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Monkey-pox is a relatively rare disease but with a case fatality rate of 1-
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Accepted 00 shown to be globally stable. Sensitivity analysis showed that control
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Transmission simulations showed that though human to human transmission may
dynamics, contribute to the incidence of monkey-pox in a population, the non-human
Zoonotic to human transmission is seen to play more significant role in sustaining the
dL'(')Sszlsev transmission of monkey pox in a human population.

Global asymptotic

stability.

1. INTRODUCTION

Monkey-pox (MPX) is a rare viral zoonotic disease with its symptoms similar to small
pox but less severe [1]. It is a member of the orthopoxvirus genus in the family poxviridae and it
is similar to smallpox in terms of the skin lesions (pox) seen in humans [1]. It belongs to the same
family as small pox and cowpox [2], [3]. It is different from smallpox because unlike smallpox
that is from (human to human) only, monkey- pox can be from human to human or animal to
human [4]. Monkey pox is endemic in rodent populations in African [5]. It was first discovered in
monkeys in 1958 [4]. The disease and eventually the causative virus was named monkey pox
because the lesion (pox) seen in monkeys developed like other pox forming diseases [6]. The
incubation period of MPX is usually from 6 to 16 days but it can range from 5 to 21 days which
can be divided into two periods [5]. First, the invasion period (0 - 5days) and this is characterized
by fever, malaise, intense headache, cough, nausea, back and muscle ache and shortness of breath.
Secondly, we have the skin eruption period (within 1-3 days) after appearance of fever [7].
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The rash appears often on the face (95% of cases) and then spreads to other parts of the body like
the palms, feet and entire body [5]. During this period the lymph nodes swell. Some patients
develop severe lymphenopathy before the appearance of the rash, which is a distinctive feature of
MPV compared to other similar diseases [5]. Currently, there are no specific treatments or vaccines
available for monkey pox infections, but outbreaks can be controlled (WHQO). The vaccines used
to eradicate small pox have been proven tobe 85% effective in preventing monkeypox [6].

The first mathematical model for MPV is credited to [7]. They developed a mathematical model
for the dynamics of the transmission of MPV infection with control strategies of combined vaccine
and treatment interventions. Using standard approaches, they determined two equilibria for the
model namely: disease free and endemic. The disease- free equilibrium was proved to be both
locally and globally asymptotically stable if R, < 1 using the next generation matrix approach
and comparison theorem. They computed the basic reproduction number for the humans and non-
humans primates using some parameter values. Numerical simulations carried out revealed that
the infectious individuals in the human and non-human primates’ populations will die out in the
course of the proposed interventions. Sensitivity analysis carried out on the model parameters
showed that the basic reproduction numbers of the model which served as a threshold for
measuring new infections in the host populations decrease with increase in the control parameters
of vaccination and treatment. [8] formulated a mathematical model of monkey pox virus
transmission dynamics with two interacting host populations; humans and rodents. They incor-
porated into the human population the quarantine class and public enlightenment campaign
parameter as means of controlling the spread of the disease. They obtained the Disease Free
Equilibrium (DFE) and Endemic Equilibrium (EE). The basic reproduction number R,,and R,
were computed and used for the analysis after which they analyzed the Disease Free Equilibrium
(DFE) for stability using Jacobian matrix techniques and Lyapunov function. In 2020, [9] analysed
a compartmental model of MPX dynamics. Their goal was to see whether MPX can be controlled
and eradicated by voluntary vaccinations. They showed that there are three equilibria: disease free,
fully endemic and previously neglected semi-endemic (with disease existing only among humans).
The existence of semi-endemic equilibrium has severe implications should the MPX virus mutate
to increased viral fitness in humans. They discovered that MPX is controllable and can be
eradicated in a semi-endemic equilibrium by vaccination. However, in a fully endemic
equilibrium, MPX cannot be eradicated by vaccination alone.

Therefore, in this study, we seek to investigate how the rodent population affects the dynamics of
monkey-pox in the human population. This paper is organized as follows. The model is
formulation is given in Section 2 and the model is analyzed in Section 3. Numerical studies are
considered in Section 4. The findings from this study are summarized in Section 5.

