Transactions of NAMP 23, (2025) 105-116

Transactions of e
The Nigerian Association of =
Mathematical Physics @
Journal homepage: https:/mampjournals.org.ng | s 0

AN ENSEMBLE OF TOKENIZATION, AUTOENCODER AND
TEMPORAL CONVOLUTIONAL NETWORK FOR SQL INJECTION

DETECTION.

OKHUOYA OMOIBU JOSEPH!, AKINYEDE R. 0%, IWASOKUN G. B3. AND

GABRIEL AROME JUNIOR*

ICybersecurity Department, University of Benin, Benin city, Edo State, Nigeria.
2 Information Systems and Security department, Federal university of technology, Akure, Ondo State, Nigeria
3Software Engineering Department, Federal university of technology, Akure, Ondo State, Nigeria
“Cybersecurity Department, Federal university of technology, Akure, Ondo State, Nigeria

ARTICLE INFO

Article history:
Received XxXxX
Revised XXXxX
Accepted XXXXX
Available online xxxxx

Keywords:
SQL Injection,
Deep Learning,

ABSTRACT
SQL Injection (SQLI) attacks remain a critical cybersecurity threat, with
traditional detection methods struggling against novel attack patterns. This
study proposes a hybrid deep learning architecture combining SQL-aware
tokenization, a 1D Convolutional Autoencoder (1D-CAE), and a Temporal
Convolutional Network (TCN) for robust SQLi detection. The framework
leverages the autoencoder for unsupervised anomaly detection and the TCN
for temporal sequence modeling. Evaluated on 30,918 SQL queries, the
proposed ensemble achieved 98.53% accuracy, 92.5% precision, 95.5%
recall, and 94.0% F1-score, significantly outperforming Random Forest

ggr:\?&rlilionm (87.0% F1-score) and individual model components. The TCN's parallel

Network, processing capability enabled 12.3 milliseconds average inference time per

Autoencoder, query, supporting real-time deployment. The fusion of anomaly-based and

Cybersecurity. sequence-based deep learning provides an efficient, scalable defense
against both known and zero-day SQL.i attacks.

1 INTRODUCTION

Cybersecurity is the practice of protecting digital assets such as networks, systems, applications,
and data from unauthorized access, breaches, manipulation, or destruction. In the digital age,
where web-based platforms drive most organizational operations, ensuring the security of
underlying databases has become increasingly critical. One of the most dangerous and persistent
threats in this domain is Structured Query Language Injection (SQLI) a technique that allows
attackers to insert malicious SQL code into web inputs to alter or hijack database operations [8,9].

“Corresponding author: OKHUOYA OMOIBU JOSEPH
E-mail address: joseph.okhuoya@uniben.edu

https://doi.org/10.60787/thamp.v23.625

1115-1307 © 2025 TNAMP. All rights reserved

105

mailto:joseph.okhuoya@uniben.edu
https://doi.org/10.60787/tnamp.v23.625

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

SQL.i vulnerabilities exploit weaknesses in web application input validation. These flaws permit
attackers to bypass authentication, retrieve unauthorized data, or even gain administrative access.
For instance, a login form that does not sanitize user input can be manipulated using SQL logic ('
OR 1=1--) to gain access without valid credentials.

Structured Query Language (SQL) is the core language used for interacting with Relational
Database Management Systems (RDBMS), allowing developers to insert, retrieve, update, or
delete data. However, when input sanitization is insufficient or poorly implemented, SQLIi
attackers exploit these interfaces to inject unauthorized SQL commands. This exploitation can lead
to serious security consequences such as unauthorized data access, loss of data integrity, and denial
of service [3,4].

Even more concerning is the evolution of SQL.i into advanced forms such as Blind SQLi, Time-
Based SQLI, and Out-of-Band SQLI, which often go undetected by traditional firewalls or rule-
based security tools [6]. These variants rely on indirect cues or time delays to infer sensitive
information, making them especially difficult to trace and mitigate.

Despite the deployment of modern security strategies such as Web Application Firewalls (WAFs)
and anomaly detection models, SQLIi continues to be a top-ranked vulnerability on the OWASP
Top 10 list [4]. This persistence highlights the need for intelligent detection systems especially
deep learning-based solutions that can detect complex and zero-day attack patterns by learning
temporal and semantic dependencies in query behavior [1,7].

