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1. INTRODUCTION

The classification of finite simple groups (CFSG) stands as one of the most remarkable
achievements in modern group theory. Finite simple groups serve as the fundamental building
blocks of all finite groups, analogous to the role of prime numbers in number theory [1]. This
monumental classification was the result of decades of collaborative effort by numerous
mathematicians, culminating in an extensive body of work exceeding 10,000 pages of proof. While
the foundational classification was established in the mid-20th century, recent decades have
witnessed significant progress in developing efficient algorithms to facilitate the classification and
analysis of finite simple groups [2]. Finite simple groups are categorized into four principal
families: cyclic groups of prime order, alternating groups of degree at least five, simple groups of
Lie type, and 26 sporadic groups.
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Together, these classes exhaustively describe all finite simple groups, rendering their classification
a comprehensive and definitive endeavor [3]. Recent research has focused on advancing
computational methods to analyze these groups, thereby streamlining their identification and
broadening their applications in contemporary mathematics and computer science [4].

The advent of computational group theory has heightened the relevance of algorithmic approaches
to CFSG. Software systems such as GAP and Magma enable researchers to investigate complex
group properties, including matrix representations, subgroup structures, and automorphisms of
finite simple groups [5]. Notably, algorithms tailored for high-rank Lie-type groups address the
challenges posed by their large dimensions and intricate internal structures [6].

Beyond pure mathematics, finite simple groups have significant interdisciplinary applications.
Sporadic groups, in particular, have been linked to areas such as string theory and particle physics,
underscoring the broader scientific importance of these mathematical constructs [7].

Efforts to enhance the practical utility of CFSG algorithms have yielded substantial improvements.
Holt and Eick [8] developed techniques to optimize permutation representations, which are critical
for subgroup computations and isomorphism testing. Similarly, Cameron [9] introduced
innovative algorithms for analyzing transitivity and primitivity in permutation groups, facilitating
more efficient classification of finite simple groups.

Addressing the inherent complexity of character tables and modular representations remains an
ongoing challenge. Hiss [10] emphasized the necessity of efficient computational methods for
small-characteristic representations, which are essential for verifying group properties across
various contexts. These advancements not only support theoretical classification but also pave the
way for practical applications in technology and science.

Despite these strides, significant challenges persist. The classification of certain subgroups,
especially those of characteristic 2 type, continues to require substantial computational resources.
Lyons [11] highlighted the critical need for novel algorithms to bridge these gaps, illustrating the
synergy between traditional mathematical techniques and modern computational tools.

Emerging research has begun to explore the integration of machine learning with CFSG
algorithms. Pak [12] proposed probabilistic models leveraging random processes to analyze group
structures, demonstrating the promising role of artificial intelligence in advancing classification
methodologies. This confluence of classical mathematics and cutting-edge computational
techniques exemplifies the dynamic and evolving nature of research in this domain.

Existing computational approaches to finite group classification, such as general-purpose
computational group theory (CGT) systems (e.g., GAP System, 2023; Magma, [13]), methods
leveraging structural theorems like Aschbacher's Theorem [14], and direct applications of classical
simplicity tests [15,16], offer broad capabilities for group structure analysis and specific group
recognition.

However, these established methods exhibit distinct limitations when applied to the specific task
of efficiently identifying all simple groups within a defined, practical order range. General-purpose
CGT systems, while powerful for comprehensive structural decomposition and the analysis of very
large groups, often incur significant computational overhead due to the construction of complex
data structures (e.g., Base and Strong Generating Sets) that are not optimally suited for rapid,
binary simplicity testing across numerous groups [13].
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Approaches based on Aschbacher's Theorem, while indispensable for understanding the intricate
maximal subgroup structures of classical matrix groups, are not designed as general algorithms for
determining the simplicity of arbitrary finite groups solely by their order [14].