2. MODEL FORMULATION

A basic Monkey-pox virus model with human population at time t is formulated. The total human
population size denoted by (Ny), is divided into four subclasses namely; S; (t)which denotes the
number of persons not yet infected with the Monkey-pox virus but are susceptible to the disease,
I, (t) which denotes the number of infected individuals and are capable of spreading the disease
to those to those in the susceptible class, Ej, (t) denoting the individuals that are exposed and Ry, (t)
denoting the number of individuals who initially were infected but have now recovered. The total
non-human population Ny is divided into four subclasses which are the S, (t)denoting the
number of rodents (Non-humans) not yet infected with the virus but are susceptible to the virus,
E,n(t) denoting the number of rodents (Non-humans) that are exposed and I,,;,(t) which denotes
the infected rodents and R, (t)the population of the recovered rodents. It is assumed that, the
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susceptible human individuals increased by recruitment of individuals at a constant rate A;. The
susceptible individuals acquire the virus when they come into contact with infected individual and
non-human individuals at the rate A;,.

_ ﬁnl’nh

1
where 2, = =2 + %
nh h

In the same vein, the susceptible non-humans are infected at the rate A,; by other infected non-

humans, where A, = %. Where £, is defined as the probability of a susceptible person
nh

getting infected from another human, f3,,; is the probability of a susceptible human getting infected
from an infected non-human and f,,, is the probability of a non-human getting infected by another
non-human [10].The model for monkey —pox transmission dynamics in a population is given by
the following system of deterministic non-linear differential equations (Table 1 and 2 describe the
associated state variables and parameters in the model (1) while Figure 1 gives the flow diagram
of model (1).)

B —2s S
dr _ n hoh — Hpon
En_ ) s + pup)E
dr o (¥ + up)En
dl,
rrin YEn — (th + up + 61)1p
ﬁ = Tplp — UnRy €Y
dt
dSpn
d; = Anh - Anhth - .unhth
dE,,
dt = Anhth - (a + :unh)Enh
dlnh
dt = aEnh - (.unh + Typ + 62)Inh
dR

dt = Tnnlnn — HnnRnn
Ny =Sp+Ep + I+ Ry, Npp = Sun + Enp tlon + Rup
Subject to the following non-negative initial conditions R,,;,(0) > 0
Sp(0)>0,E, (0)>0,1, (0)>0, R, (0)>0, S, (0)>0, E,pn(0)>0, I,,(0)>0, Ryn(0)>0

Table 1 : Description of variables and parameters in the model (1)

Variable Interpretation
Sy Population of Susceptible humans
E, Population of Exposed humans
I, Population of Infectious humans
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Ry Population of Recovered humans
Sun Population of Susceptible non-humans
E,n Population of Exposed non-humans
Lo Population of Infectious non-humans
R,y Population of Infected non-humans
Parameter Interpretation
Ay Recruitment rate for humans
Ao Recruitment rate for Non-humans
Bn Probability of monkey pox transmission from infectious humans to
susceptible humans
Bn1 Probability of monkey pox transmission from infectious non-humans
to susceptible humans
B2 Probability of monkey pox transmission from infectious non-humans
to susceptible non- humans
Un Natural mortality rate for humans
Unn Natural mortality rate for non-humans
o1 Disease induced death rates for humans
[ Disease induced death rates for non-humans
T, Recovery rate for humans
Ty Recovery rate for non-humans
r Progression rate of exposed humans
A Progression rate of exposed non-humans

Ay An Y T
—_— —)‘—>

Hr Hr (6; + #h! Hr

\J‘nh nh 2+ URr)  Han

= Human class - Non-Human class

Figure 1: Schematic diagram of the model (1)
3. ANALYSIS OF THE MODEL
We will explore the qualitative properties of the in-host model (1) in this section.

3.1 Basic Properties of the model
In this section the basic qualitative properties such as positivity and boundedness of the solutions
of the basic Monkey pox virus model (1) is explored. We claim the following result.
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Theorem 0.1 The model (1) preserves positivity of solutions. That is, solutions with positive initial
conditions remain positive for all time t.
Proof. Let

tl Sup{t > 0 Sh (t) > Ol Eh (t) > O’ Ih (t) > 01 Rh (t) > O’ th (t) > 01 Enh (t) > 01 Inh (t) > 0! Rnh (t)
> 0.
From the first equation of the model (1), it follows that

dsh =Ap — (Ap + Up)Sk

when solved leads to Su(t;) = S,(0)exp [—Hht1 - fotllh(r)d(r)]+{exp [—Mnt1 -
I @A @)} - [ A [exp(uny + [ 20(2)] dy > 0.

