

THIRD DERIVATIVE MONO-IMPLICIT RUNGE-KUTTA METHODS FOR STIFF ODEs

I. B. AIHIE, AND R.I. OKUONGHAE

Department of Mathematics, University of Benin, Benin City; Nigeria...

ARTICLE INFO

Article history:

Received xxxx

Revised xxxx

Accepted xxxx

Available online xxxx

Keywords:

Third Derivative
Mono-Implicit
Runge-kutta;
order condition;
A-stability;
stiff IVPs.

ABSTRACT

This work focuses on a Third-Derivative Mono-Implicit Runge–Kutta (TD-MIRK) method developed for the numerical approximation of stiff initial value problems (IVPs) in ordinary differential equations. The order conditions for the scheme are derived using Taylor series expansions. We introduce a seventh-order TD-MIRK method constructed to require the least possible number of function evaluations. The numerical experiments are then compared with well-known methods previously reported in the literature.

1. INTRODUCTION

The study, investigate a Third-Derivative Mono-Implicit Runge–Kutta (TD-MIRK) methods developed for the numerical solution of initial value problems (IVPs) associated with ordinary differential equations (ODEs):

$$y' = f(x, y), x \in [x_0, X] \quad y(x_0) = y_0$$

where $g = y'' = f_x + f_y f$ $l = y''' = f_{xx} + 2ff_{xy} + f^2f_{yy} + f_x f_y f + f f_{yy}$, $f: \mathbb{R}^N \rightarrow \mathbb{R}^N$ and $l: \mathbb{R}^N \rightarrow \mathbb{R}^N$. Numerous real-world applications can be represented by (1). The MIRK method was first presented in [10] with its general form expressed as

$$Y_i = (1 - v_i)y_n + v_i y_{n+1} + h \sum_{j=1}^{i-1} x_{ij} f(x_n + c_j h, Y_j), \quad i = 1, 2, \dots, s, \\ y_{n+1} = y_n + h \sum_{i=1}^s b_i f(x_n + c_i h, Y_i). \quad (2)$$

*Corresponding author: I. B. AIHIE

E-mail address: becky.aiguobasimwin@uniben.edu,

<https://doi.org/10.60787/tnamp.v23.623>

1115-1307 © 2025 TNAMP. All rights reserved

Here, $c = [c_1, \dots, c_s]^T$, and h are the abscissa vector and step-size respectively. The $Y_i = y(x_n + c_i h)$ and y_{n+1} are approximation of the stage and output methods of order q and p

Respectively. The corresponding tableau to the method in (2) is given as follows

c	v	X
		b^T

Several modifications of the MIRK methods has been proposed in [7],[11],[13],[14],[15] and[16]. Recently, Aihie and Okuonghae [2-4] enhanced the formulation of MIRK method frameworks through the inclusion of second derivative term, as presented in equation (3) below.

$$Y_i = (1 - v_i)y_n + v_i y_{n+1} + h \sum_{j=1}^{i-1} x_{ij} f(x_n + c_j h, Y_j) + h^2 \sum_{j=1}^{i-1} \bar{x}_{ij} g(x_n + c_j h, Y_j), \quad i = 1, 2, \dots, s$$

$$y_{n+1} = y_n + h \sum_{i=1}^s b_i f(x_n + c_i h, Y_i) + h^2 \sum_{i=1}^s \bar{b}_i g(x_n + c_i h, Y_i). \quad (3)$$

Their approach was motivated by the need to improve accuracy and efficiency in solving a specific type of difficult differential equations (stiff ODEs). In the spirit of the authors in the literature, we incorporate the third derivative term in our method.

