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ABSTRACT 

Monkey-pox is a relatively rare disease but with a case fatality rate of 1-

10%. In this work, we formulated and analyze a mathematical model for the 

transmission dynamics of monkey-pox. We showed the existence of two 

equilibria namely, disease free and endemic equilibria. Both equilibria were 

shown to be globally stable. Sensitivity analysis showed that control 

strategies should be geared towards reducing contacts between susceptible 

humans and infected humans and infected non-humans. Also, numerical 

simulations showed that though human to human transmission may 

contribute to the incidence of monkey-pox in a population, the non-human 

to human transmission is seen to play more significant role in sustaining the 

transmission of monkey pox in a human population. 

 

 

 

1. INTRODUCTION  

Monkey-pox (MPX) is a rare viral zoonotic disease with its symptoms similar to small 

pox but less severe [1]. It is a member of the orthopoxvirus genus in the family poxviridae and it 

is similar to smallpox in terms of the skin lesions (pox) seen in humans [1]. It belongs to the same 

family as small pox and cowpox [2], [3]. It is different from smallpox because unlike smallpox 

that is from (human to human) only, monkey- pox can be from human to human or animal to 

human [4]. Monkey pox is endemic in rodent populations in African [5]. It was first discovered in 

monkeys in 1958 [4]. The disease and eventually the causative virus was named monkey pox 

because the lesion (pox) seen in monkeys developed like other pox forming diseases [6]. The 

incubation period of MPX is usually from 6 to 16 days but it can range from 5 to 21 days which 

can be divided into two periods [5]. First, the invasion period (0 - 5days) and this is characterized 

by fever, malaise, intense headache, cough, nausea, back and muscle ache and shortness of breath. 

Secondly, we have the skin eruption period (within 1-3 days) after appearance of fever [7]. 
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The rash appears often on the face (95% of cases) and then spreads to other parts of the body like 

the palms, feet and entire body [5]. During this period the lymph nodes swell. Some patients 

develop severe lymphenopathy before the appearance of the rash, which is a distinctive feature of 

MPV compared to other similar diseases [5]. Currently, there are no specific treatments or vaccines 

available for monkey pox infections, but outbreaks can be controlled (WHO). The vaccines used 

to eradicate small pox have been proven tobe 85% effective in preventing monkeypox [6]. 

The first mathematical model for MPV is credited to [7]. They developed a mathematical model 

for the dynamics of the transmission of MPV infection with control strategies of combined vaccine 

and treatment interventions. Using standard approaches, they determined two equilibria for the 

model namely: disease free and endemic. The disease- free equilibrium was proved to be both 

locally and globally asymptotically stable if 𝑅𝑂  < 1 using the next generation matrix approach 

and comparison theorem. They computed the basic reproduction number for the humans and non-

humans primates using some parameter values. Numerical simulations carried out revealed that 

the infectious individuals in the human and non-human primates’ populations will die out in the 

course of the proposed interventions. Sensitivity analysis carried out on the model parameters 

showed that the basic reproduction numbers of the model which served as a threshold for 

measuring new infections in the host populations decrease with increase in the control parameters 

of vaccination and treatment. [8] formulated a mathematical model of monkey pox virus 

transmission dynamics with two interacting host populations; humans and rodents. They incor-

porated into the human population the quarantine class and public enlightenment campaign 

parameter as means of controlling the spread of the disease. They obtained the Disease Free 

Equilibrium (DFE) and Endemic Equilibrium (EE). The basic reproduction number  𝑅𝑜ℎand 𝑅𝑜𝑛 

were computed and used for the analysis after which they analyzed the Disease Free Equilibrium 

(DFE) for stability using Jacobian matrix techniques and Lyapunov function. In 2020, [9] analysed 

a compartmental model of MPX dynamics. Their goal was to see whether MPX can be controlled 

and eradicated by voluntary vaccinations. They showed that there are three equilibria: disease free, 

fully endemic and previously neglected semi-endemic (with disease existing only among humans). 

The existence of semi-endemic equilibrium has severe implications should the MPX virus mutate 

to increased viral fitness in humans. They discovered that MPX is controllable and can be 

eradicated in a semi-endemic equilibrium by vaccination. However, in a fully endemic 

equilibrium, MPX cannot be eradicated by vaccination alone. 

Therefore, in this study, we seek to investigate how the rodent population affects the dynamics of 

monkey-pox in the human population. This paper is organized as follows. The model is 

formulation is given in Section 2 and the model is analyzed in Section 3. Numerical studies are 

considered in Section 4. The findings from this study are summarized in Section 5. 

2. MODEL FORMULATION 

A basic Monkey-pox virus model with human population at time t is formulated. The total human 

population size denoted by (𝑁ℎ), is divided into four subclasses namely; 𝑆ℎ(𝑡)which denotes the 

number of persons not yet infected with the Monkey-pox virus but are susceptible to the disease, 

 𝐼ℎ(𝑡) which denotes the number of infected individuals and are capable of spreading the disease 

to those to those in the susceptible class, 𝐸ℎ(𝑡) denoting the individuals that are exposed and 𝑅ℎ(𝑡) 
denoting the number of individuals who initially were infected but have now recovered. The total 

non-human population 𝑁𝑁𝐻   is divided into four subclasses which are the 𝑆𝑛ℎ(𝑡)denoting the 

number of rodents (Non-humans) not yet infected with the virus but are susceptible to the virus, 

𝐸𝑛ℎ(𝑡) denoting the number of rodents (Non-humans) that are exposed and 𝐼𝑛ℎ(𝑡) which denotes 

the infected rodents and 𝑅𝑛ℎ(𝑡)the population of the recovered rodents. It is assumed that, the 
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susceptible human individuals increased by recruitment of individuals at a constant rate Ʌℎ. The 

susceptible individuals acquire the virus when they come into contact with infected individual and 

non-human individuals at the rate 𝜆ℎ.   

where 𝜆ℎ =
𝛽𝑛1𝐼𝑛ℎ

𝑁𝑛ℎ
+ 

𝛽ℎ𝐼ℎ

𝑁ℎ
 .     

