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ABSTRACT 

This work focuses on a Third-Derivative Mono-Implicit Runge–Kutta (TD-

MIRK) method developed for the numerical approximation of stiff initial 

value problems (IVPs) in ordinary differential equations. The order 

conditions for the scheme are derived using Taylor series expansions. We 

introduce a seventh-order TD-MIRK method constructed to require the least 

possible number of function evaluations. The numerical experiments are 

then compared with well-known methods previously reported in the 

literature. 

 

 

 

 

 

1. INTRODUCTION  

The study, investigate a Third-Derivative Mono-Implicit Runge–Kutta (TD-MIRK) methods 

developed for the numerical solution of initial value problems (IVPs) associated with ordinary 

differential equations (ODEs): 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑥 𝜖[𝑥0, 𝑋]  𝑦(𝑥0) = 𝑦0   
where 𝑔 = 𝑦′′ = 𝑓𝑥 + 𝑓𝑦𝑓 𝑙 = 𝑦

′′′ = 𝑓𝑥𝑥 +  2𝑓𝑓𝑥𝑦 + 𝑓
2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦𝑓 + 𝑓𝑓𝑌𝑦 , 𝑓: ℝ

𝑁 → ℝ𝑁    

and 𝑙: ℝ𝑁 → ℝ𝑁 . Numerous real-world applications can be represented by (1). The 

MIRK method was first presented in [10] with its general form expressed as 

𝑌𝑖 = (1 − 𝑣𝑖)𝑦𝑛 + 𝑣𝑖𝑦𝑛+1 + ℎ∑𝑥𝑖𝑗𝑓(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗), 𝑖 = 1,2, … 𝑠,

𝑖−1

𝑗=1

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ∑𝑏𝑖𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖).

𝑠

𝑖=1

                          (2) 
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Here, c = [c1, . . . , cs]
T , and h are the abscissa vector and step-size respectively. The 𝑌𝑖 =

𝑦(𝑥𝑛 + 𝑐𝑖ℎ) and 𝑦𝑛+1 are approximation of the stage and output methods of order q and p  

Respectively. The corresponding tableau to the method in (2) is given as follows 

c v X 

  𝑏𝑇 

Several modifications of the MIRK methods has been proposed in [7],[11],[13],[14],[15] and[16]. 

Recently, Aihie and Okuonghae [2-4] enhanced the formulation of MIRK method frameworks 

through the inclusion of second derivative term, as presented in equation (3) below. 

𝑌𝑖 = (1 − 𝑣𝑖)𝑦𝑛 + 𝑣𝑖𝑦𝑛+1 + ℎ∑ 𝑥𝑖𝑗𝑓(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗) + ℎ
2𝑖−1

𝑗=1 ∑ 𝑥̅𝑖𝑗𝑔(𝑥𝑛 +
𝑖−1
𝑗=1

𝑐𝑗ℎ, 𝑌𝑗),   𝑖 = 1,2… 𝑠     

𝑦𝑛+1 = 𝑦𝑛 + ℎ∑ 𝑏𝑖𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖) + ℎ
2∑ 𝑏̅𝑖𝑔(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖).

𝑠
𝑖=1

𝑠
𝑖=1                 (3)  

Their approach was motivated by the need to improve accuracy and efficiency in solving a 

specific type of difficult differential equations (stiff ODEs). In the spirit of the authors in the 

literature, we incorporate the third derivative term in our method. 

The TD-MIRK methods 

An extended version of (3) consider in this paper is 

𝑌𝑟 = (1 − 𝑣𝑟)𝑦𝑛 + 𝑣𝑟𝑦𝑛+1 + ℎ∑ 𝑥𝑟𝑗𝑓(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗) + ℎ
2𝑟−1

𝑗=1 ∑ 𝑥̅𝑟𝑗𝑔(𝑥𝑛 +
𝑟−1
𝑗=1

𝑐𝑗ℎ, 𝑌𝑗) + ℎ
3∑ 𝑥̂𝑟𝑗𝑔(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗)

𝑟−1
𝑗=1 , 𝑐𝑟 ∈ (0,1)                                                            (4) 

And 

𝑦𝑛+1 = 𝑦𝑛 + ℎ∑𝑏𝑖(𝜃)𝑓(𝑥𝑛 + 𝑐𝑟ℎ, 𝑌𝑟)