The TD-MIRK methods

An extended version of (3) consider in this paper is

$$Y_r = (1 - v_r)y_n + v_r y_{n+1} + h \sum_{j=1}^{r-1} x_{rj} f(x_n + c_j h, Y_j) + h^2 \sum_{j=1}^{r-1} \bar{x}_{rj} g(x_n + c_j h, Y_j) + h^3 \sum_{j=1}^{r-1} \hat{x}_{rj} g(x_n + c_j h, Y_j), \quad c_r \in (0,1) \quad (4)$$

And

$$\begin{aligned} y_{n+1} = & y_n + h \sum_{r=1}^s b_r(\theta) f(x_n + c_r h, Y_r) \\ & + h^2 \sum_{r=1}^s \bar{b}_r(\theta) g(x_n + c_r h, Y_r) \\ & + h^3 \sum_{r=1}^s \hat{b}_r(\theta) g(x_n + c_r h, Y_r), \\ \theta = 1. \end{aligned} \quad (5)$$

The term 1 represents the third derivative in the system of ODEs given in (1), while $c_r = (c_1, \dots, c_s)^T$, $Y_r = y(x_n + c_r h)$, $\{v_r\}_{r=1}^s, \{x_{rj}\}_{j=1, r=1}^{r-1, s}, \{\bar{x}_{rj}\}_{j=1, r=1}^{r-1, s}, \{\hat{x}_{rj}\}_{j=1, r=1}^{r-1, s}, \{b_r(\theta)\}_{r=1}^s, \{\bar{b}_r(\theta)\}_{r=1}^s$ and $\{\hat{b}_r(\theta)\}_{r=1}^s$ are defined as abscissa values, stages and the weight Polynomial. This method is derived under the condition that $c_r = \sum_{j=1}^{r-1} x_{rj} + \sum_{j=1}^{r-1} \bar{x}_{rj} + v_r$ and set $\theta = 1$. Equation (4) and (5) is an extension of the methods in [[2],[3], [4]]. Survey of some third derivative A-stable methods appear in [[6],[5],[18]]. Sections 3 and 4 cover order conditions and stability; Sections 5 and 6 derive the TD-MIRK schemes and the corresponding numerical experiments. The Butcher tableau associated with (4) and (5) is given by

		c_1	v_1	x_{11}	\dots	x_{1s}	\bar{x}_{11}	\dots	\bar{x}_{1s}	\hat{x}_{11}	\dots	\hat{x}_{1s}	
c	v	X	\bar{X}	\hat{X}	$=$	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
		$b^T($	\bar{b}^T	\hat{b}^T		c_s	v_s	x_{s1}	\dots	x_{ss}	\bar{x}_{s1}	\dots	\bar{x}_{s1}
											\hat{x}_{s1}	\dots	\hat{x}_{ss}
								$b_1(\theta \dots b_s(\theta$	$b_1(\theta \dots b_s(\theta$	$b_1(\theta \dots b_s(\theta$	$b_1(\theta \dots b_s(\theta$	\dots	$b_1(\theta \dots b_s(\theta$
													$)$

The order condition of the TD-MIRK methods

The order conditions of the methods in (4) and (5) are obtained by Taylor's series expansion approach about x_n and equating the power of h to zero gives stage order q

$$C = Xe + v;$$

$$\frac{c^j}{j!} = \frac{Xc^{j-1}}{(j-1)!} + \frac{\bar{X}c^{j-2}}{(j-2)!} + \frac{v}{j!} \quad j = 2, \quad (7)$$

$$\frac{c^j}{j!} = \frac{Xc^{j-1}}{(j-1)!} + \frac{\bar{X}c^{j-2}}{(j-2)!} + \frac{\bar{X}c^{j-3}}{(j-3)!} + \frac{v}{j!} \quad j = 3(1)q,$$

and the method of order p

$$b^T e = e \quad (8)$$

$$\frac{1}{j!} = \frac{b^T c^{j-1}}{(j-1)!} + \frac{\bar{b}^T c^{j-2}}{(j-2)!} + \frac{v}{j!} \quad j = 2$$

$$\frac{1}{j!} = \frac{b^T c^{j-1}}{(j-1)!} + \frac{\bar{b}^T c^{j-2}}{(j-2)!} + \frac{\bar{b}^T c^{j-3}}{(j-3)!} + \frac{v}{j!} \quad j = 3(1)$$