In the same vein, the susceptible non-humans are infected at the rate   𝜆𝑛ℎ by other infected non-

humans, where  𝜆𝑛ℎ =
𝛽𝑛2𝐼𝑛ℎ

𝑁𝑛ℎ
. Where 𝛽ℎ  is defined as the probability of a susceptible person 

getting infected from another human, 𝛽𝑛1 is the probability of a susceptible human getting infected 

from an infected non-human and 𝛽𝑛2 is the probability of a non-human getting infected by another 

non-human  [10].The model for monkey –pox transmission dynamics in a population is given by 

the following system of deterministic non-linear differential equations (Table 1 and 2 describe the 

associated state variables and parameters in the model (1) while Figure 1 gives the flow diagram 

of model (1).) 

𝑑𝑆ℎ
𝑑𝑡

= Ʌℎ − 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ 

𝑑𝐸ℎ
𝑑𝑡

= 𝜆ℎ𝑆ℎ − (𝛾 + 𝜇ℎ)𝐸ℎ             

𝑑𝐼ℎ
𝑑𝑡
= 𝛾𝐸ℎ − (𝜏ℎ + 𝜇ℎ + 𝛿1)𝐼ℎ 

𝑑𝑅ℎ
𝑑𝑡

= 𝜏ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ                                                                     (1) 

𝑑𝑆𝑛ℎ
𝑑𝑡

= Ʌ𝑛ℎ − 𝜆𝑛ℎ𝑆𝑛ℎ − 𝜇𝑛ℎ𝑆𝑛ℎ 

𝑑𝐸𝑛ℎ
𝑑𝑡

= 𝜆𝑛ℎ𝑆𝑛ℎ − (𝛼 + 𝜇𝑛ℎ)𝐸𝑛ℎ             

𝑑𝐼𝑛ℎ
𝑑𝑡

= 𝛼𝐸𝑛ℎ −   (𝜇𝑛ℎ +  𝜏𝑛ℎ + 𝛿2)𝐼𝑛ℎ       

𝑑𝑅𝑛ℎ
𝑑𝑡

= 𝜏𝑛ℎ𝐼𝑛ℎ − 𝜇𝑛ℎ𝑅𝑛ℎ 

𝑁ℎ = Sℎ + Eℎ + 𝐼ℎ + 𝑅ℎ,    𝑁𝑛ℎ = S𝑛ℎ + 𝐸𝑛ℎ +𝐼𝑛ℎ + 𝑅𝑛ℎ 

Subject to the following non-negative initial conditions 𝑅𝑛ℎ(0) ≥ 0 

𝑆ℎ (0) ≥ 0, 𝐸ℎ (0) ≥ 0, 𝐼ℎ (0) ≥0, 𝑅ℎ (0) ≥ 0 , 𝑆𝑛ℎ (0) ≥ 0, 𝐸𝑛ℎ(0) ≥ 0 ,  𝐼𝑛ℎ(0) ≥ 0,  𝑅𝑛ℎ(0) ≥ 0 

Table 1 : Description of  variables and parameters in the model (1) 

Variable Interpretation 

𝑆ℎ Population of Susceptible humans 

𝐸ℎ Population of Exposed humans 

𝐼ℎ Population of Infectious humans 
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𝑅ℎ Population of Recovered humans 

𝑆𝑛ℎ Population of Susceptible non-humans 

𝐸𝑛ℎ Population of Exposed non-humans 

𝐼𝑛ℎ Population of Infectious non-humans 

𝑅𝑛ℎ Population of Infected non-humans 

 Parameter Interpretation 

Ʌℎ Recruitment rate for humans 

Ʌ𝑛ℎ Recruitment rate for Non-humans 

𝛽ℎ  Probability of monkey pox transmission from infectious humans to 

susceptible humans 

𝛽𝑛1 Probability of monkey pox transmission from infectious non-humans 

to susceptible humans 

𝛽𝑛2 Probability of monkey pox transmission from infectious non-humans 

to susceptible non- humans 

𝜇ℎ Natural mortality rate for humans 

𝜇𝑛ℎ Natural mortality rate for non-humans 

𝛿1 Disease induced death rates for humans 

𝛿2 Disease induced death rates for non-humans 

𝜏1 Recovery rate for humans 

𝜏2 Recovery rate for non-humans 

Γ Progression rate of exposed humans 
Α Progression rate of exposed non-humans 

 

 

Figure 1: Schematic diagram of the model (1) 

3. ANALYSIS OF THE MODEL 

We will explore the qualitative properties of the in-host model (1) in this section. 

3.1 Basic Properties of the model 

In this section the basic qualitative properties such as positivity and boundedness of the solutions 

of the basic Monkey pox virus model (1) is explored. We claim the following result. 
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Theorem 0.1 The model (1) preserves positivity of solutions. That is, solutions with positive initial 

conditions remain positive for all time t. 

Proof.  Let  

𝑡1 sup{t > 0: 𝑆ℎ (t) > 0, 𝐸ℎ (t) > 0, 𝐼ℎ (t) > 0, 𝑅ℎ (t) > 0, 𝑆𝑛ℎ (t) > 0, 𝐸𝑛ℎ (t) > 0, 𝐼𝑛ℎ (t) > 0, 𝑅𝑛ℎ (t) 
> 0. 

From the first equation of the model (1), it follows that   

  
𝑑𝑆ℎ

𝑑𝑡
 = Ʌℎ − ( 𝜆ℎ + 𝜇ℎ)𝑆ℎ 

when solved leads to 𝑆ℎ(𝑡1) =  𝑆ℎ(0) exp [−𝜇ℎ𝑡1 − ∫ 𝜆ℎ(𝜏)𝑑(𝜏)
𝑡1
0

 ] + {exp [−𝜇ℎ𝑡1 −

 ∫ 𝜆ℎ(𝜏)𝑑(𝜏)
𝑡1
0

]} - ∫ Ʌℎ [exp(𝜇ℎ𝑦 + ∫ 𝜆ℎ(𝜏)
𝑦

0
)]

𝑡1
0

 dy > 0. 