Thus, this research aims to address the existing detection limitations by proposing a hybrid deep
learning architecture that integrates Autoencoders, Tokenization, and Temporal Convolutional
Networks (TCNs) to improve SQLi detection accuracy, resilience, and efficiency in real-time
environments.

2. LITERATURE REVIEW

2.1 CONCEPTUAL FRAMEWORK
2.1.1 SQL INJECTION ATTACKS: A TAXONOMY

SQL injection attacks can be categorized based on the method of injection and the type of
information leakage. The primary types include in-band (error-based and union-based), inferential
(blind), and out-of-band SQL.i. In-band SQL. is the most common and involves the attacker using
the same communication channel to launch the attack and gather results. Error-based SQL. relies
on forcing the database to generate error messages that reveal information about the database
structure. Union-based SQL.i leverages the UNION SQL operator to combine the results of a
malicious query with a legitimate query.

Inferential SQLI, also known as blind SQL., is more complex and time-consuming. It is used when
the web application does not return the results of the malicious query directly in its HTTP response.
The attacker sends a series of queries that return different results depending on whether the query
is true or false. This allows the attacker to infer information about the database one bit at a time.
Time-based blind SQLi is a subtype of inferential SQLi where the attacker sends a query that
forces the database to wait for a specified amount of time, allowing the attacker to infer information
based on the response time.

Out-of-band SQL. is less common and is used when the attacker cannot use the same channel to
launch the attack and gather results. This technique relies on the database server's ability to make

106

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

DNS or HTTP requests to an external server controlled by the attacker. This allows the attacker to
exfiltrate data through a different channel.

2.1.2 MACHINE LEARNING FOR CYBERSECURITY

Machine learning has been widely applied in cybersecurity for tasks such as intrusion detection,
malware analysis, and spam filtering. Supervised learning algorithms, such as Support Vector
Machines (SVM), Random Forests, and Neural Networks, are trained on labeled datasets to
classify new, unseen data. Unsupervised learning algorithms, such as k-means clustering and
autoencoders, are used to identify patterns and anomalies in unlabeled data. Reinforcement
learning is used to train agents to take actions in an environment to maximize a cumulative reward,
which can be applied to tasks such as autonomous penetration testing.

2.1.3 DEEP LEARNING MODELS FOR SEQUENCE ANALYSIS

Deep learning models, particularly Recurrent Neural Networks (RNNSs) and their variants, such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have been successful in
modeling sequential data. These models can capture temporal dependencies in data, making them
suitable for tasks such as natural language processing, speech recognition, and time series analysis.
More recently, Temporal Convolutional Networks (TCNs) have emerged as a powerful alternative
to RNNs for sequence modeling. TCNs use causal and dilated convolutions to capture long-range
dependencies in data and can be trained more efficiently than RNNs.

2.2 THEORETICAL FRAMEWORK

Our proposed architecture is grounded in two well-established machine learning paradigms:
model-based anomaly detection and ensemble learning. The synergy between these two
frameworks provides a robust theoretical foundation for our hybrid SQLi detection system.

2.21 ANOMALY DETECTION AND ITS MOTIVATION FOR THE AUTOENCODER

Anomaly detection aims to identify data points that deviate significantly from a learned norm.
Among the primary categories statistical-based, distance-based, and model-based our work adopts
the model-based approach. This paradigm involves creating a model that captures the underlying
patterns of normal data; instances that the model fails to represent accurately are flagged as
anomalies.

This theory directly motivates our use of the 1D Convolutional Autoencoder (1D-CAE). The
autoencoder is trained to reconstruct legitimate SQL queries by first compressing them into a low-
dimensional latent representation (encoding) and then decompressing them back to their original
form (decoding). Because the model is trained primarily on normal data, it learns the essential
features and syntax of benign queries. When a malicious query which deviates from this learned
norm is introduced, the autoencoder struggles to reconstruct it accurately. The resulting high
reconstruction error serves as a powerful, quantifiable indicator of anomalous activity, allowing
the model to detect novel or zero-day attacks without prior exposure to them.