Stability Analysis

The stability of the method (4) and (5) is analyzed by deriving their stability function for a TD-MIRK method applied to the linear test equation $y(x)' = \lambda y(x)$, the stability function $R(z)$ is given

$$R(z) = \frac{I - zX - z^2\bar{X} - z^3\hat{X} + zeb^T + z^2eb^T + z^3eb\hat{b}^T - zvb^T - z^2v\bar{b}^T - z^3v\hat{b}^T}{I - zX - z^2X - z^3\hat{X} - zvb^T - z^2v\bar{b}^T - z^3v\hat{b}^T}, z = \lambda h. \quad (9)$$

we derive by considering the scalar test equation $y' = \lambda y(x)$, For this problem, the associated stage derivatives satisfy $f = \lambda y$, $g = \lambda^2 y$ and $l = \lambda^3 y$, demonstrating that each higher order stage derivative arises directly from the stage value Y through successive applications of the operator λ To simplify, we take $e = (1, \dots, 1)^T$ and $v = (v_1, \dots, v_s)^T$, Hence, (4) and (5) reduces to the form

$$(I - zX - z^2\bar{X} - z^3\hat{X})Y - vy_{n+1} = (e - v)y_n \quad (10)$$

and

$$(-zb^T - z^2\bar{b}^T - z^3\hat{b}^T)Y + y_{n+1} = y_n \quad (11)$$

From (10) we have,

$$Y = \frac{(e-\nu)y_n + \nu y_{n+1}}{(I - zX - z^2\bar{X} - z^3\hat{X})} \quad (12)$$

Inserting (12) into (11) gives

$$(-zb^T - z^2\bar{b}^T - z^3\hat{b}^T) \left(\frac{(e-\nu)y_n + \nu y_{n+1}}{(I - zX - z^2\bar{X} - z^3\hat{X})} \right) + y_{n+1} = y_n \quad (13)$$

Multiplying both side of the (13) by $(I - zX - z^2\bar{X} - z^3\hat{X})$ gives

$$(-zb^T - z^2\bar{b}^T - z^3\hat{b}^T)((e - \nu)y_n + \nu y_{n+1}) + (I - zX - z^2\bar{X} - z^3\hat{X})y_{n+1} = (I - zX - z^2\bar{X} - z^3\hat{X})y_n \quad (14)$$

Simplifying (14) and collecting like terms yields

$$[v(-zb^T - z^2\bar{b}^T - z^3\hat{b}^T) + (I - zX - z^2\bar{X} - z^3\hat{X})]y_{n+1} = [(I - zX - z^2\bar{X} - z^3\hat{X})(e - \nu)(-zb^T - z^2\bar{b}^T - z^3\hat{b}^T)]y_n. \quad (15)$$

From (15) we obtain $y_{n+1} = R(z)y_n$. Thus the stability function is

$$R(z) = \frac{I - zX - z^2\bar{X} - z^3\hat{X} + zeb^T + z^2e\bar{b}^T + z^3e\hat{b}^T - zvb^T - z^2v\bar{b}^T - z^3v\hat{b}^T}{I - zX - z^2\bar{X} - z^3\hat{X} - zvb^T - z^2v\bar{b}^T - z^3v\hat{b}^T} \quad (16)$$

Construction of the TD-MIRK method

Here, we derive the method introduced in (4) and (5) a scheme characterized with order of accuracy and stage order. Methods where $p=q$ are highly promising for practical applications, (see [2] [9],[10],[18],[19]). we therefore restrict our analysis exclusively to this class of method. The derivation presented herein adopted an approach analogous to the ones detailed in [2], [18], and [19].

