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1. INTRODUCTION

The study, investigate a Third-Derivative Mono-Implicit Runge—Kutta (TD-MIRK) methods
developed for the numerical solution of initial value problems (IVVPs) associated with ordinary
differential equations (ODES):
y' = f0y),x €[xo, X] ¥(x0) =y

where g = y” =fi+ fyfl = y”’ = fex t+ foxy +f2fyy +fxfyf+ffYy' f:RN - RV
and I: R - RN. Numerous real-world applications can be represented by (1). The
MIRK method was first presented in [10] with its general form expressed as

i—-1

Yi = (1 — vi)yn + ViVn+1 + hz xijf(xn + th, Y),l = 1,2, .. S,
j=1

S
Vs = Y+ h ) Bif G + i, YD, @
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Here, c=[c1, ..., Cs]", and h are the abscissa vector and step-size respectively. The Y; =
v(x, + c;h) and y,,, are approximation of the stage and output methods of order g and p
Respectively. The corresponding tableau to the method in (2) is given as follows

c \Y X
| o
Several modifications of the MIRK methods has been proposed in [7],[11],[13],[14],[15] and[16].
Recently, Aihie and Okuonghae [2-4] enhanced the formulation of MIRK method frameworks
through the inclusion of second derivative term, as presented in equation (3) below.
Vi = (1 = v)yn + Viynss + REZ1 205 f Con + R Y)) + B2 X521 %ijg (o +
¢hY), i=12..5

Yn+1 = Yn + hXi_1 bif (xy + ;A Y)) + h? =1 Eig(xn + c;h, 7). (3

Their approach was motivated by the need to improve accuracy and efficiency in solving a
specific type of difficult differential equations (stiff ODES). In the spirit of the authors in the
literature, we incorporate the third derivative term in our method.

The TD-MIRK methods
An extended version of (3) consider in this paper is

Yo =0 =)y + v Ynsr t+ hZ;i xrjf(xn + thr Y)+ h? 1]:% frjg(xn +
¢ih, V) + h3 3721 &g (xn + 1Y), ¢ € (0,1) (4)

And
s
Yn+1 =Ynth bi(e)f(xn + ¢ h, Yr)
r=1

S
+ R Z b,(0)g(x, + c.h, Y,)
r=1

S
+ 13 Z b,(0)g(x, + ch, Y,),
1

r=
0=1. (5)
The term | represents the third derivative in the system of ODEs given in (1), while ¢, =
r—1,s _ r—1,s ~ r—1,s
(c1, .. "CS)T v Y =y(xn + crh), {Ur}f:lv {xrj}j=1,r=1’ {xrj}j=1,r=1’ {xrj}j=1,r=1’

{b,(6)}¥5_1, {Er(e)}izl and {Br(e)}izl are defined as abscissa values, stages and the weight
Polynomial. This method is derived under the condition that ¢, = 5;} Xrj + Z;;} X,;j + v, and
set & = 1. Equation (4) and (5) is an extension of the methods in [[2],[3], [4]]. Survey of some
third derivative A-stable methods appear in [[6],[5],[18]]. Sections 3 and 4 cover order conditions

and stability; Sections 5 and 6 derive the TD—MIRK schemes and the corresponding numerical
experiments. The Butcher tableau associated with (4) and (5) is given by
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~

C1] V4| X117 " X15 | X11 " X1s | X171 " X1g

Tei BT AT v e ¥ 7 e X
b (‘ b b Cs| Vs| Xs1 Xss | Xs1 Xs1 | Xs1 Xss

by(0 -+ bs(8 by(8 -+ bs(f by(8 -+ bs(6

The order condition of the TD-MIRK methods

The order conditions of the methods in (4) and (5) are obtained by Taylor’s series expansion
approach about x,, and equating the power of h to zero gives stage order q