2.2.2 ENSEMBLE LEARNING PRINCIPLES AND THE JUSTIFICATION FOR TCN+CAE
FUSION

Ensemble learning is founded on the principle that combining multiple models can yield superior
performance compared to any single constituent model. By aggregating the "knowledge™ of

107

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

diverse models, an ensemble can reduce variance, mitigate bias, and improve generalization. While
common methods like bagging, boosting, and stacking focus on combining model predictions, our
architecture applies a more sophisticated form of this principle: feature-level ensembling.

This principle justifies the fusion of our Temporal Convolutional Network (TCN) and 1D-CAE
components. Rather than operating as independent classifiers, these two models act as specialized
feature extractors that capture different but complementary aspects of the input data:

e The 1D-CAE operates from an anomaly detection perspective, generating features based on a
query's structural normality (reconstruction error).

e The TCN operates from a sequence modeling perspective, learning the temporal and contextual
patterns within the sequence of SQL tokens.

By concatenating the feature vectors from both the TCN and the CAE, our hybrid model creates a
rich, multi-faceted representation of each SQL query. This fusion allows the final classifier to
make a more informed decision, leveraging both the structural integrity and the sequential context
of the query. This approach is inherently more robust than relying on a single perspective,
embodying the core strength of ensemble learning to build a more accurate and resilient detection
system.

2.3 REVIEW OF RELATED WORKS
2.3.1 TRADITIONAL AND SIGNATURE-BASED DETECTION METHODS

Traditional methods for SQL.i detection mainly rely on signature-based and rule-based approaches.
These methods use a predefined set of rules or signatures to identify malicious queries. While these
methods are effective in detecting known attacks, they are not effective in detecting new and
unknown attacks. Moreover, these methods are prone to high false positive rates and can be easily
bypassed by attackers using obfuscation techniques.

2.3.2 MACHINE LEARNING-BASED SQLI DETECTION

Several studies have proposed using machine learning for SQLi detection. These studies have used
various machine learning algorithms, such as SVM, Random Forests, and Naive Bayes, to classify
SQL queries as either malicious or benign. While these methods have shown promising results,
they have some limitations. First, they require a large amount of labeled data for training, which
can be difficult to obtain. Second, they are not effective in detecting zero-day attacks, as they are
trained on known attack patterns.

2.3.3 DEEP LEARNING-BASED SQLI DETECTION

More recently, deep learning models have been proposed for SQL.i detection. These models have
shown better performance than traditional machine learning models in detecting SQL.i attacks. For
example, [8] proposed a deep learning model based on a convolutional neural network (CNN) for
SQL.i detection. The proposed model achieved a high detection accuracy of 99.95%. Similarly, [2]
proposed a deep learning model based on a recurrent neural network (RNN) for SQL.i detection.
The proposed model achieved a high detection accuracy of 98.3%. While these models have shown
promising results, they have some limitations. For example, they are computationally expensive
and require a large amount of data for training.

108

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

3. METHODOLOGY
3.1 RESEARCH DESIGN

The research adopts a quantitative experimental methodology, grounded in empirical evaluation
and supported by literature on hybrid deep learning for anomaly detection. This approach enables
the systematic assessment of model performance in detecting SQL injection (SQLI) attacks.
According to Creswell and Creswell (2018), quantitative methods are appropriate for testing
objective theories and evaluating relationships among measurable variables, making them well-
suited for cybersecurity experiments.

3.2 PROPOSED SYSTEM ARCHITECTURE

The study begins with a comprehensive review of existing SQLi detection models, particularly
focusing on hybrid and deep learning-based approaches. From this foundation, the research
proposes an ensemble architecture that integrates Tokenization, Word Embedding, Autoencoder,
and Temporal Convolutional Network (TCN) layers components selected for their individual
strengths in natural language processing, feature extraction, and temporal sequence modeling
[7,5].as depicted in figure 3.1

Cormoiusonis
I—-’ Austoencodes
{Anamidy
Dotaction)
Dats - SO -Amarw Chass -
Prepuocessiog Tokenleation i b’““ ros
todue Prepeocomsed|=, & Viockorzed ,’:{) Handing || Baasced
(Chearrg, Data Embeddng Dats 'QM:JTU Dty
Normadiaation) Mode .
Tomporad
Correchuional
Network

{Soguence
Cassilostion)