Using the same approach, we can equally show that all other state variable of the model (1) will 

remain positive for all time t > 0 

Lemma 3.1 Consider the biologically-feasible region 

D = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑛ℎ, 𝐸𝑛ℎ, 𝐼𝑛ℎ, 𝑅𝑛ℎ) Ɛ ℝ+
8

 ;  𝑁ℎ  ≤ 
Ʌℎ

𝜇ℎ
 , 𝑁𝑛ℎ  ≤ 

Ʌ𝑛ℎ

𝜇𝑛ℎ
} 

The closed set D is positively invariant and a global attractor of all positive solution of the model 

(1). 

Proof.   Adding the first four equations of the model (1) gives      
𝑁ℎ =     Ʌℎ − 𝜇ℎ𝑁ℎ − 𝑑1𝐼ℎ             
Since the right hand side of the above equality is bounded by    Ʌℎ − 𝜇ℎ𝑁ℎ, a standard comparison 

theorem can be used to show that 

   𝑁ℎ(t) ≤ 𝑁ℎ (0)𝑒
−𝜇ℎ 𝑡 + 

Ʌℎ

𝜇ℎ
(1 - 𝑒−𝜇ℎ 𝑡 ) 

Also, adding the last three equations of model (1), we have 

 𝑁𝑛ℎ =     Ʌ𝑛ℎ − 𝜇𝑛ℎ𝑁𝑛ℎ − 𝑑2𝐼𝑛ℎ 

And by a standard comparison theorem, it can be used to show that 

𝑁𝑛ℎ(t) ≤ 𝑁𝑛ℎ (0)𝑒
−𝜇𝑛ℎ 𝑡 + 

Ʌ𝑛ℎ

𝜇𝑛ℎ
(1 - 𝑒−𝜇𝑛ℎ 𝑡 ) 

In particular, 𝑁ℎ(𝑡) ≤  
Ʌℎ

𝜇ℎ
  if 𝑁ℎ (0)  ≤  

Ʌℎ

𝜇ℎ
   for all t > 0 and 𝑁𝑛ℎ(𝑡) ≤  

Ʌ𝑛ℎ

𝜇𝑛ℎ
  if  𝑁𝑛ℎ(0) ≤  

Ʌ𝑛ℎ

𝜇𝑛ℎ
  for 

all t > 0. Thus, D is a positively invariant set under the flow described by the model. The solutions 

with initial condition in D remain in D with respect to the model. Hence, the system is 

mathematically and epidemiologically well posed in D. 

3.2 Model Analysis 

In this session, we analyse the MPV model to investigate the existence and stability of the 

equilibrium points. 

3.2.1 Local Stability of the disease free equilibrium 

We obtain the disease free equilibrium (DFE) of the model (1) by setting the right hand side of the 

equations in the model (1) to zero as well as the infected classes. This equilibrium is given by, 
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ø0 = (𝑆ℎ
∗, 𝐸ℎ

∗, 𝐼ℎ
∗, 𝑅ℎ

∗ , 𝑆𝑛ℎ
∗ , 𝐸𝑛ℎ

∗ , 𝐼𝑛ℎ
∗ , 𝑅𝑛ℎ

∗ ) = ( 
Ʌ𝐻 

𝜇𝐻
 , 0, 0, 0, 

Ʌ𝑁𝐻 

𝜇𝑁𝐻
 ,0, 0,0) 

The Jacobian matrix of the model (1) at the disease free equilibrium is given as 

𝐽(𝜙𝑜) =

(

 
 
 
 
 
 
 
 
−𝜇ℎ 0 −𝛽ℎ 0 0 0 −𝛽𝑛1

𝛬ℎ𝜇𝑛ℎ
𝛬𝑛ℎ𝜇ℎ

0

0 −𝑔1 𝛽ℎ 0 0 0 𝛽𝑛1
𝛬ℎ𝜇𝑛ℎ
𝛬𝑛ℎ𝜇ℎ

0

0 𝛾 −𝑔2 0 0 0 0 0
0 0 𝜏ℎ −𝜇ℎ 0 0 0 0
0 0 0 0 −𝜇𝑛ℎ 0 −𝛽𝑛2 0
0 0 0 0 0 −𝑔3 𝛽𝑛2 0
0 0 0 0 0 𝛼 −𝑔4 0
0 0 0 0 0 0 𝜏𝑛ℎ −𝜇𝑛ℎ)

 
 
 
 
 
 
 
 

 

Where 𝑔1 =  𝛾 + 𝜇ℎ, 𝑔2 = 𝜏ℎ + 𝛿1 + 𝜇ℎ, 𝑔3 =  𝛼 + 𝜇𝑛ℎ,   𝑔4 = 𝜏𝑛ℎ + 𝛿2 + 𝜇𝑛ℎ 

The eigenvalues of the matrix are given below 

𝜆1 = −𝜇ℎ,  𝜆2 = −𝜇ℎ, 𝜆3 = −𝜇𝑛ℎ, 𝜆4 = −𝜇𝑛ℎ, 𝜆5 = −((𝛾 + 𝜇ℎ)
2 + (𝛿1 + 𝜏ℎ + 𝜇ℎ)

2 + 2𝛾𝛽ℎ),

𝜆6 = −((𝛼 + 𝜇𝑛ℎ)
2 + (𝛿2 + 𝜏𝑛ℎ + 𝜇𝑛ℎ)

2 + 2𝛼𝛽𝑛2), 𝜆7 = 𝛾𝛽ℎ − (𝛾 + 𝜇ℎ)(𝛿1 + 𝜏ℎ + 𝜇ℎ),

and 𝜆8 = 𝛼𝛽𝑛2 − (𝛼 + 𝜇𝑛ℎ)(𝛿2 + 𝜏𝑛ℎ + 𝜇𝑛ℎ).