5.1. TD-MIRK method of order $p=q=7$, $s=3$

A system of linear equations was derived from (7) and (8) with $p=q=7$ and $s=3$, and solved to obtain expressions in terms of $\{c_r\}_{r=1}^s$ such that $c_1 = c_2 = c_3$. The Butcher tableau for the $p=7$ method is given by

c	v	X	\bar{X}	\hat{X}	=	0	0	0	0	0	0	0	0
						1	1	0	0	0	0	0	0
		b^T	\bar{b}^T	\hat{b}^T		3	30456	924	-6804	0	114	648	0
						4	32768	32768	32768		32768	32768	
								2932	-3564	8192	444	756	0
								$\frac{2932}{7560}$	$\frac{-3564}{7560}$	$\frac{8192}{7560}$	$\frac{444}{7560}$	$\frac{756}{7560}$	0
											$\frac{27}{7560}$	$\frac{-45}{7560}$	0

Method in (17) stability function is $R(z) = -\frac{3360+1560z+300z^2+28z^3+z^4}{3360-1800z+420z^2-52z^3+3z^4}$. The boundary locus for the scheme in (17) reveals it is A-stable

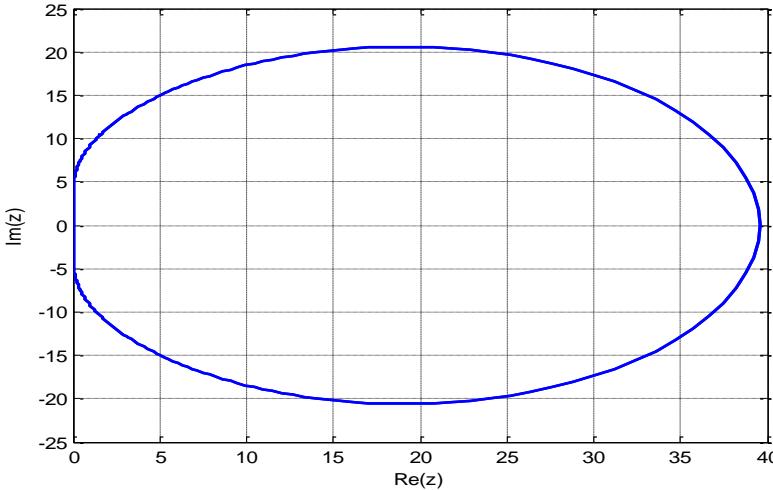


Figure1: Stability plot for TD-MIRK

5. Numerical Experiment

The performance and accuracy of the TD-MIRK7 scheme are evaluated through numerical experiments in this section

The 7th order

$$y_{n+\frac{3}{4}} = \frac{2312}{32768} y_n + \frac{30456}{32768} y_{n+1} + \frac{924h}{32768} f_n - \frac{6804h}{32768} f_{n+1} + \frac{144h^2}{32768} g_n + \frac{144h^2}{32768} g_{n+1} + \frac{9h^3}{32768} l_n - \frac{27h^3}{32768} l_{n+1}$$

$$y_{n+1} = y_n + \frac{2932h}{7560} f_n - \frac{3564h}{7560} f_{n+1} + \frac{8192h}{7560} f_{n+\frac{3}{4}} + \frac{444h^2}{7560} g_n + \frac{756h^2}{7560} g_{n+1} + \frac{27h^3}{7560} l_n - \frac{45h^3}{7560} l_{n+1}$$

We benchmark the performance of our method against those in [5], assessing accuracy on the following problems.

Problem 1: source: [5]

$$\left\{ \begin{array}{l} y' = 198y + 199z, \\ z' = -398y - 399z, \\ y(0) = 1, \quad z(0) = 1, \\ \text{exact solution: } y(x) = e^{-x}, z(x) = -e^{-x} \end{array} \right.$$

Table 1: Comparison of errors in TDMIRK7 (17) with [5] for problem 1.