Similarly, classical simplicity tests, derived from foundational theoretical criteria, primarily
provide necessary conditions for non-simplicity (e.g., ruling out simplicity for groups of certain
orders) but typically lack a complete algorithmic pipeline for affirmatively identifying and
classifying all simple groups across a broad range of orders.

This collective gap in current research, the absence of a computationally optimized framework
specifically tailored for rapid and comprehensive simplicity determination within a practical order
scope, impedes efficient exploration and application of finite simple groups in fields such as
cryptography and coding theory, where quick identification is often prioritized [17,18].

This paper introduces a Novel Algorithmic Framework for Classification of Finite Simple Groups,
which aims to precisely fill this identified gap. Our approach fundamentally diverges from existing
methods through its optimized algorithmic structure, particularly the strategic deployment of a
preliminary divisibility filter.

Unlike general-purpose CGT systems that may perform extensive computations upfront, or
classical tests that offer only partial criteria, our framework front-loads a computationally
inexpensive check to rapidly prune a large percentage of non-simple candidates. This
methodological innovation significantly reduces the overall computational burden for subsequent,
more resource-intensive normal subgroup verification steps, and place the simple groups identified
into their distinct classes.

2. PRELIMINARIES

2.1 Algorithm

In computational group theory, an algorithm is a systematic procedure designed to solve problems
related to group classification, structure analysis, or representation theory. These methods enable
the practical implementation of theoretical results, particularly for complex or large-order groups,
and are critical for enhancing computational accuracy and efficiency [10,8].

2.2  Alternating Groups

The alternating group A, is the subgroup of the symmetric group S, consisting of all even
permutations of n elements. For n>5, 4, is simple, with order n! / 2 (Robinson, 1996). Alternating
groups play a central role in the classification of finite simple groups and have been extensively
studied for their structural properties [20].

2.3  Classification of Finite Simple Groups (CFSG)

The CFSG theorem classifies all finite simple groups into four categories: cyclic groups of prime
order, alternating groups 4, with n > 5, simple groups of Lie type, and 26 sporadic groups. This
comprehensive classification is a cornerstone of modern algebra [21,2].

2.4  Cyclic Groups

A cyclic group is generated by a single element, such that every element is a power of this
generator. Cyclic groups of prime order are simple and constitute the most basic class in the CFSG
[19].
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2.5 Divisibility Checks
Divisibility checks determine whether one integer divides another without remainder. In group
theory, they are used to verify subgroup orders and apply Sylow theorems computationally [8].

3. MATERIALS AND METHODS
The algorithm follows a structured approach to classify finite groups:

3.1 Theoretical Framework
e Sylow Theorems: Used to analyze the existence and number of subgroups of prime power
order.

« Divisibility Condition: If G is a finite simple group and H is any proper subgroup of G,
then |G| must divide [G : H]!. This serves as a necessary condition for simplicity and is
used as an early filter.

« Lagrange’s Theorem: Fundamental for ensuring subgroup indices are integers and for
general group order analysis.

3.2 Algorithm Description
Algorithm: Classification of Finite Simple Groups

1. Input: Group order |G| < 10,000

Step 1: Generate proper subgroups using SymPy
Step 2: Compute indices [G : H] = |G|/ |H|

Step 3: Verify |G| divides [G : H]! (divisibility test)
Step 4: Check for normal subgroups (Vg, gHg ' = H)

Step 5: Classify simple groups into four families

N o oA woN

Output: Classification result

3.3 Implementation
The algorithms are implemented using Python, chosen for its versatility and support for
mathematical computations.