 

            (2) 

It is easy to see that the first six eigenvalues are less than zero. Therefore, for the local stability of 

𝜙0 to be established, 𝜆7 < 0 and 𝜆8 < 0 which implies that 𝛾𝛽ℎ − (𝛾 + 𝜇ℎ)(𝛿1 + 𝜏ℎ + 𝜇ℎ) < 0 

and 𝛼𝛽𝑛2 − (𝛼 + 𝜇𝑛ℎ)(𝛿2 + 𝜏𝑛ℎ + 𝜇𝑛ℎ) < 0. 

Thus we have that 

ℛ𝑜ℎ =
𝛾𝛽ℎ

(𝛾 + 𝜇ℎ)(𝛿1 + 𝜏ℎ + 𝜇ℎ)
< 1 and

ℛ𝑜𝑛 =
𝛼𝛽𝑛2

(𝛼 + 𝜇𝑛ℎ)(𝛿2 + 𝜏𝑛ℎ + 𝜇𝑛ℎ)
< 1

 

             (3) 

We can define the reproduction number ℛ𝑜 associated with the model (1) as ℛ𝑜 = 𝑚𝑎𝑥{ℛ𝑜ℎ, ℛ𝑜𝑛} 
hence we claim the following result 

Theorem 3.2. The DFE, 𝜙𝑜, of the model(1) is locally-asymptotically stable (LAS) if ℛ𝑜 < 1, and 

unstable if ℛ𝑜 > 1. 

The threshold quantity ℛ𝑜 is the basic reproduction number for the model (1) . Biologically 

speaking, Theorem 0.2 implies that monkey-pox can be eliminated from the population when 

ℛ𝑜 < 1 if the initial sizes of the population of the model (1) are in the region of attraction of  𝒟. 

3.3 Global Stability Analysis (GAS) for the Disease Free Equilibrium 

We now prove the global asymptotic stability of the DFE of the model (1) We claim the following 

result. 

Theorem 3.3 The DFE of the model (1) is globally asymptotically stable in 𝒟 if ℛ𝑜 ≤ 1 . 
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Proof. By the comparison theorem, the rate of change of the variables representing the infectious 

classes in the model can be compared in the following inequality: 

(

 
 

𝐸̇ℎ
𝐼̇ℎ
𝐸̇𝑛ℎ
𝐼̇𝑛ℎ)

 
 
≤ (𝐹 − 𝑉)(

𝐸ℎ
𝐼ℎ
𝐸𝑛ℎ
𝐼𝑛ℎ

) −𝑀1𝜃1(

𝐸ℎ
𝐼ℎ
𝐸𝑛ℎ
𝐼𝑛ℎ

)−𝑀2𝜃2(

𝐸ℎ
𝐼ℎ
𝐸𝑛ℎ
𝐼𝑛ℎ

) 

Where F and V are given below 

𝐹 =

(

 
 
0 𝛽ℎ 0

𝛽𝑛1𝛬ℎ𝜇𝑛ℎ

𝛬𝑛ℎ𝜇ℎ
0 0 0 0
0 0 0 𝛽𝑛2
0 0 0 0 )

 
 
 and 𝑉 = (

𝑔1 0 0 0
−𝛾 𝑔2 0 0
0 0 𝑔3 0
0 0 −𝛼 𝑔4

) 

where 𝑔1 = 𝛾 + 𝜇ℎ, 𝑔2 = 𝜏ℎ + 𝛿1 + 𝜇ℎ, 𝑔3 = 𝛼 + 𝜇𝑛ℎ and 𝑔4 = 𝜏𝑛ℎ + 𝛿2 + 𝜇𝑛ℎ. Also, 𝜃1 and 𝜃2 

are given below 

𝜃1 =

(

 
 
0 𝛽ℎ 0

𝛽𝑛1𝛬ℎ𝜇𝑛ℎ

𝛬𝑛ℎ𝜇ℎ
0 0 0 0
0 0 0 0
0 0 0 0 )

 
 
 and 𝜃2 = (

0 0 0 0
0 0 0 0
0 0 0 𝛽𝑛2
0 0 0 0

) 

Given that 𝑀1 = 1 −
𝑆ℎ
∗

𝑁ℎ
∗ , 𝑀1 = 1 −

𝑆𝑛ℎ
∗

𝑁𝑛ℎ
∗  and 𝜃1 and 𝜃2 are non-negative matrices. Since 𝑆ℎ

∗ ≤ 𝑁ℎ
∗, 

and 𝑆𝑛ℎ
∗ ≤ 𝑁𝑛ℎ

∗  we can say that 

(

 
 

𝐸̇ℎ
𝐼̇ℎ
𝐸̇𝑛ℎ
𝐼̇𝑛ℎ)

 
 
≤ (𝐹 − 𝑉)(

𝐸ℎ
𝐼ℎ
𝐸𝑛ℎ
𝐼𝑛ℎ

) 

Therefore, the matrix 𝐹 − 𝑉 is given as 

𝐹 − 𝑉 =

(

 
 
−𝑔1 𝛽ℎ 0

𝛽𝑛1𝛬ℎ𝜇𝑛ℎ

𝛬𝑛ℎ𝜇ℎ
𝛾 −𝑔2 0 0
0 0 −𝑔3 𝛽𝑛2
0 0 −𝛼 −𝑔4 )

 
 

 