	Error in [5] (p=10)		TD-MIRK 7 (P=7)	
	$y(x)$	$z(x)$	$y(x)$	$z(x)$
0.1	8.44×10^{-9}	7.04×10^{-9}	1.30×10^{-14}	1.30×10^{-14}
0.2	1.65×10^{-8}	1.51×10^{-8}	1.27×10^{-14}	1.26×10^{-14}
0.3	2.29×10^{-8}	2.18×10^{-8}	1.29×10^{-14}	1.27×10^{-14}
0.4	2.81×10^{-8}	2.69×10^{-8}	1.28×10^{-14}	1.29×10^{-14}
0.5	3.19×10^{-8}	3.10×10^{-8}	1.87×10^{-14}	1.86×10^{-14}
0.6	3.49×10^{-8}	3.40×10^{-8}	1.58×10^{-14}	1.60×10^{-14}
0.7	3.69×10^{-8}	3.61×10^{-8}	2.56×10^{-14}	2.55×10^{-14}
0.8	3.83×10^{-8}	3.76×10^{-8}	2.95×10^{-14}	2.95×10^{-14}
0.9	3.91×10^{-9}	3.84×10^{-8}	3.11×10^{-14}	3.11×10^{-14}
1.0	3.94×10^{-8}	3.88×10^{-8}	3.45×10^{-14}	3.44×10^{-14}

Table 1 established that the new method TD-MIRK7 of order 7 demonstrates superior accuracy to the existing method of order 10 in [5], which makes it appropriate for the integration of stiff system in ODEs.

Problem 2: source: [5]

$$\begin{cases} y' = 100y + 9.901z, \\ z = 0.1y - z, \\ y(0) = 1, \quad z(0) = 10, \end{cases}$$

exact solution: $y(x) = e^{-\frac{99}{100}x}$, $z(x) = 10e^{-\frac{99}{100}x}$

Table 2: Comparison of errors in TDMIRK7 (17) with [5] for problem 1.

	Error in [5] (p=10)		TD-MIRK 7 (P=7)	
	$y(x)$	$z(x)$	$y(x)$	$z(x)$
0.1	8.85×10^{-11}	3.26×10^{-9}	7.78×10^{-15}	7.79×10^{-14}
0.2	2.14×10^{-10}	5.91×10^{-9}	1.08×10^{-14}	1.09×10^{-13}
0.3	4.62×10^{-10}	8.03×10^{-9}	1.33×10^{-14}	1.34×10^{-13}
0.4	6.61×10^{-10}	9.70×10^{-9}	1.75×10^{-14}	1.27×10^{-13}
0.5	8.18×10^{-10}	1.09×10^{-8}	1.90×10^{-14}	1.92×10^{-13}
0.6	9.04×10^{-10}	1.19×10^{-8}	2.03×10^{-14}	2.04×10^{-13}
0.7	1.03×10^{-9}	1.26×10^{-8}	2.24×10^{-14}	2.24×10^{-13}
0.8	1.09×10^{-9}	1.30×10^{-8}	2.27×10^{-14}	2.27×10^{-13}
0.9	1.14×10^{-9}	1.33×10^{-8}	2.32×10^{-14}	2.30×10^{-13}
1.0	1.16×10^{-9}	1.34×10^{-8}	2.31×10^{-14}	2.30×10^{-13}

In Table 2, for problem 2 the numerical results reveals that the TD – MIRK7 in (17) is better in terms of accuracy than method in [5] . The numerical results in Table 2 show that the new methods are capable of giving accurate and stable results, hence the TD – MIRKM7 performed better than the [5] as expected.

Conclusion

In this study, we introduce TD–MIRK method that is A-stable for the numerical treatment of stiff initial value problems in ordinary differential equations. The stability investigation presented in Section 4, along with the illustration in Figure 1, confirms that the method achieves both zero-stability and A-stability. The numerical outcomes in Tables 1 and 2 further demonstrate that the proposed approach outperforms existing techniques reported in the literature.