𝑠

𝑟=1

+ ℎ2∑𝑏̅𝑟(𝜃)𝑔(𝑥𝑛 + 𝑐𝑟ℎ, 𝑌𝑟)

𝑠

𝑟=1

+ ℎ3∑𝑏̂𝑟(𝜃)𝑔(𝑥𝑛 + 𝑐𝑟ℎ, 𝑌𝑟),

𝑠

𝑟=1

𝜃 = 1 .                                                       (5) 

The term l represents the third derivative in the system of ODEs given in (1), while 𝑐𝑟 =

(𝑐1,    .  .  . , 𝑐𝑠)
𝑇 , 𝑌𝑟 = 𝑦(𝑥𝑛 + 𝑐𝑟ℎ),   {𝑣𝑟}𝑟=1

𝑠 , {𝑥𝑟𝑗}𝑗=1,𝑟=1
𝑟−1,𝑠

,  {𝑥̅𝑟𝑗}𝑗=1,𝑟=1
𝑟−1,𝑠

, {𝑥̂𝑟𝑗}𝑗=1,𝑟=1
𝑟−1,𝑠

, 

 {𝑏𝑟(𝜃)}𝑟=1
𝑠 , {𝑏̅𝑟(𝜃)}𝑟=1

𝑠
 and {𝑏̂𝑟(𝜃)}𝑟=1

𝑠
 are defined as abscissa values, stages and the weight 

Polynomial.  This method is derived under the condition that 𝑐𝑟 = ∑ 𝑥𝑟𝑗
𝑟−1
𝑗=1 + ∑ 𝑥̅𝑟𝑗

𝑟−1
𝑗=1 + 𝑣𝑟 and 

set 𝜃 = 1. Equation (4) and (5) is an extension of the methods in [[2],[3], [4]]. Survey of some 

third derivative A-stable methods appear in [[6],[5],[18]]. Sections 3 and 4 cover order conditions 

and stability; Sections 5 and 6 derive the TD−MIRK schemes and the corresponding numerical 

experiments. The Butcher tableau associated with (4) and (5) is given by 
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      𝑐1 𝑣1 𝑥11 ⋯ 𝑥1𝑠 𝑥̿11 ⋯ 𝑥̅1𝑠 𝑥̂11 ⋯ 𝑥̂1𝑠  

c v 𝑋 𝑋̅ 𝑋̂ = ⋮ ⋮  ⋮   ⋮   ⋮   

  𝑏𝑇(𝜃) 𝑏̅𝑇 𝑏̂𝑇  𝑐𝑠 𝑣𝑠 𝑥𝑠1 ⋯ 𝑥𝑠𝑠 𝑥̅𝑠1 ⋯ 𝑥̅𝑠1 𝑥̂𝑠1 ⋯ 𝑥̂𝑠𝑠 (

1

7

) 

        𝑏1(𝜃)
𝑇 ⋯ 𝑏𝑆(𝜃)

𝑇 𝑏1(𝜃)
𝑇 ⋯ 𝑏𝑆(𝜃)

𝑇 𝑏1(𝜃)
𝑇 ⋯ 𝑏𝑆(𝜃)

𝑇  

The order condition of the TD-MIRK methods 

The order conditions of the methods in (4) and (5) are obtained by Taylor’s series expansion 

approach about 𝑥𝑛 and equating the power of ℎ to zero gives stage order 𝑞 

                       𝐶 = 𝑋𝑒 + 𝑣; 

                      
𝑐𝑗

𝑗!
=  

𝑋𝑐𝑗−1

(𝑗−1)!
+ 

𝑋̅𝑐𝑗−2

(𝑗−2)!
+ 

𝑣

𝑗!
    𝑗 = 2,                                    (7) 

                      
𝑐𝑗

𝑗!
=  

𝑋𝑐𝑗−1

(𝑗−1)!
+ 

𝑋̅𝑐𝑗−2

(𝑗−2)!
+ 

𝑋̅𝑐𝑗−3

(𝑗−3)!
+ 

𝑣

𝑗!
    𝑗 = 3(1)𝑞,                   

and the method of order p  

                                                        𝑏𝑇𝑒 = 𝑒                                               (8) 

