and TTpm = expected travel time for PM. 

As seen in Table 1.7, the annual preventive maintenance cost is 761.51USD and corrective 

maintenance cost for this same period is estimated to be 39,338.48 USD based on model 1 and 

41,185.14 USD on model 2. Consequently, the expected annual maintenance cost is 41,954.65 

USD. 

CONCLUSION 

The developed Bayesian reliability framework for the HPC-2 equipment, modeled under the 

Weibull distribution, demonstrates a strong capacity for accurately estimating critical reliability 

parameters under uncertainty. The analysis produced an expected failure rate of 0.008749 failures 

per hour with a standard error of 3.743 × 10⁻⁵, and a 95% two-tailed Bayesian prediction interval 

(TBPI) of [0.0086578, 0.0089257]. The narrowness of this interval indicates a high level of 
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precision in the posterior estimate, suggesting that the Weibull model effectively captures the 

stochastic behavior of the system’s time-to-failure process. At 36 hours of operation, the estimated 

reliability of 72.98% (with a standard error of 9.912 × 10⁻⁴ and a 95% Bayesian reliability interval 

of [0.7252, 0.7322]) implies that approximately one-quarter of the equipment population may 

experience failure within this period. This finding aligns with established reliability theory, which 

recognizes the Weibull model as one of the most flexible and empirically validated models for 

analyzing complex mechanical systems with age-dependent failure mechanisms [11-13]. 

In terms of life expectancy, the Bayesian estimation of the mean time to failure (MTTF) under a 

non-informative prior yielded a value of 105.89 hours, with a standard error of 3.68 hours and a 

95% probability interval of [68.42, 161.20] hours. Conversely, the Gamma prior resulted in a 

higher MTTF estimate of 150.95 hours with a standard error of 9.34 hours. The observed 

differences across priors emphasize the sensitivity of Bayesian reliability inference to prior 

selection - a phenomenon well-documented in the literature [14-15] - and highlight the importance 

of aligning prior beliefs with realistic operational knowledge or manufacturer specifications. The 

relatively wider Bayesian interval associated with the non-informative prior also reflects epistemic 

uncertainty, particularly when limited failure data are available. 

 

From a maintenance and operational perspective, the Bayesian cost model estimated the annual 

maintenance expenditure for the HPC-2 equipment at approximately USD 41,954.65. This figure 

reflects the combined expected cost of preventive and corrective maintenance interventions and 

underscores the financial significance of reliability-driven decision-making in industrial 

operations. The results suggest that preventive or condition-based maintenance strategies could 

provide considerable cost savings by reducing the frequency and severity of unplanned failures - 

an approach consistent with the reliability-centered maintenance (RCM) philosophy advocated by 

Nowlan and Heap [16] and subsequent industrial maintenance optimization frameworks. 

Overall, the developed Bayesian Weibull framework provides a comprehensive and 

probabilistically grounded approach for reliability evaluation, predictive assessment, and 

maintenance cost optimization of critical gas equipment. By integrating prior information, 

observed data, and uncertainty quantification within a unified model, the framework supports more 

informed engineering decisions, improved maintenance scheduling, and enhanced operational 

dependability of the HPC-2 system. 
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Appendix 1: Historical Information of HPC-2 

 

 
TTF: Time to Failure and TTR: Time to Repair 

 

 
TTF: Time to Failure and TTR: Time to Repair 

S/N TTF (Hrs) TTR (Hrs) SPARES COST ($) LABOUR ($) TOTAL COST ($)

27 24.18 3.25 400 600 1000

28 44.57 1.83 450 600 1050

29 20.63 0.67 450 600 1050

30 24.3 1.33 400 850 1250

31 20.63 1 -  600 600

32 25.3 2 450 650 1100

33 119.63 1.83 450 600 1050

34 18.82 1  - 600 600

35 23.6 1  - 600 600

36 0.52 2.25 200 750 950

37 67.67 1.83 450 600 1050

38 23.15 1.33 400 850 1250

39 70.4 0.5  - 600 600

40 0.52 0.5 400 850 1250

41 0.47 1.33 450 600 1050

42 114.73 1.38 450 600 1050

43 3.47 5.87 450 850 1300
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HPC-2 Maintenance Cost Estimation  

Computing the total Labor Cost (TLC): The total labor cost, TLC for HPC-2 was computed by 

summing the labor cost. Therefore, TLC is $27,350.00. 

Computing the Total Repair time (TRT): 

Total Repair time, TRT is computed was computed by summing the TTR variable. Therefore, TRT 

is 316.91 hours 

Computing the Labor Cost per hour (LC): 

The labor cost per hour, LC was computed using the ratio of TLC to TRT. Therefore, LC = 

27,350/316.91 = $86.30 per hour. 

Computing Spare Parts Cost (SPC): 

The spare parts cost, SPC was computed by summing the total costs of parts used in the studied 

period. Therefore, SPC is $10,700.00. 

 

 

Appendix 2: Bayesian Analysis in Spreadsheet 

 

 

 
 

All the Bayesian analysis and the estimated cost in this study are computed through a combination 

of the spreadsheet function(s) and the required formula(s) expression as presented in Equation 1.1 

to 1.40 for each analysis. 

 

 