Let 𝜓 be the eigenvalues of the matrix above. Thus, the characteristic equation gives the following 

eigenvalues 

𝜓1 = −(𝑔1𝑔2 − 𝛽ℎ𝛾) 𝜓2 = −𝑔2 𝜓3 = −(𝑔3𝑔4 − 𝛽𝑛2𝛼) 𝜓4 = −𝑔4 

All the eigenvalues have negative real part if ℛ𝑜 < 1. Hence, (𝐸ℎ, 𝐼ℎ, 𝐸𝑛ℎ , 𝐼𝑛ℎ) → (0,0,0,0) as 𝑡 →
∞. By the comparison theorem used in (𝐸ℎ, 𝐼ℎ, 𝐸𝑛ℎ, 𝐼𝑛ℎ) → (0,0,0,0) as 𝑡 → ∞. Now, when 𝐸ℎ =
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𝐼ℎ = 𝐸𝑛ℎ = 𝐼𝑛ℎ = 0, we have that 𝑆ℎ
∗ =

𝛬ℎ

𝜇ℎ
 and 𝑆𝑛ℎ

∗ =
𝛬𝑛ℎ

𝜇𝑛ℎ
 and (𝑅ℎ, 𝑅𝑛ℎ) → (0,0) as 𝑡 → ∞ for 

ℛ𝑜 < 1. Hence, the disease free equilibrium is globally asymptotically stable for  ℛ𝑜 < 1. 

3.3.1 Existence of Endemic equilibrium point (EEP) 

In this section, the existence of endemic equilibria (that is, equilibria where the infected 

compartments of the model are non-zero) of the model (1) is established. Let, 

𝜙1 = (𝑆ℎ
∗∗, 𝐸ℎ

∗∗, 𝐼ℎ
∗∗, 𝑅ℎ

∗∗, 𝑆𝑛ℎ
∗∗ , 𝐸𝑛ℎ

∗∗ , 𝐼𝑛ℎ
∗∗ , 𝑅𝑛ℎ

∗∗ ) 

represents any arbitrary endemic equilibrium point (EEP) of the model (1) . It follows, by solving 

the equations of the model at steady-state, that 

𝑆ℎ
∗∗ =

𝛬ℎ
𝜆ℎ
∗∗ + 𝜇ℎ

, 𝐸ℎ
∗∗ =

𝛬ℎ𝜆ℎ
∗∗

(𝜆ℎ
∗∗ + 𝜇ℎ)(𝛾 + 𝜇ℎ)

, 𝐼ℎ
∗∗ =

𝛬ℎ𝜆ℎ
∗∗𝛾

(𝜆ℎ
∗∗ + 𝜇ℎ)(𝛾 + 𝜇ℎ)(𝜏ℎ + 𝛿1 + 𝜇ℎ)

,

𝑅ℎ
∗∗ =

𝛬ℎ𝜆ℎ
∗∗𝛾𝜏ℎ

(𝜆ℎ
∗∗ + 𝜇ℎ)(𝛾 + 𝜇ℎ)(𝜏ℎ + 𝛿1 + 𝜇ℎ)𝜇ℎ

, 𝑆𝑛ℎ
∗∗ =

𝛬𝑛ℎ
𝜆𝑛ℎ
∗∗ + 𝜇𝑛ℎ

, 𝐸𝑛ℎ
∗∗ =

𝛬𝑛ℎ𝜆𝑛ℎ
∗∗

(𝜆𝑛ℎ
∗∗ + 𝜇𝑛ℎ)(𝛼 + 𝜇𝑛ℎ)

,

𝐼𝑛ℎ
∗∗ =

𝛬𝑛ℎ𝜆𝑛ℎ
∗∗ 𝛼

(𝜆𝑛ℎ
∗∗ + 𝜇𝑛ℎ)(𝛼 + 𝜇𝑛ℎ)(𝛿2 + 𝜏𝑛ℎ + 𝜇𝑛ℎ)

, 𝑅𝑛ℎ
∗∗ =

𝛬𝑛ℎ𝜆𝑛ℎ
∗∗ 𝛼𝜏𝑛ℎ

(𝜆𝑛ℎ
∗∗ + 𝜇𝑛ℎ)(𝛼 + 𝜇𝑛ℎ)(𝜏𝑛ℎ + 𝛿2 + 𝜇𝑛ℎ)𝜇𝑛ℎ

.

 

            (4) 

Substituting the expressions in (4) into 𝜆𝑛ℎ
∗∗ =

𝛽𝑛2𝐼𝑛ℎ
∗∗

𝑁𝑛ℎ
∗∗  and 𝜆ℎ

∗∗ =
𝛽𝑛1𝐼𝑛ℎ

∗∗ +𝛽ℎ𝐼ℎ
∗∗

𝑁ℎ
∗∗  and solving gives 

𝜆𝑛ℎ
∗∗ = 

𝑔3𝑔4𝜇𝑛ℎ(ℛ𝑜𝑛−1)

𝜇𝑛ℎ𝑔3+𝛼𝑔5
 and  

𝑔6 (𝛼𝑔5 + 𝜇𝑛ℎ𝑔4 + 𝑔7(ℛ𝑜𝑛 − 1))𝜆ℎ
∗∗2 + (𝑔1𝑔2𝜇ℎ − 𝛽ℎ𝛬ℎ𝛾𝜇ℎ(𝛼𝑔5 + 𝜇𝑛ℎ𝑔4 + 𝑔7(ℛ𝑜𝑛 − 1)) −

𝑔6 𝛽𝑛1𝛬𝑛ℎ𝛼𝜇𝑛ℎ(ℛ𝑜𝑛 − 1))𝜆ℎ
∗∗ − 𝛽𝑛1𝛼𝛬𝑛1𝑔1𝑔2𝜇ℎ𝜇𝑛ℎ(ℛ𝑜𝑛 − 1).