1

𝑗!
=
𝑏𝑇𝑐𝑗−1

(𝑗 − 1)!
+ 
𝑏̅𝑇𝑐𝑗−2

(𝑗 − 2)!
+ 
𝑣

𝑗!
    𝑗 = 2 

1

𝑗!
=
𝑏𝑇𝑐𝑗−1

(𝑗 − 1)!
+ 
𝑏̅𝑇𝑐𝑗−2

(𝑗 − 2)!
+ 
𝑏̅𝑇𝑐𝑗−3

(𝑗 − 3)!
+ 
𝑣

𝑗!
    𝑗 = 3(1) 

Stability Analysis 
The stability of the method (4) and (5) is analyzed by deriving their stability function for a TD-

MIRK method applied to the linear test equation  𝑦(𝑥)′ = ƛ𝑦(𝑥),  the stability function 𝑅(𝑧) is 

given 

 

𝑅(𝑧) =
𝐼−𝑧𝑋−𝑧2𝑋̅−𝑧3𝑋̂+𝑧𝑒𝑏𝑇+𝑧2𝑒𝑏̅̅̅̅ 𝑇+𝑧3𝑒𝑏̂𝑇−𝑧𝑣𝑏𝑇−𝑧2𝑣𝑏̅𝑇−𝑧3𝑣𝑏̂𝑇

𝐼−𝑧𝑋−𝑧2𝑋−𝑧3𝑋̂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝑧𝑣𝑏𝑇−𝑧2𝑣𝑏̅𝑇−𝑧3𝑣𝑏̂𝑇
, 𝑧 = ƛℎ.                           (9) 

we derive by considering the scalar test equation 𝑦′ = ƛ𝑦(𝑥), For this problem, the associated 

stage derivatives satisfy 𝑓 = ƛ𝑦, 𝑔 = ƛ2𝑦 and 𝑙 = ƛ3𝑦, demonstrating that each higher order stage 

derivative arises directly from the stage value Y through successive applications of the operator λ 
To simplify, we take  𝑒 = (1,… ,1)𝑇and 𝑣 = (𝑣1… , 𝑣𝑠)

𝑇,  Hence, (4) and (5) reduces to the form 

(𝐼 − 𝑧𝑋 − 𝑧2𝑋̅   − 𝑧3𝑋̂)𝑌 − 𝑣𝑦𝑛+1 = (𝑒 − 𝑣)𝑦𝑛                                                                            (10) 

and   
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(−𝑧𝑏𝑇 − 𝑧2𝑏̅𝑇 − 𝑧3𝑏̂𝑇)𝑌 + 𝑦𝑛+1 = 𝑦𝑛                                                                                          (11) 

From (10) we have, 

𝑌 =
(𝑒−𝑣)𝑦𝑛+𝑣𝑦𝑛+1

(𝐼−𝑧𝑋−𝑧2𝑋̅ −𝑧3𝑋̂)
                                                                                                                     (12) 

Inserting (12) into (11) gives 

(−𝑧𝑏𝑇 − 𝑧2𝑏̅𝑇 − 𝑧3𝑏̂𝑇) (
(𝑒−𝑣)𝑦𝑛+𝑣𝑦𝑛+1

(𝐼−𝑧𝑋−𝑧2𝑋̅ −𝑧3𝑋̂)
) + 𝑦𝑛+1 = 𝑦𝑛                                                           (13) 

Multiplying both side of the (13) by (𝐼 − 𝑧𝑋 − 𝑧2𝑋̅  − 𝑧3𝑋̂) gives 

(−𝑧𝑏𝑇 − 𝑧2𝑏̅𝑇  − 𝑧3𝑏̂𝑇)((𝑒 − 𝑣)𝑦𝑛 + 𝑣𝑦𝑛+1) + (𝐼 − 𝑧𝑋 − 𝑧
2𝑋 ̅  − 𝑧3𝑋̂)𝑦𝑛+1 = (𝐼 − 𝑧𝑋 − 𝑧

2𝑋̅  − 𝑧3𝑋̂)𝑦𝑛        (14) 