References

- [1] Aiguobasimwin, I.B, and Okuonghae, R.I. A Class of Two-Derivative Two-Step Runge Kutta methods for Non-stiff ODEs. Hindawi.Journal of Applied Mathematics, (2019).
- [2] Aihie, I.B, and Okuonghae, R.I. A-stable Two Derivative Mono-Implicit Runge-Kutta Methods for ODEs. Earthline Journal of Mathematical Sciences 14(3), (2024),565-588.
- [3] Aihie, I.A and Okuonghae, R.I. Extended Mono-Implicit Runge-Kutta methods for stiff ODEs. Journals of Nigerian Association of Mathematical Physics 64, (2022), pp.53-58.
- [4] Aihie, I.A and Okuonghae, R.I. Second-Derivative Two-Step Mono-Implicit Runge-Kutta methods for stiff ODEs. International journals of Mathematics Trends and Technology IJMTT 70,2024. Physics 64, (2022), pp.53-58.
- [5] Adoghe, L.O, Omole, E.O and fadughba, S.E. Third derivative method for solving stiff system of ordinary differential equations. Int.J. mathematics in operational Research Vol.23, No.3(2022), pp.412-425.
- [6] Akinfenwa, O.A. Third derivative hybrid block integrator for solution of stiff system of initial value problems. African Mathematical Union and Springer-Verlag Berlin Heidelberg (2017) Vol.2, pp.629-641.
- [7] Burrage, K. Chipman F.H and Muir P.H. Muir order results for Mono-Implicit Runge Kutta methods. SIAM J. Numer. Anal.31 (1994), 867-891.
- [8] Butcher J.C. Implicit Runge-Kutta processes. Math. comp 18(1964).
- [9] Butcher, J.C, Chartier, P and Jackiewicz, Z. Nordsieck representation of DIM SIMs, Numer. Algor., 16 (1997) 209–230.
- [10] Butcher, J.C and Jackiewicz, Z. Implementation of diagonally implicit multistage integration methods for ordinary differential equations, SIAM J.Numer. Anal., 34 (1997) 2119–2141.
- [11] Cash J.R. A class of Implicit Runge-Kutta methods for numerical integration of stiff differential systems. J. ACM, 22 (1975), 504-511.

- [12] Cash J.R and Singhal A. Mono-Implicit Runge-Kutta formulae for numerical integration of stiff differential systems. IMA.J. Numer Anal, 2 (1982), 211-227.
- [13] De Meyer H, et al, On the generation of mono-implicit Runge-Kutta-Nystrom methods by mono-implicit Runge-Kutta methods. Journal of Computational and Applied Mathematics 111 (1999) 37-47.
- [14] Dow F., Generalized Mono-Implicit Runge-Kutta Methods for Stiff Ordinary Differential Equations. Saint Marys University, Halifax, Nova Scotia, MSc Thesis (2017).
- [15] Muir P, and Adams M, Mono-Implicit Runge-Kutta-Nystrom methods with Application to boundary value ordinary differential equations. BIT vol 41 4 (2001), 776-799.
- [16] Muir P, and Owen B, Order Barriers and Characterizations for Continuous Mono Implicit Runge-Kutta schemes. Math. Comp. vol.61 204(1993), 675-699.
- [17] Okuonghae, R.I and Ikhile, M.N.O. L(α)-Stable variable second-derivative Runge-Kutta methods Numerical Analysis and Applications. Vol. 7, No 4, (2014), pp. 314-327.
- [18] Okuonghae, R.I and Aiguobasimwin, I.B. Variable step-size Implementation of Hybrid Linear Multistep methods. Journals of Nigerian Association of Mathematical Physics 27,(2014),pp.29-36.
- [19] Okuonghae, R.I and Ikhile, M.N.O. L(α)-Stable Multi-derivative GLM. Journal of Algorithms and Computational Technology Vol. 9 No. 4(2015), pp. 339-376