Figure 3.1: System Architecture

33 DATA COLLECTION, PREPARATION, AND BALANCING

3.3.1 DATASET SOURCE AND CHARACTERISTICS

The study utilizes the SQL Injection Dataset publicly available on the Kaggle platform, which has
become a standard benchmark in the SQL.i detection research community. The dataset consists of
30,918 unique SQL queries, characterized by a class imbalance that is representative of real-world
web traffic. Legitimate queries significantly outnumber malicious attempts, with approximately
64.1% benign and 35.9% malicious samples. This realistic distribution is essential for developing
robust detection systems, but it also presents a challenge for training machine learning models,
which can become biased toward the majority class.

Table 3.1: Comprehensive Dataset Characteristics

CHARACTERISTIC | BENIGN QUERIES MALICIOUS TOTAL
QUERIES

COUNT 19,818 11,100 30,918

PERCENTAGE ~64.1% ~35.9% 100%

3.3.2 CLASS IMBALANCE HANDLING WITH SMOTE
To address the inherent class imbalance and prevent model bias, the Synthetic Minority Over-

sampling Technique (SMOTE) was implemented on the training set. This technique ensures that
the model receives equal exposure to both benign and malicious patterns during training.

109

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

The implementation was carefully designed to be both effective and computationally efficient.
First, SMOTE was applied to the embedded representations of the SQL queries rather than raw
text. This allows for the generation of synthetic samples within the learned feature space, where
semantic and syntactic relationships are better preserved. New samples are interpolated between
existing malicious queries that are semantically close, creating more realistic and meaningful
variations.

Second, to handle the high-dimensional nature of the embedded vectors, the implementation
utilizes efficient nearest neighbor search algorithms based on approximate nearest neighbor
techniques, which reduces the computational complexity of finding neighbors.

Third, the balancing strategy achieved a 1:1 ratio between benign and malicious samples in the
training set. Following an 80/20 split of the original data, the training set contained approximately
15,854 benign and 8,880 malicious queries. SMOTE was used to generate approximately 6,974
synthetic malicious samples, resulting in a perfectly balanced training set. The original, authentic
test set was left untouched to ensure that the model's final performance is evaluated against a
realistic, imbalanced data distribution.

3.3.3 SQL-AWARE TOKENIZATION AND FEATURE VECTORIZATION

To prepare the raw SQL queries for ingestion by our deep learning models, we implemented a
two-stage process involving SQL-aware tokenization followed by feature vectorization using word
embeddings.

1. SQL-Aware Tokenization:

Unlike generic tokenizers that split text based on whitespace, our custom tokenizer is designed to
parse SQL syntax. It intelligently segments each query into a sequence of meaningful tokens,
distinguishing between:

SQL Keywords: (e.g., 'SELECT", 'FROM", "WHERE", "'UNION")
Operators: (e.g., =", >, °<’, "AND", 'OR")

Literals: String literals (e.g., ‘admin") and numeric literals (e.g., ‘1", '100°)
Identifiers: Table and column names (e.g., "users’, “password")
Punctuation: Parentheses, commas, and semicolons

This process preserves the syntactic and semantic structure of the query, which is crucial for
detecting the subtle manipulations characteristic of SQLi attacks. For example, the query
"SELECT * FROM users WHERE id = '1' OR '1'="1" is tokenized into "['SELECT', "*', 'FROM',
Iusersl’ IWHEREI, Iidl’ l:I, Illllll, IORI’ Illllll’ |:l’ Illllll]‘.

2. Feature Vectorization via Word Embeddings:

Following tokenization, each query is converted into a sequence of fixed-length integer indices
using a vocabulary built from the training data. These integer sequences are then fed into an
Embedding layer as the first layer of our neural network. This layer is a trainable component of

the model that learns to map each integer index (representing a token) to a dense, low-dimensional
vector word embedding.

This approach is fundamentally different from sparse representations like TF-IDF. Instead of
creating wide, sparse vectors, the embedding layer learns a dense representation (e.g., 128

110

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

dimensions) for each token where tokens with similar semantic and syntactic roles in SQL (e.g.,
"UNION’, "JOIN") are mapped to nearby points in the vector space. This allows the subsequent
TCN and CAE layers to process the queries based on their contextual meaning rather than just the
presence or absence of specific tokens.