Using the same approach, we can equally show that all other state variable of the model (1) will
remain positive for all timet>0

Lemma 3.1 Consider the biologically-feasible region

A
D ={(S, En, In, Rn, Suns Enn, Inn, Run) € RY; Nh<_ Nnh<Lh

HUnh

The closed set D is positively invariant and a global attractor of all positive solution of the model
(1).

Proof. Adding the first four equations of the model (1) gives

Ny = Ap — pupNp — dqly

Since the right hand side of the above equality is bounded by A, — u;, Ny, a standard comparison
theorem can be used to show that

N, (t) < Ny, (0)e~Hnt + 2—’1(1 e Hnt)
h

Also, adding the last three equations of model (1), we have
Npp = Apn = UnnNpn — dolnn

And by a standard comparison theorem, it can be used to show that
Nyn() < Npp (0)e™Hant 4 ZEL( - g=unt)
nh

An

In particular, N, (t) < o if N, (0) < 2— for all t > 0 and N, (t) < 2nh if N,,(0) < 2nh for
h

allt> 0. Thus, D is a positively invariant set under the flow described by the model. The solutions
with initial condition in D remain in D with respect to the model. Hence, the system is
mathematically and epidemiologically well posed in D.

3.2 Model Analysis
In this session, we analyse the MPV model to investigate the existence and stability of the
equilibrium points.

3.2.1 Local Stability of the disease free equilibrium
We obtain the disease free equilibrium (DFE) of the model (1) by setting the right hand side of the
equations in the model (1) to zero as well as the infected classes. This equilibrium is given by,
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* * * * * * * * A A
@o = (Sh, Eyp, I, Ry, Spny Enns Inthnh) = (i ,0,0,0, ﬁ ,0,0,0)
The Jacobian matrix of the model (1) at the disease free equilibrium is given as

Aplinn
— 0 — 0 0 0 — 0
Un Bh Bn1 Aontin
Aplinn
0 — 0 0 0 0
91 bBn Br1 Ariin
_ 0 y —J2 0 0 0 0 0
J($o) 0 0 1, —-u, O 0 0 0
0 0 0 0 —tpn O —PBn2 0
0 0 0 0 0 —J3 Bna 0
0 0 0 0 0 a —J4 0
0 0 0 0 0 0 Tnh —Unn

Where g, = v+ tUp, g2 = th + 01+ tp gz = a+ Upp, o = Tpn + 62 + Unp
The eigenvalues of the matrix are given below
M =—pn Ay = = Az = —ppn Ay = —lnp As = —((v + up)? + (81 + w4+ un)? + 2yBr),
e = —((@+ pnn)?® + (8 + Top + Unn)® + 2aBy2), A7 = ¥VBn — (v + 1) (61 + Th + fp),
and 18 = “ﬁnz - (a + .unh)(62 + Tpp + .unh)-
2

It is easy to see that the first six eigenvalues are less than zero. Therefore, for the local stability of
¢, to be established, 1, < 0 and Ag < 0 which implies that y8, — (¥ + un) (81 + th + up) <0

and afn; — (@ + tnn) (82 + Tpp + tnn) <O.

Thus we have that

YBn
R = <1 and
M T v+ un)(By + T+ )
a
Ron Pnz <1

T @+ ) (62 + T + fon)
@3)

We can define the reproduction number R, associated with the model (1) as R, = max{R,n, Ron}
hence we claim the following result

Theorem 3.2. The DFE, ¢,, of the model(1) is locally-asymptotically stable (LAS) if R, < 1, and
unstable if R, > 1.

The threshold quantity R, is the basic reproduction number for the model (1) . Biologically
speaking, Theorem 0.2 implies that monkey-pox can be eliminated from the population when
R, < 1if the initial sizes of the population of the model (1) are in the region of attraction of D.

3.3  Global Stability Analysis (GAS) for the Disease Free Equilibrium

We now prove the global asymptotic stability of the DFE of the model (1) We claim the following
result.