Simplifying (14) and collecting like terms yields 

[𝑣(−𝑧𝑏𝑇 − 𝑧2𝑏̅𝑇  − 𝑧3𝑏̂𝑇) + (𝐼 − 𝑧𝑋 − 𝑧2𝑋̅  − 𝑧3𝑋̂)]𝑦𝑛+1 = [(𝐼 − 𝑧𝑋 − 𝑧
2𝑋̅  − 𝑧3𝑋̂)(𝑒 − 𝑣)(−𝑧𝑏𝑇 − 𝑧2𝑏̅𝑇 −

𝑧3𝑏̂𝑇)]𝑦𝑛.                                                                                                                                                        (15) 

From (15) we obtain 𝑦𝑛+1 = 𝑅(𝑧)𝑦𝑛. Thus the stability function is 

𝑅(𝑧) =
𝐼−𝑧𝑋−𝑧2𝑋̅ −𝑧3𝑋̂+𝑧𝑒𝑏𝑇+𝑧2𝑒𝑏̅𝑇+ 𝑧3𝑒𝑏̂

𝑇
−𝑧𝑣𝑏𝑇−𝑧2𝑣𝑏̅𝑇−𝑧3𝑣𝑏̂

𝑇

𝐼−𝑧𝑋−𝑧2𝑋 ̅−𝑧3𝑋̂−𝑧𝑣𝑏𝑇−𝑧2𝑣𝑏̅𝑇−𝑧3𝑣𝑏̂
𝑇                                                        (16) 

Construction of the TD-MIRK method  
Here, we derive the method introduced in (4) and (5) a scheme characterized with order of accuracy 

and stage order. Methods where p=q are highly promising for practical applications, (see [2] 

[9],[10],[18],[19]). we therefore restrict our analysis exclusively to this class of method. The 

derivation presented herein adopted an approach analogous to the ones detailed in [2], [18], and 

[19]. 

5.1. TD-MIRK method of order p=q=7, s=3 

A system of linear equations was derived from (7) and (8) with p=q=7 and s=3, and solved to o 

btain expressions in terms of {𝑐𝑟}𝑟=1
𝑠    such that 𝑐1 = 𝑐2 = 𝑐3 . The Butcher tableau for the p=7 

method is given by 
      0 0 0 0 0 0 0 0 0 0 0  

c v 𝑋 𝑋̅ 𝑋̂ = 1 1 0 0 0 0 0 0 0 0 0  

  𝑏𝑇 𝑏̅𝑇 𝑏̂𝑇  3

4
 
30456

32768
 
924

32768
 
−6804

32768
 
0 114

32768
 
648

32768
 
0 9

32768
 
−27

32768
 
0 (17

) 

        2932

7560
 
−3564

7560
 
8192

7560
 
444

7560
 

756

7560
 
0 27

7560
 

−45

7560
 
0  
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 Method in (17) stability function is 𝑅(𝑧) = −
3360+1560𝑧+300𝑧2+28𝑧3+𝑧4

3360−1800𝑧+420𝑧2−52𝑧3+3𝑧4
 .The boundary locus 

for the scheme in (17) reveals it is A-stable

 

Figure1: Stability plot for TD−MIRK 

5. Numerical Experiment 
The performance and accuracy of theTD−MIRK7 scheme are evaluated through numerical 

experiments in this section  

The7thorde 

𝑦𝑛+3
4
=
2312

32768
𝑦𝑛 +

30456

32768
𝑦𝑛+1 +

924ℎ

32768
𝑓𝑛 −

6804ℎ

32768
𝑓𝑛+1 +

144ℎ2

32768
𝑔𝑛 +

144ℎ2

32768
𝑔𝑛+1

+
9ℎ3

32768
𝑙𝑛 −

27ℎ3

32768
𝑙𝑛+1 

𝑦𝑛+1 = 𝑦𝑛 +
2932ℎ

7560
𝑓𝑛 −

3564ℎ

7560
𝑓𝑛+1 +

8192ℎ

7560
𝑓𝑛+3

4
+
444ℎ2

7560
𝑔𝑛 +

756ℎ2

7560
𝑔𝑛+1 +

27ℎ3

7560
𝑙𝑛

−
45ℎ3

7560
𝑙𝑛+1 

We benchmark the performance of our method against those in [5], assessing accuracy on the 

following problems. 