 

            (5) 

where 𝑔1 = 𝛾 + 𝜇ℎ, 𝑔2 = 𝜏ℎ + 𝛿1 + 𝜇ℎ, 𝑔3 = 𝛼 + 𝜇𝑛ℎ,  𝑔4 = 𝜏𝑛ℎ + 𝛿2 + 𝜇𝑛ℎ , 

𝑔5 = 𝜇𝑛ℎ + 𝜏𝑛ℎ, 𝑔6 = 𝜇ℎ𝑔2 + 𝜇ℎ𝛾 + 𝛾𝜏ℎ, 𝑔7 = 𝜇𝑛ℎ𝑔4 + 𝜇𝑛ℎ𝛼 + 𝛼𝜏𝑛ℎ. 

It is clear to see that 𝜆𝑛ℎ
∗∗  exist if ℛ𝑜𝑛 > 1. Also, the quadratic equation in terms of 𝜆ℎ

∗∗ has a single 

positive root if ℛ𝑜𝑛 > 1. Thus, the endemic equilibria of the of the model (1) can then be obtained 

by solving for 𝜆ℎ
∗∗ from the above polynomial and substituting the positive values of 𝜆ℎ

∗∗ into the 

expressions for the state variables. 

3.4 Global stability of endemic equilibrium point (EEP) 

The global asymptotic stability of the endemic equilibrium (𝜙1) of the model (1) will now be 

explored. We claim the following result. 

Theorem 3.4 The endemic equilibrium (𝜙1) of the model (1) , with 𝛿1 = 𝛿2 = 0, is GAS in 

whenever ℛ𝑜
𝑚 > 1. 

The proof of Theorem 3.4 based on using a non-linear Lyapunov function is given below 
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Proof. Consider the model with 𝛿1 = 𝛿2 = 0. We then have a mass action model where 

𝜆ℎ
∗∗ = (𝛽𝑛1𝐼𝑛ℎ

∗∗ + 𝛽ℎ𝐼ℎ
∗∗)𝑆ℎ

∗∗ and 𝜆𝑛ℎ
∗∗ = 𝛽𝑛2𝐼𝑛ℎ

∗∗𝑆𝑛ℎ
∗∗  

Let 

𝜙1 = (𝑆ℎ
∗∗, 𝐸ℎ

∗∗, 𝐼ℎ
∗∗, 𝑅ℎ

∗∗, 𝑆𝑛ℎ
∗∗ , 𝐸𝑛ℎ

∗∗ , 𝐼𝑛ℎ
∗∗ , 𝑅𝑛ℎ

∗∗ ) 

represent this unique endemic equilibrium. Consider the non-linear Lyapunov function of Goh-

Volterra type: 

𝑉2 = 𝑆ℎ − 𝑆ℎ
∗∗ln𝑆ℎ + 𝐸ℎ − 𝐸ℎ

∗∗ln𝐸ℎ +
𝛾 + 𝜇ℎ
𝛾

(𝐼ℎ − 𝐼ℎ
∗∗ln𝐼ℎ) +

(𝛾 + 𝜇ℎ)(𝜏ℎ + 𝜇ℎ)

𝛾𝜏ℎ
(𝑅ℎ − 𝑅ℎ

∗∗ln𝑅ℎ)

 +𝑆𝑛ℎ − 𝑆𝑛ℎ
∗∗ ln𝑆𝑛ℎ + 𝐸𝑛ℎ − 𝐸𝑛ℎ

∗∗ ln𝐸𝑛ℎ +
𝛼 + 𝜇𝑛ℎ
𝛼

(𝐼𝑛ℎ − 𝐼𝑛ℎ
∗∗ ln𝐼𝑛ℎ) +

 
(𝛼 + 𝜇𝑛ℎ)(𝜏𝑛ℎ + 𝜇𝑛ℎ)

𝛼𝜏𝑛ℎ
(𝑅𝑛ℎ − 𝑅𝑛ℎ

∗∗ ln𝑅𝑛ℎ),

 

We define the following steady state relations (obtained from the mass action version of the model 

at the endemic steady state 𝜙𝑒): 

𝛬ℎ = (𝛽𝑛1𝐼𝑛ℎ
∗∗ +𝛽ℎ𝐼ℎ

∗∗)𝑆ℎ
∗∗ + 𝜇ℎ𝑆ℎ

∗∗, (𝛾 + 𝜇ℎ)𝐸ℎ
∗∗ = (𝛽𝑛1𝐼𝑛ℎ

∗∗ + 𝛽ℎ𝐼ℎ
∗∗)𝑆ℎ

∗∗,

(𝜏ℎ + 𝜇ℎ)𝐼ℎ
∗∗ = 𝛾𝐸ℎ

∗∗, 𝜇ℎ𝑅ℎ
∗∗ = 𝜏ℎ𝐼ℎ

∗∗, 𝛬𝑛ℎ = 𝛽𝑛2𝐼𝑛ℎ
∗∗ 𝑆𝑛ℎ

∗∗ + 𝜇𝑛ℎ𝑆𝑛ℎ
∗∗ ,

(𝛼 + 𝜇𝑛ℎ)𝐸𝑛ℎ
∗∗ = 𝛽𝑛ℎ𝐼𝑛ℎ

∗∗ 𝑆𝑛ℎ
∗∗ , (𝜏𝑛ℎ + 𝜇𝑛ℎ)𝐼𝑛ℎ

∗∗ = 𝛼𝐸𝑛ℎ
∗∗ , 𝜇𝑛ℎ𝑅𝑛ℎ

∗∗ = 𝜏𝑛ℎ𝐼𝑛ℎ
∗∗ .