Theorem 3.3 The DFE of the model (1) is globally asymptotically stablein D if R, < 1.
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Proof. By the comparison theorem, the rate of change of the variables representing the infectious
classes in the model can be compared in the following inequality:

:Eh Eh Eh Eh
Iy Iy I I
. <(F-V - M,0 - M.,0

Enh ( ) Enh i Enh 2ve Enh
.Inh Inh Inh Inh

Where F and V are given below

Apunh
0 p, o Pradnsnh g 0 0 0
Annlin -y g, 0 0
F=|l0 0 o 0 and V = 0 0 g5 0
0 0 0  Bu 0 0 o
0 0 0 0 g4

whereg, =y + Un, g2 = th + 61 + U, g3 = a + uypand g, = T, + 85 + Uy Also, 6, and 6,
are given below

Apunh
0 p, o Prdwmh 000 0
Annlin 0 0 0 O
=10 0 0 0 and92=000B
n2
\0 0 0 0 00 o0 o
0 0 O 0
Giventhat M; =1 — 1‘3—" M, =1- 1‘3”—’1 and 6, and 6, are non-negative matrices. Since S;, < N,
h nh
and S,,;, < N,;;, we can say that
Ey E,
1 I
< (F-V) Eh
nh nh
'Inh Inh
Therefore, the matrix F — V is given as
ﬁnl/lh/'m'h
- B o /-
o " Annbin
F-V=]1vy -g, 0 0
0 0 —9s3 Bn2
0 0 —a —Ja

Let i be the eigenvalues of the matrix above. Thus, the characteristic equation gives the following
eigenvalues

Y1 =—(9192 — Bry) Y2=-92 V3 =—(9394 — Bn2@) Vs =—Ys

All the eigenvalues have negative real part if R, < 1. Hence, (Ep, I, Enn, Inn) — (0,0,0,0) as t —
oo, By the comparison theorem used in (Ey, I, Enn, Inn) — (0,0,0,0) as t — co. Now, when E;, =
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I, = Eyp = Iy, = 0, we have that S;, = ;ﬁ and S;;, = % and (Ry, R,n) — (0,0) as t — oo for
h n
R, < 1. Hence, the disease free equilibrium is globally asymptotically stable for R, < 1.

3.3.1 Existence of Endemic equilibrium point (EEP)
In this section, the existence of endemic equilibria (that is, equilibria where the infected
compartments of the model are non-zero) of the model (1) is established. Let,

EE3 EX3 *% EE3 *% *% EX3 *%
P = (Sh JER S Iy RE, Suns Enp Iy Ran

represents any arbitrary endemic equilibrium point (EEP) of the model (1) . It follows, by solving
the equations of the model at steady-state, that

w M o ApAy . ApAy'y
Sh T kx ) Eh - *k i Ih - *k )
Ay + un Ay + up) (v + 1n) Ay + )y + pp)(Th + 61 + up)
RH = Ay yTh g = Apn o _ ApnAnn
4 Ay +u) @+ )T+ 6+ udun” " At (At tan) (@ F )’
% — Anhl;ﬁz*ha R** — Anh/l*n*ha‘[nh
nh (1:51 + tpp) (@ + pinp) (82 + Top + tnn) ' nh (qu*h + tnn) (@ + tnp) (Tnp + 62 + Hnp)lnn
(4)
H H H H H *x anl-:;;l *k ﬁnll;ﬁz"'ﬁhl;z* H H
Substituting the expressions in (4) into Ay = o and Ay = T and solving gives

2 nh h
-1
wx _ 9394bnn(Ron )and

nh Hnhg3+ags

9s (ags + tnnga + 97(Ron — DI + (9192000 — BrAnyin(ags + tnnga + 97(Ron — 1)) —

96  Brnidnn@nn(Ron — DAL — Bra@ln19192bntinn(Ron — 1).

®)
where gy =y + Up, 92 = Th + 61+ Up, 93 = @ + Pnp, Ja = Tan + 82 + Unn
95 = Hnn T Tnnr J6 = UnG2 t HnY T YThy 97 = Unnga T Unn@ + ATyp.

It is clear to see that A}, exist if R,,, > 1. Also, the quadratic equation in terms of A;" has a single
positive root if R,,, > 1. Thus, the endemic equilibria of the of the model (1) can then be obtained
by solving for A3 from the above polynomial and substituting the positive values of 4, into the
expressions for the state variables.

3.4  Global stability of endemic equilibrium point (EEP)
The global asymptotic stability of the endemic equilibrium (¢,) of the model (1) will now be
explored. We claim the following result.

Theorem 3.4 The endemic equilibrium (¢,) of the model (1) , with §; = §, = 0, is GAS in
whenever R > 1.