Problem 1: source: [5] 

{
 

 
y′ = 198y + 199z,   

z = −398y − 399z, ,

  y(0) = 1, z(0) = 1,

exact solution: y(x) = e−x, z(x) = −e−x

 

 

 

0 5 10 15 20 25 30 35 40
-25

-20

-15

-10

-5

0

5

10

15

20

25

Re(z)

Im
(z

)
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Table 1: Comparison of errors in TDMIRK7 (17) with [5] for problem 1. 

 

 

Error in [5] 

(p=10) 

 TD-MIRK 7 

(P=7) 

  

 

𝑥 y(x) z(x) y(x) z(x) 

0.1 8.44 × 10−9 7.04 × 10−9 1.30 × 10−14 1.30 × 10−14 

0.2 1.65 × 10−8 1.51 × 10−8 1.27 × 10−14 1.26 × 10−14 

0.3 2.29 × 10−8 2.18 × 10−8 1.29 × 10−14 1.27 × 10−14 

0.4 2.81 × 10−8 2.69 × 10−8 1.28 × 10−14 1.29 × 10−14 

0.5 3.19 × 10−8 3.10 × 10−8 1.87 × 10−14 1.86 × 10−14 

0.6 3.49 × 10−8 3.40 × 10−8 1.58 × 10−14 1.60 × 10−14 

0.7 3.69 × 10−8 3.61 × 10−8 2.56 × 10−14 2.55 × 10−14 

0.8 3.83 × 10−8 3.76 × 10−8 2.95 × 10−14 2.95 × 10−14 

0.9 3.91 × 10−9 3.84 × 10−8 3.11 × 10−14 3.11 × 10−14 

1.0 3.94 × 10−8 3.88 × 10−8 3.45 × 10−14 3.44 × 10−14 
 

Table1 established that the new method TD−MIRK7 of order7 demonstrates superior accuracy to 

the existing method of order10 in [5], which makes it appropriate for the integration of stiff 

system in ODEs. 

Problem 2:  source: [5] 

{
 
 

 
 y′ = 100y + 9.901z,   

z = 0.1y − z, ,

  y(0) = 1, z(0) = 10,

exact solution: y(x) = e−
99
100

x, z(x) = 10e−
99
100

x

 

Table 2: Comparison of errors in TDMIRK7 (17) with [5] for problem 1. 

 

 

Error in [5] 

(p=10) 

 TD-MIRK 7 

(P=7) 

  

 

𝑥 y(x) z(x) y(x) z(x) 

0.1 8.85 × 10−11 3.26 × 10−9 7.78 × 10−15 7.79 × 10−14 

0.2 2.14 × 10−10 5.91 × 10−9 1.08 × 10−14 1.09 × 10−13 

0.3 4.62 × 10−10 8.03 × 10−9 1.33 × 10−14 1.34 × 10−13 

0.4 6.61 × 10−10 9.70 × 10−9 1.75 × 10−14 1.27 × 10−13 

0.5 8.18 × 10−10 1.09 × 10−8 1.90 × 10−14 1.92 × 10−13 

0.6 9.04 × 10−10 1.19 × 10−8 2.03 × 10−14 2.04 × 10−13 

0.7 1.03 × 10−9 1.26 × 10−8 2.24 × 10−14 2.24 × 10−13 

0.8 1.09 × 10−9 1.30 × 10−8 2.27 × 10−14 2.27 × 10−13 

0.9 1.14 × 10−9 1.33 × 10−8 2.32 × 10−14 2.30 × 10−13 

1.0 1.16 × 10−9 1.34 × 10−8 2.31 × 10−14 2.30 × 10−13 
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In Table 2, for problem 2 the numerical results reveals that the TD − MIRK7 in (17) is better in 

terms of accuracy than method in [5] . The numerical results in Table 2 show that the new methods 

are capable of giving accurate and stable results, hence the TD − MIRKM7 performed better than 

the [5] as expected. 

 

Conclusion 

In this study, we introduce TD−MIRK method that is A-stable for the numerical treatment of stiff 

initial value problems in ordinary differential equations. The stability investigation presented in 

Section 4, along with the illustration in Figure 1, confirms that the method achieves both zero-

stability and A-stability. The numerical outcomes in Tables 1 and 2 further demonstrate that the 

proposed approach outperforms existing techniques reported in the literature. 