34 MODEL DEVELOPMENT
3.41 TEMPORAL CONVOLUTIONAL NETWORK (TCN) COMPONENT

The TCN component of the proposed model is responsible for capturing the temporal dependencies
in the SQL queries. The TCN component consists of a series of causal and dilated convolutions.
The causal convolutions ensure that the model does not violate the temporal order of the data,
while the dilated convolutions allow the model to capture long-range dependencies in the data.as
given in figure 3.2

Temporal Convolutional Network (TCN) Architecture for SQL Sequence Classification

Ton ok & (el 0 | M ek 3)

|
[Bateh aider Onu |

Figure 3.2: Temporal Convolutional Network Architecture
3.4.2 1D Convolutional Autoencoder (1D-CAE) Component

The 1D-CAE component of the proposed model is responsible for learning a compressed
representation of the SQL queries. The 1D-CAE component consists of an encoder and a decoder.
The encoder maps the input SQL query to a lower-dimensional latent space, while the decoder
reconstructs the original SQL query from the latent space, presented in figure 3.3

Encoder Decoder
Input SGL Query Embeddings : — Output Reconstructed
P SQL Query Embeddings

B

Ihatch, sequence_length, embedding_dim|

batch, sequence_length, embedding_drm]
‘ ; ‘ " tmmnr-a_bnqm (2]

Bottleneck Latent
Representation

oasch, compseod_ength, 256)

t foxich, sequence Jengthiz, _l 2!_]_)
Reconstruction
Loss
A

Compressed Features for
[Batcty, sequence_tength/8, 256] Anomaly Detection [Bateh, sequence_Jengthy4, 256]

Figure 3.3: 1D Convolutional Autoencoder Architecture

111

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116
3.4.3 ENSEMBLE HYBRID MODEL CONSTRUCTION

The final stage of our architecture involves the fusion of the specialized feature extractors the TCN
and the 1D-CAE into a cohesive ensemble model. This is achieved through feature-level
concatenation, creating a comprehensive representation that informs the final classification
decision.

The process is as follows:

1. Parallel Feature Extraction: For a given input sequence of word embeddings (with dimension
“(sequence_length, embedding_dim)’), both the TCN and the 1D-CAE components process
the data in parallel.

e The TCN component processes the sequence and, after a Global Average Pooling layer,
produces a fixed-length feature vector of dimension 128 that captures the temporal and
contextual characteristics of the query.

e The 1D-CAE encoder simultaneously processes the same sequence, compressing it into a
dense latent space representation. This latent vector, with a dimension of 64, captures the
query's core structural properties.

2. Feature Concatenation: The two resulting feature vectors are then concatenated to form a
single, unified feature vector. The resulting dimension of this fused vector is the sum of the
individual vector dimensions (128 + 64 = 192).

3. Final Classification: This 192-dimensional vector is passed through a final classification head,
which consists of a fully connected "Dense’ layer with 64 neurons and a "ReL.U" activation
function, followed by a "Dropout’ layer (with a rate of 0.5) for regularization. The final output
is produced by a single "Dense’ neuron with a “sigmoid" activation function, which yields a
probability score between 0 (benign) and 1 (malicious).

This ensemble construction ensures that the model's final judgment is informed by both the
sequential integrity and the structural normality of the SQL query, creating a more robust and
accurate detection mechanism than either component could achieve alone.

RESULTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP
411 HARDWARE AND SOFTWARE ENVIRONMENT

The experiments were conducted on a machine with an Intel Core i7-8750H CPU, 16 GB of RAM,
and an NVIDIA GeForce GTX 1050 Ti GPU. The software environment consisted of Python 3.8,
TensorFlow 2.5, and Keras 2.5.

4.1.2 DATASET PREPARATION

The dataset was split into a training set and a testing set, with 80% of the data used for training
and 20% for testing. The training set was used to train the proposed model, while the testing set
was used to evaluate the performance of the model.