 

            (6) 

The Lyapunov derivative of 𝑉 is given as 

𝑉̇ = (1 −
𝑆ℎ
∗∗

𝑆ℎ
)(𝛬ℎ − (𝛽𝑛1𝐼𝑛ℎ + 𝛽ℎ𝐼ℎ)𝑆ℎ − 𝜇ℎ𝑆ℎ)

 +(1 −
𝐸ℎ
∗∗

𝐸ℎ
)((𝛽𝑛1𝐼𝑛ℎ + 𝛽ℎ𝐼ℎ)𝑆ℎ − (𝛾 + 𝜇ℎ)𝐸ℎ)

 +
𝛾 + 𝜇ℎ
𝛾

(1 −
𝐼ℎ
∗∗

𝐼ℎ
)(𝛾𝐸ℎ − (𝜏 + 𝜇ℎ)𝐼ℎ)

 +
(𝛾 + 𝜇ℎ)(𝜏ℎ + 𝜇ℎ)

𝛾𝜏ℎ
(1 −

𝑅ℎ
∗∗

𝑅ℎ
)(𝜏ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ)

 +(1 −
𝑆𝑛ℎ
∗∗

𝑆𝑛ℎ
)(𝛬𝑛ℎ − 𝛽𝑛2𝐼𝑛ℎ𝑆𝑛ℎ − 𝜇𝑛ℎ𝑆𝑛ℎ)

 +(1 −
𝐸𝑛ℎ
∗∗

𝐸𝑛ℎ
)(𝛽𝑛2𝐼𝑛ℎ𝑆𝑛ℎ − (𝛼 + 𝜇𝑛ℎ)𝐸𝑛ℎ) +

𝛼 + 𝜇𝑛ℎ
𝛼

(1 −
𝐼𝑛ℎ
∗∗

𝐼𝑛ℎ
)(𝛼𝐸𝑛ℎ − 𝜇𝑛ℎ𝐼𝑛ℎ) +

 
(𝛼 + 𝜇𝑛ℎ)(𝜏𝑛ℎ + 𝜇𝑛ℎ)

𝛼𝜏𝑛ℎ
(1 −

𝑅𝑛ℎ
∗∗

𝑅𝑛ℎ
)(𝜏𝑛ℎ𝐼𝑛ℎ − 𝜇𝑛ℎ𝑅𝑛ℎ).

 

           (7) 

Substituting the steady state relations in (6) and in (7) (after some algebraic simplifications) gives 

the following in 𝒟 and noting that the state variables of the model are bounded by the values of 

their endemic steady state in 𝒟, 
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𝑉̇ ≤ 𝜇ℎ𝑆ℎ
∗∗ [2 −

𝑆ℎ
∗∗

𝑆ℎ
−
𝑆ℎ
𝑆ℎ
∗∗] + (𝛾 + 𝜇ℎ)𝐸ℎ

∗∗ [5 −
𝑆ℎ
∗∗

𝑆ℎ
−
𝐸ℎ
∗∗𝑆ℎ
𝐸ℎ𝑆ℎ

∗∗ −
𝐼ℎ
∗∗𝐸ℎ
𝐼ℎ𝐸ℎ

∗∗ −
𝑅ℎ
∗∗𝐼ℎ
𝑅ℎ𝐼ℎ

∗∗ −
𝑅ℎ
𝑅ℎ
∗∗]

+𝜇𝑛ℎ𝑆𝑛ℎ
∗∗ [2 −

𝑆𝑛ℎ
∗∗

𝑆𝑛ℎ
−
𝑆𝑛ℎ
𝑆𝑛ℎ
∗∗ ] + (𝛼 + 𝜇𝑛ℎ)𝐸𝑛ℎ

∗∗ [5 −
𝑆𝑛ℎ
∗∗

𝑆𝑛ℎ
−
𝐸𝑛ℎ
∗∗ 𝑆𝑛ℎ
𝐸𝑛ℎ𝑆𝑛ℎ

∗∗ −
𝐼𝑛ℎ
∗∗𝐸𝑛ℎ
𝐼𝑛ℎ𝐸𝑛ℎ

∗∗ −
𝑅𝑛ℎ
∗∗ 𝐼𝑛ℎ
𝑅𝑛ℎ𝐼𝑛ℎ

∗∗ −
𝑅𝑛ℎ
𝑅𝑛ℎ
∗∗ ] .

 

Finally, since the arithmetic mean exceeds the geometric mean, the following inequalities hold. 

[2 −
𝑆ℎ
∗∗

𝑆ℎ
−
𝑆ℎ
𝑆ℎ
∗∗] ≤ 0, [5 −

𝑆ℎ
∗∗

𝑆ℎ
−
𝐸ℎ
∗∗𝑆ℎ
𝐸ℎ𝑆ℎ

∗∗ −
𝐼ℎ
∗∗𝐸ℎ
𝐼ℎ𝐸ℎ

∗∗ −
𝑅ℎ
∗∗𝐼ℎ
𝑅ℎ𝐼ℎ

∗∗ −
𝑅ℎ
𝑅ℎ
∗∗] ≤ 0

[2 −
𝑆𝑛ℎ
∗∗

𝑆𝑛ℎ
−
𝑆𝑛ℎ
𝑆𝑛ℎ
∗∗ ] ≤ 0, [5 −

𝑆𝑛ℎ
∗∗

𝑆𝑛ℎ
−
𝐸𝑛ℎ
∗∗ 𝑆𝑛ℎ
𝐸𝑛ℎ𝑆𝑛ℎ

∗∗ −
𝐼𝑛ℎ
∗∗𝐸𝑛ℎ
𝐼𝑛ℎ𝐸𝑛ℎ

∗∗ −
𝑅𝑛ℎ
∗∗ 𝐼𝑛ℎ
𝑅𝑛ℎ𝐼𝑛ℎ

∗∗ −
𝑅𝑛ℎ
𝑅𝑛ℎ
∗∗ ] ≤ 0.

 

Thus, we have that 𝑉̇ ≤ 0. Hence, 𝑉 is a Lyapunov function in 𝒟. 

4 NUMERICAL SIMULATION 

The model (1) will be simulated to illustrate the impact of some parameters on the transmission 

dynamics of monkey pox. The numerical simulations are carried out using the parameters values 

in Table 2. 