 

References 

[1]  Aiguobasimwin, I.B, and Okuonghae, R.I. A Class of Two-Derivative Two-Step Runge 

Kutta methods for Non-stiff ODEs. Hindawi.Journal of Applied Mathematics, (2019). 

 [2]  Aihie, I.B, and Okuonghae, R.I. A-stable Two Derivative Mono-Implicit Runge-Kutta 

Methods for ODEs. Earthline Journal of Mathematical Sciences 14(3), (2024),565-588. 

 [3]  Aihie, I.A and Okuonghae, R.I. Extended Mono-Implicit Runge-Kutta methods for stiff 

ODEs. Journals of Nigerian Association of Mathematical Physics 64, (2022), pp.53-58. 

 [4]  Aihie, I.A and Okuonghae, R.I. Second-Derivative Two-Step Mono-Implicit Runge-Kutta 

methods for stiff ODEs.International journals of Mathematics Trends and Technology 

IJMTT 70,2024. Physics 64, (2022), pp.53-58.  

[5]  Adoghe, L.O, Omole, E.O and fadughba, S.E. Third derivative method for solving stiff 

system of ordinary differential equations. Int.J. mathematics in operational Research 

Vol.23, No.3(2022), pp.412-425.  

[6]  Akinfenwa, O.A. Third derivative hybrid block integrator for solution of stiff system of 

initial value problems. African Mathematical Union and Springer-Verlag Berlin Heidel 

berg (2017) Vol.2, pp.629-641. 

 [7]  Burrage, K. Chipman F.H and Muir P.H. Muir order results for Mono-Implicit Runge 

Kutta methods. SIAM J. Numer. Anal.31 (1994), 867-891.  

[8]  Butcher J.C. Implicit Runge-Kutta processes. Math. comp 18(1964). 

 [9]  Butcher, J.C, Chartier, P and Jackiewicz, Z. Nordsieck representation of DIM 

SIMs,Numer. Algor., 16 (1997) 209–230. 

 [10]  Butcher, J.C and Jackiewicz, Z. Implementation of diagonally implicit multistage inte 

gration methods for ordinary differential equations, SIAM J.Numer. Anal., 34 (1997) 

2119–2141. 

[11]  Cash J.R. A class of Implicit Runge-Kutta methods for numerical integration of stiff 

differential systems. J. ACM, 22 (1975), 504-511. 



Aihie and Okuonghae. - Transactions of NAMP 23, (2025) 77-84 

84 

 [12]  Cash J.R and Singhal A. Mono-Implicit Runge-Kutta formulae for numerical integration of 

stiff differential systems.IMA.J. Numer Anal, 2 (1982), 211-227. 

 [13]  De Meyer H,et al, On the generation of mono-implicit Runge-Kutta-Nystrom methods by 

mono-implicit Runge-Kutta methods. Journal of Computational and Applied Mathe matics 

111 (1999) 37–47.  

[14]  Dow F., Generalized Mono-Implicit Runge-Kutta Methods for Stiff Ordinary Differential 

Equations. Saint Marys University, Halifax, Nova Scotia, MSc Thesis (2017).  

[15]  Muir P, and Adams M, Mono-Implicit Runge-Kutta-Nystrom methods with Application to 

boundary value ordinary differential equations. BIT vol 41 4 (2001), 776-799. 

 [16]  Muir P, and Owen B, Order Barriers and Characterizations for Continuous Mono Implicit 

Runge-Kutta schemes. Math. Comp. vol.61 204(1993), 675-699. 

 [17]  Okuonghae, R.I and Ikhile, M.N.O. L(α)-Stable variable second-derivative Runge-Kutta 

methods Numerical Analysis and Applications. Vol. 7, No 4, (2014), pp. 314-327.  

[18]  Okuonghae, R.I and Aiguobasimwin, I.B. Variable step-size Implementation of Hybrid 

Linear Multustep methods.Journals of Nigerian Association of Mathematical Physics 

27,(2014),pp.29-36. 

 [19] Okuonghae, R.I and Ikhile, M.N.O. L(α)-Stable Multi-derivative GLM. Journal of Al 

gorithms and Computational Technology Vol. 9 No. 4(2015), pp. 339-376 

 