C =Xe+v;

cJ XcJ-1 Xci-2 v,

AT ottt =2 0
cJ XcJ-1 Xci-2 Xci-3 v,

7= ottty /=30

and the method of order p

bTe=e (8)
1 bTc/™t  pTci2  p
ATG- TG 1/
1 bTc/7Y  pTci=2 pTci3 v
+ = j=31)

D ED M ED I

Stability Analysis

The stability of the method (4) and (5) is analyzed by deriving their stability function for a TD-
MIRK method applied to the linear test equation y(x) = Zy(x), the stability function R(z) is
given

1-zX-7z2X-23%+zebT +z2ebT+z3ebT —zvbT—z2vbT—2z3vbT
R(Z) = y Z = Xh (9)

[—-zX—22X-2z3X—zvbT—z2vbT-z3vhT

we derive by considering the scalar test equation y’ = Ay(x), For this problem, the associated
stage derivatives satisfy f = Xy, g = A%y and | = A3y, demonstrating that each higher order stage
derivative arises directly from the stage value Y through successive applications of the operator A
To simplify, we take e = (1, ...,1)Tand v = (v, ..., v5)T, Hence, (4) and (5) reduces to the form

(I—zX —2z2X —ZX)Y —vypq = (e — V) (10)

and
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(=zbT — 2207 = Z3BT)Y + Y41 = W (11)

From (10) we have,

_ (e=v)yn+vynsq
T (I-zX-z2X —z3%) (12)

Inserting (12) into (11) gives

T ~ (e=v)yn+vyn
(=2b” = 257 = 226" (G20 2505) + Ynen = o 2)

Multiplying both side of the (13) by (I — zX — z2X — z3X) gives
(—=zb" — z2b" — z°b")((e = V)yp + Vyni1) + (I —2X = 22X —2°K)ynp = (U —2X — 22X — 23Xy,  (14)
Simplifying (14) and collecting like terms yields

[v(=zbT — z2bT — 23b7) + (I — zX — 22X — 2°X)|yns1 = [(I — 2X — 2°X — 23X)(e — v)(—zb" — 2%b" —
A (15)

From (15) we obtain y,,.; = R(2)y,. Thus the stability function is

_ N _ ~T _ ~T
I-zX-22X —z3%+zebT+z2ebT+ z3eb —zvbT —z2vbT —2z3vb

R(z) =

(16)

_ N _ ~T
1-zX—22X —z38—zvbT—z2vbT—2z3vb

Construction of the TD-MIRK method

Here, we derive the method introduced in (4) and (5) a scheme characterized with order of accuracy
and stage order. Methods where p=q are highly promising for practical applications, (see [2]
[9],[210],[18],[19]). we therefore restrict our analysis exclusively to this class of method. The
derivation presented herein adopted an approach analogous to the ones detailed in [2], [18], and
[19].

5.1. TD-MIRK method of order p=q=7, s=3

A system of linear equations was derived from (7) and (8) with p=g=7 and s=3, and solved to o
btain expressions in terms of {c,};-, such that c; = ¢, = ¢35 . The Butcher tableau for the p=7
method is given by

0] o 0 0 0 0 0 0] o 0 0
c‘v‘ X ‘ X% = 1] 1 0 0 0 0 0 0| o 0 0
bT | BT | BT 3|30456| 924 —6804 o 114 648 o] 9 -27 0 (17
4| 32768| 32768 32768 32768 32768 32768 32768 )
2932 —3564 8192| 444 756 0| 27 —45 0
7560 7560 7560| 7560 7560 7560 7560
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33604+15602z+300z%+28z3+z%
3360—18002z+420z2-52z3+3z%

Method in (17) stability function is R(z) = —
for the scheme in (17) reveals it is A-stable
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Figurel: Stability plot for TD—MIRK

5. Numerical Experiment
The performance and accuracy of theTD—MIRK?7 scheme are evaluated through numerical
experiments in this section

The7thorde
_ 2312 30456 924h 6804h +_144h2 _+144h2
Yn+2 = 327687 T 327687 T 32768/ ~ 327681 T 32768 9" T 32768 I+t
N oni 27
32768 * 32768 "1
_, ,2932h  3564h  B192h +_444h2 +756h2 +_27h3l

Yne1 = I+ Zeen-hn = e fnnt T o fras F o 9n T ey Ini F ool
45h*
7560 "1

We benchmark the performance of our method against those in [5], assessing accuracy on the
following problems.