The proof of Theorem 3.4 based on using a non-linear Lyapunov function is given below
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Proof. Consider the model with §; = §, = 0. We then have a mass action model where
Ay = (Bralnh™ + ﬁhl;;*)s;;* and Ay, = Bnalnh™ Sy
Let

kK kK *k * % %k %k *k %k
S (Sh JER S Iy Ry Suns Enwo Inny Ran

represent this unique endemic equilibrium. Consider the non-linear Lyapunov function of Goh-
Volterra type:

Y+ Up (v + up) (T + up)

V2 =Sh —S,”;*lnSh+Eh—E;’;*lnEh+
YTn

a+
Fon (Inh - ‘;;jllnlnh) +

+th - ;Zlnsnh + Enh - ‘;.}kllnETlh +

(0( + Unh)(fnh + .unh)
aATyp

(Rnh - 1*1’;11anh)’

We define the following steady state relations (obtained from the mass action version of the model
at the endemic steady state ¢,):

Ap = Bralnh™  +BrIp)SE" + upSy*s (v + up)En” = (Bualnh™ + Brly")Sy’,
(th tup)ly” =VER, upRy =thly’,  Apn = Bn2lphSnn + nnSnhs
(a+ ﬂnh)E;;z = ﬁnhlr*;;t r*;u (Tpn + :unh)lr*;L = aE;:;l’ /lnhR:le = TnhI;L;-

(6)

The Lyapunov derivative of V is given as
: Sp*
Vv =(1- E)(Ah — (Bualnn + BrIn)Sn — unSn)

*k

E
+(1- E—’;)((ﬁnllnh + Brln)Sh — (¥ + 1n)En)

+
_I_)’ Upn

Iy
(1- I_)(VEh — (T + up)lp)
h

v + un)(Th + up) Ry
+ (1 — =) (thlp — unRp)
YTh Ry

Snh
+(1 - S h)(Anh - ﬁnzlnhsnh - .unhth)
n

Ep, A+ lan
+(1 - EL)(ﬂnZInhth - (a + .unh)Enh) + - (1 - In_h)(aEnh - .unhlnh) +

nh n

(a + tnn) (Tun + Unn) Ron
B aT : B (1 - Rnh)(TnhInh - .unhRnh)-
n n

()

Substituting the steady state relations in (6) and in (7) (after some algebraic simplifications) gives
the following in D and noting that the state variables of the model are bounded by the values of
their endemic steady state in D,
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" S Ef'Sn IEn Rp'ln Ry
2h E:zzsnh i I;;Enh i R;’;Llnh _ Rnhl

S*;l th nh
I S + (@ + unn)Enn |5 —=— — :
Hnonh l th S‘;’kl;l (a .unh) nh th EnhS;’kl;L InhE:l;L Rnhl::;l R:;L

*%

. S Sy
V< u,S;* [2———
= Upop l Sh_ S;;*

Finally, since the arithmetic mean exceeds the geometric mean, the following inequalities hold.

l Sp* Shl <0 l S EpS, IEn, R, Rhl<0

2t _ 51 _ - - -
Sv Sk Si EnSi InBn  Raly Ry

[ ;;71 thl < 0, [5 . ﬁ . E:l;ls'l:i’l _ I;ZEZf N R:}cllr:il . Ril:ll <o0.
th Enhth InhEnh Rnhlnh Rnh

Thus, we have that 7 < 0. Hence, V is a Lyapunov function in D.

4 NUMERICAL SIMULATION

The model (1) will be simulated to illustrate the impact of some parameters on the transmission
dynamics of monkey pox. The numerical simulations are carried out using the parameters values
in Table 2.

Table 2: Description of variables and parameters in the model (1)

Parameter Value References
Ay 0.029/yr | [11]
Un 0.02/yr | [11]
B 0.75/yr | [11]

Br1 1.5/yr [11]
B2 3lyr [11]
v 30/yr [5]

T 0.45/yr | [7]
Ton 0.3/yr [7]
5, 0.15/yr | [11]
A, 2000/yr | [11]
i 1.5/yr [11]
a 120/yr [5]
5, 0.4/yr [5]
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Human cumulstive cases

Figure 2: Simulation of the model (1) with varying values of 3,
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Figure 3: Simulation of the model (1) with varying values of £,;
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Figure 4: Simulation of the model (1) with varying values of £,,,