Table 2: Description of variables and parameters in the model (1) 

Parameter Value References 

Ʌℎ 

𝜇ℎ 

𝛽ℎ 

𝛽𝑛1 

𝛽𝑛2 

γ 

𝜏ℎ 

𝜏𝑛ℎ 

𝛿1 

Ʌ𝑛ℎ 

𝜇𝑛ℎ 

α 

𝛿2 

0.029/yr 

0.02/yr 

0.75/yr 

1.5/yr 

3/yr 

30/yr 

0.45/yr 

0.3/yr 

 0.15/yr 

2000/yr 

1.5/yr 

120/yr 

0.4/yr 

[11] 

[11] 

[11] 

[11] 

[11] 

[5] 

[7] 

[7] 

 [11] 

[11] 

[11] 

[5] 

[5] 
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Figure 2: Simulation of the model (1) with varying values of 𝛽ℎ 

 

Figure 3: Simulation of the model (1) with varying values of 𝛽𝑛1 

 

Figure 4: Simulation of the model (1) with varying values of 𝛽𝑛2 

We see from Figure 2 that varying the value of 𝛽ℎ has minimal impact on the human cumulative 

cases of monkey pox. However, we see from Figures 3 and 4 that 𝛽𝑛1 and 𝛽𝑛2 has greater impact 
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on the human monkey pox dynamics. These results suggest that controlling the disease in the 

human population also depends on reducing the contacts between humans and the reservoirs an 

well as the controlling the spread in the non-human population 

 

Figure 5: Simulation of the model (1) with varying values of 𝜏ℎ 

 

Figure 6: Simulation of the model (1) with varying values of 𝜏𝑛 

Again, Figures 5 and 6 further establishes this point as the recovery of infectious non-humans was 

seen to be more significant in reducing the cumulative number of cases in the human population 

than the recovery of infectious humans. 

Sensitivity Analysis 

We assess the impact of the parameters in each of the basic reproduction numbers by computing 

the sensitivity indices. According to the approach in [12], the sensitivity index ℛ0 to a parameter 

say ‘a’ where a is any parameter in the basic reproduction number  ℛ0 is given by  

   𝛤𝑎
ℛ0 = 

𝛿ℛ0

𝛿𝑎
 ×

𝑎

ℛ0
 

These indices can be used to quantify the relative changes in the basic reproduction number in 

response to the changes in each of the parameters in it. Thus, we can identify critical parameters 

that are significant for disease control. Table 3 gives the sensitivity indices of the parameters in 

the basic reproduction numbers (ℛ0ℎ and ℛ0𝑛 )using the parameters values in Table 2.  
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Table 3: Sensitivity indices of parameters in the model (1) 

Parameter Sensitivity index 

𝜇ℎ 

𝛽ℎ 

𝛽𝑛2 
γ 

𝜏ℎ 

𝜏𝑛ℎ 

𝛿1 

𝜇𝑛ℎ 

α 

𝛿ℎ 

-0.0329 

+1 

+1 

+0.0007 

-0.726 

-0.136 

-0.242 

-0.694 

+0.0123 

-0.182 

 

We can see from Table 3 that the basic reproduction number is most sensitive to the transmission 

rates 𝛽ℎ and 𝛽𝑛2 with a sensitivity index of +1 each. This means that 1% increase in the 

transmission rates (𝛽ℎ and  𝛽𝑛2 ) will also lead to 1% increase in ℛ𝑜ℎ and ℛ𝑜𝑛   respectively. It is 

also important to state that the human basic reproduction number ℛ𝑜ℎ is also sensitive to human 

recovery rate  𝜏ℎ while the non-human basic reproduction number  ℛ𝑜𝑛 is also sensitive to the 

natural mortality rate 𝜇𝑛ℎ of non-humans. While 𝛽ℎ is positively correlated withℛ𝑜ℎ, 𝜏ℎ is 

negatively correlated with ℛ𝑜ℎ. Also, while is positively correlated with   ℛ𝑜𝑛, 𝜇ℎ is negatively 

correlated with   ℛ𝑜𝑛 

DISCUSSIONS 

A new mathematical model for the transmission dynamics of monkey-pox in a community is 

designed (and rigorously analyzed) and used to assess how monkey-pox can be controlled or 

managed in a population. Some of the theoretical findings are given below. 

(i)  The model (1) has a disease free equilibrium (DFE) (when there are no infection in the 

population). The disease free equilibrium is locally asymptotically stable whenever the 

associated reproduction number is less than unity. Also, the DFE is globally asymptotically 

stable in the absence of disease induced mortality for humans whenever the associated 

reproduction number is less than unity. 

(ii)  The model (1) has a globally asymptotically stable endemic equilibrium in the absence of 

disease induced mortality for humans whenever the associated reproduction number is 

greater than unity. 

Numerical simulations of the model (1), showed that the transmission rates from non-human to 

non-human (𝛽𝑛2) and non-human to human (𝛽𝑛1) have greater impact on the cumulative number 

of monkey-pox cases amongst humans that the transmission rate from human to human (𝛽ℎ). Also, 

we saw that the recovery rate of non-humans had more significant impact on the cumulative 

number of cases of monkey-pox than the human recovery rate; re-emphasizing the first result. 

Again, sensitivity analysis showed that the transmission rates 𝛽ℎ and 𝛽𝑛2 had the most significant 

influence on the reproduction number. 

Thus we can see that though human to human transmission may contribute to the incidence of 

monkey pox in a population, the non-human to human transmission is seen to play more significant 

role in sustaining the transmission of monkey pox in a human population. Therefore, the need to 

educate people on how to curb the spread of monkey-pox from person-to-person may be important. 

However, educating people on proper handling of infected animals is crucial in limiting the spread 
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of this disease among humans. Thus, public health policies should focus more on reducing 

transmission among the non-human population and also transmission from non-humans to 

humans. Raising awareness of risk factors and enlightening people about measures that will lead 

to reduced exposure is the main strategy for monkey-pox prevention and control. 
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