Problem 1: source: [5]
y' =198y + 199z,
z = —398y — 399z, ,
y(0)=1  z(0)=1,

kexact solution: y(x) = e™*,z(x) = —e7*¥
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Table 1: Comparison of errors in TDMIRKY7 (17) with [5] for problem 1.

Errorin [5] TD-MIRK 7
(p=10) (P=7)
X y(x) z(x) y(x) Z(x)

0.1 8.44 x 107° 7.04x 107° | 1.30 x 10~14 1.30 x 10714
0.2 1.65 x 1078 1.51x 1078 | 1.27 x 10714 1.26 x 10714
0.3 229%x1078% | 218x1078 | 1.29x 107* | 1.27 x 10~
0.4 281x107% | 269x1078 | 1.28x107* | 1.29x 107
0.5 3.19 x 1078 3.10x 1078 | 1.87 x 10~14 1.86 x 10714
0.6 3.49 x 1078 340x 1078 | 1.58x107* | 1.60 x 10~
0.7 3.69 x 1078 3.61x 1078 | 256 x1071* | 255 x 1074
0.8 3.83 x 1078 3.76 x 1078 | 295x 107" | 295x 10714
0.9 3.91 x 107° 3.84%x1078 | 3.11x10°* | 3.11x 10714
1.0 3.94 x 1078 3.88x 1078 | 3.45x107* | 344 x 107

Tablel established that the new method TD—MIRK?7 of order7 demonstrates superior accuracy to
the existing method of order10 in [5], which makes it appropriate for the integration of stiff
system in ODEs.

Problem 2: source: [5]

(

y(0) =1,

z= 0.1y — z,

y' =100y + 9.901z,

)

2(0) = 10,

99 99
exact solution: y(x) = e 100%, z(x) = 10e~ 100"

Table 2: Comparison of errors in TDMIRK?7 (17) with [5] for problem 1.

Errorin [5] TD-MIRK 7
(p=10) (P=7)
X y(x) z(x) y(x) z(x)

0.1 8.85 x 1011 3.26 x107% | 7.78 x 107> 7.79 x 10~ 14
0.2 2.14 x 10710 591x107° | 1.08x 10714 1.09 x 10713
0.3 4.62 x 10710 8.03x107° | 1.33 x 10~ 1.34 x 10713
0.4 6.61 x 10719 9.70x 107° | 1.75 x 10~ 14 1.27 x 10713
0.5 8.18 x 10710 1.09x 1078 | 1.90x 1074 1.92 x 10713
0.6 9.04 x 10719 1.19x 1078 | 2.03x 1074 2.04 x 10713
0.7 1.03 x 107° 1.26 X 1078 | 2.24x 10714 2.24x 10713
0.8 1.09 x 10~° 1.30x 1078 | 2.27 x 10714 2.27 x 10713
0.9 1.14 x 107° 1.33x107°8 | 232x 10714 2.30 x 10713
1.0 1.16 x 10~° 1.34x 1078 | 231 x 1074 2.30x 10713
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In Table 2, for problem 2 the numerical results reveals that the TD — MIRK?7 in (17) is better in
terms of accuracy than method in [5] . The numerical results in Table 2 show that the new methods
are capable of giving accurate and stable results, hence the TD — MIRKM?7 performed better than
the [5] as expected.

Conclusion

In this study, we introduce TD—MIRK method that is A-stable for the numerical treatment of stiff
initial value problems in ordinary differential equations. The stability investigation presented in
Section 4, along with the illustration in Figure 1, confirms that the method achieves both zero-
stability and A-stability. The numerical outcomes in Tables 1 and 2 further demonstrate that the
proposed approach outperforms existing techniques reported in the literature.
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