3.4  Testing and Validation
The developed algorithmic framework is rigorously tested and validated on well-known finite
groups, including both simple and non-simple examples, with orders up to 10,000.

e Test cases include canonical simple groups (e.g., 4s, PSL2(7)) to ensure correct
identification.

e Test cases also include various non-simple groups (e.g., cyclic composite groups, dihedral
groups, symmetric groups S, for n < 5) to verify correct rejection.

e The accuracy of subgroup generation and normality tests is cross-verified against
established group databases.
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RESULTS AND DISCUSSIONS

4.2

4.3

Family Count|| Percentage
Cyclic (C,) 1,229 || 99.11%
Alternating (4,) 3 0.24%
Lie-type 7 0.56%
Sporadic (M) 1 0.08%
Total Simple Groups||1,240 || 100%

Key Findings
Cyclic Dominance: Within the specified order range (< 10,000), 1,229 prime numbers exist,
each yielding a simple cyclic group C,. This highlights their overwhelming numerical
presence.

Non-Abelian Simple Groups: The algorithm successfully identified the non-abelian simple
groups within the range:

o Alternating groups: A4s (order 60), 4s (order 360), and A4~ (order 2,520).

o Lie-type groups: Examples include PSL(2,7) (order 168), PSL(2,8) (order 504),
PSL(2,11) (order 660), PSL(3,3) (order 5,616), PSL(2,13) (order 1,092), PSL(2,17)
(order 2,448), and PSL(2,19) (order 3,420).

o Sporadic group: Only one sporadic group, the Mathieu group M. (order 7,920), falls
within the order limit and was correctly identified.

Non-Simple Groups: The algorithm accurately excluded non-simple groups by detecting
the presence of their nontrivial normal subgroups. For instance, S«(order24) was correctly
identified as non-simple because it contains 4. as a normal subgroup. Similarly, A« (order
12) was flagged as non-simple due to the presence of the Klein four-group as a normal
subgroup. This validates the algorithm’s capability to correctly identify non-simple groups
based on the rigorous definition of simplicity.

Visualization of Results

To enhance the understanding and interpretation of the classification, the results were visualized
through various charts and tables:

Categorical Distribution Chart: A pie chart (Figure 1) illustrates the stark contrast
between the number of simple and non-simple group orders identified within the 10,000
order range, highlighting the rarity of simple groups.

Simple Group Family Proportions: A log scale bar chart (Figure 2) visually represents
the dominance of cyclic groups of prime order among the simple groups, with smaller
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bars for alternating, Lie-type, and Sporadic groups, reflecting the proportions presented in
the 10,000 order.

Distribution of Groups

1: Distribution of Simple vs. Non-Simple Group Orders (Order < 10,000)

Log-Scale Visualization of Finite Simple Group Families
1229

: X ; 1
Cyclic (Cp) Alternating (A,) Lie-type Sporadic

2: Proportion of Simple Group Families Identified by Order (Order < 10,000)

DISCUSSION OF RESULTS

The results of this study unequivocally demonstrate the effectiveness of the proposed algorithmic
framework in accurately identifying and classifying finite simple groups within the range of orders
up to 10,000. The numerical findings align perfectly with established theoretical knowledge
regarding the distribution and nature of simple groups.

The dominance of cyclic groups of prime order among the simple groups is a well-known
characteristic of finite group theory, and our computational results reinforce this. The rarity of non-

abelian

simple groups within the lower order range underscores their unique and fundamental role

as the building blocks of finite group theory (analogous to prime numbers in integer factorization).
The successful identification of specific alternating, Lie-type, and the single sporadic group (M::)
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within this range validates the algorithm’s ability to handle the diverse structures of these complex
groups.

The strategic inclusion of the divisibility test as a preliminary filter proved to be a practical and
effective enhancement to the algorithm’s performance. By quickly pruning a large percentage of
non-simple candidates, the overall computational load for the more resource-intensive normal
subgroup verification was significantly reduced. This highlights a key aspect of the algorithm’s
novelty ,its optimized sequence of tests designed for computational efficiency in identifying simple
groups by order.

CONCLUSION

This work presents a scalable and accurate algorithmic framework for classifying finite simple
groups up to an order of 10,000. The hybrid approach, combining theoretical insights with
computational optimizations, provides a practical tool for group-theoretic analysis.
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