We see from Figure 2 that varying the value of 3, has minimal impact on the human cumulative
cases of monkey pox. However, we see from Figures 3 and 4 that 3,,; and £, has greater impact
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on the human monkey pox dynamics. These results suggest that controlling the disease in the
human population also depends on reducing the contacts between humans and the reservoirs an
well as the controlling the spread in the non-human population

X 10*
8 —th=l —
_:h=1..~
s —_— =1 |
g _r:=0.5
é 4 — ]
1+ -
D 1 1 1 1 1
0 5 10 15 20 25 30
Time (Years)
Figure 5: Simulation of the model (1) with varying values of 7,
7 10t
(=1 2 -
= =1 -]
; —'[n=ﬂ
=4 — =05
E —'[n=1
=3 — L5
I_E —'[-=2
1~ -
I:\'IIZI I5 1ID : Z:EI ZIE 30

Figure 6: Simulation of the model (1) with varying values of 7,

Again, Figures 5 and 6 further establishes this point as the recovery of infectious non-humans was
seen to be more significant in reducing the cumulative number of cases in the human population
than the recovery of infectious humans.

Sensitivity Analysis

We assess the impact of the parameters in each of the basic reproduction numbers by computing
the sensitivity indices. According to the approach in [12], the sensitivity index R, to a parameter

say ‘a” where a is any parameter in the basic reproduction number R is given by

R0 —8Ro @

a = sa Ro
These indices can be used to quantify the relative changes in the basic reproduction number in
response to the changes in each of the parameters in it. Thus, we can identify critical parameters
that are significant for disease control. Table 3 gives the sensitivity indices of the parameters in

the basic reproduction numbers (R, and R, )using the parameters values in Table 2.
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Table 3: Sensitivity indices of parameters in the model (1)

Parameter Sensitivity index
Un -0.0329
Bn +1
Brz +1

v +0.0007
T -0.726
Tnh -0.136
54 -0.242
Unn -0.694

a +0.0123
Sy -0.182

We can see from Table 3 that the basic reproduction number is most sensitive to the transmission
rates 8, and B,, with a sensitivity index of +1 each. This means that 1% increase in the
transmission rates (8, and S,,, ) will also lead to 1% increase in R,,;, and R,,, respectively. Itis
also important to state that the human basic reproduction number R, is also sensitive to human
recovery rate 1, while the non-human basic reproduction number R,,, is also sensitive to the
natural mortality rate u,, of non-humans. While g, is positively correlated withR,;, t, is
negatively correlated with R ;. Also, while is positively correlated with R, 4, is negatively
correlated with R,

DISCUSSIONS

A new mathematical model for the transmission dynamics of monkey-pox in a community is
designed (and rigorously analyzed) and used to assess how monkey-pox can be controlled or
managed in a population. Some of the theoretical findings are given below.

(1) The model (1) has a disease free equilibrium (DFE) (when there are no infection in the
population). The disease free equilibrium is locally asymptotically stable whenever the
associated reproduction number is less than unity. Also, the DFE is globally asymptotically
stable in the absence of disease induced mortality for humans whenever the associated
reproduction number is less than unity.

(i) The model (1) has a globally asymptotically stable endemic equilibrium in the absence of
disease induced mortality for humans whenever the associated reproduction number is
greater than unity.

Numerical simulations of the model (1), showed that the transmission rates from non-human to
non-human (f,,) and non-human to human (,,;) have greater impact on the cumulative number
of monkey-pox cases amongst humans that the transmission rate from human to human (3;). Also,
we saw that the recovery rate of non-humans had more significant impact on the cumulative
number of cases of monkey-pox than the human recovery rate; re-emphasizing the first result.
Again, sensitivity analysis showed that the transmission rates 8, and £3,,, had the most significant
influence on the reproduction number.

Thus we can see that though human to human transmission may contribute to the incidence of
monkey pox in a population, the non-human to human transmission is seen to play more significant
role in sustaining the transmission of monkey pox in a human population. Therefore, the need to
educate people on how to curb the spread of monkey-pox from person-to-person may be important.
However, educating people on proper handling of infected animals is crucial in limiting the spread
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of this disease among humans. Thus, public health policies should focus more on reducing
transmission among the non-human population and also transmission from non-humans to
humans. Raising awareness of risk factors and enlightening people about measures that will lead
to reduced exposure is the main strategy for monkey-pox prevention and control.
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