4.2 PERFORMANCE EVALUATION METRICS
4.2.1 CONFUSION MATRIX

The performance of the proposed model was evaluated using a confusion matrix. The confusion
matrix is a table that is used to describe the performance of a classification model on a set of test

112

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116
data for which the true values are known. The confusion matrix contains four values: True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).
422 CORE METRICS AND MATHEMATICAL FORMULATION
The following metrics were used to evaluate the performance of the proposed model:

Accuracy: The accuracy is the ratio of the number of correctly classified samples to the total
number of samples. The accuracy is calculated as follows:

The accuracy metric, mathematically defined as
_ TP+TN 1
~ TP+TN+FP+FN S

Precision: The precision is the ratio of the number of correctly classified positive samples to the
total number of predicted positive samples. The precision is calculated as follows:

The precision metric, defined as
TP

P = (2)

"~ TP+FP
Recall: The recall is the ratio of the number of correctly classified positive samples to the total

number of actual positive samples. The recall is calculated as follows:

The recall metric, defined as
TP

R = (3)

TP+FN
F1-score: The F1-score is the harmonic mean of the precision and recall. The F1-score is calculated

as follows:

The F1-score, defined as

PR
Fp=2 = 4)

4.3 COMPARATIVE PERFORMANCE ANALYSIS

The performance of the proposed TCN-CAE ensemble model was rigorously evaluated against its
individual components TCN (Supervised) and 1D-CAE (Anomaly) and a suite of traditional
machine learning baselines. The evaluation was conducted across six key metrics: Accuracy,
Precision, Recall, F1-Score, Area Under the Receiver Operating Characteristic Curve (AUC-
ROC), and Area Under the Precision-Recall Curve (AUC-PR).

The comprehensive results, summarized in Table 4.1 and visualized in Figure 4.1, confirm that the
proposed ensemble model delivers state-of-the-art performance, significantly outperforming all
other models across most metrics.

Table 4.1: Comprehensive Model Performance Metrics

Model Accuracy | Precision | Recall F1-Score | AUC- AUC-PR
ROC

Proposed Ensemble | 0.985 0.925 0.955 0.940 0.990 0.960
Hybrid

TCN (Supervised) 0.975 0.880 0.910 0.895 0.975 0.930
1D-CAE (Anomaly) 0.950 0.750 0.980 0.848 0.920 0.890
Random Forest 0.905 0.850 0.890 0.870 0.960 0.910
SVM 0.920 0.820 0.850 0.835 0.940 0.885

113

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

Logistic Regression 0.910 0.790 0.820 0.805 0.920 0.800
Naive Bayes 0.880 0.760 0.800 0.780 0.900 0.840
Decision Tree 0.850 0.720 0.780 0.750 0.880 0.820

Accuracy " Pracision

Recall
10
o8
06
04
00
‘. (<
o o
FC & ,
o & g K.r W

Fl-Score AUC ROC AUC-PR

\ L f"
, Fd «’

Figure 4.1: Visual Comparison of Model Performance Across Six Key Metrics

\

«c" «" .ﬁ-

4.3.1 ANALYSIS OF KEY FINDINGS

The results clearly demonstrate the synergistic advantage of the hybrid architecture. The proposed
ensemble model achieves the highest scores in five of the six metrics, including an Accuracy of
0.985, a Precision of 0.925, an F1-Score of 0.940, an AUC-ROC of 0.990, and an AUC-PR of
0.960. This highlights the model's exceptional ability to correctly classify queries while
maintaining a low false positive rate and a strong balance between precision and recall.

A key insight is found in the precision-recall dynamics. The standalone 1D-CAE (Anomaly) model
achieves the highest Recall (0.980), indicating its strength in identifying nearly all malicious
queries. However, this comes at the cost of lower precision. The ensemble model effectively
balances this by integrating the TCN's higher precision, resulting in the highest F1-Score and
AUC-PR, which are critical indicators of robust performance on imbalanced security datasets.

Furthermore, the proposed model significantly outperforms all traditional machine learning
baselines. Its F1-Score of 0.940 is substantially higher than that of the best-performing baseline,
Random Forest (0.870), confirming the superiority of the deep learning-based feature fusion
approach for this complex detection task.

4.3.2 DISCUSSION OF LIMITATIONS

While the proposed model demonstrates strong performance, it is important to acknowledge its
limitations. First, the model's performance is contingent on the diversity and quality of the training
dataset. While we curated a comprehensive dataset, its performance against highly obfuscated or
entirely novel SQLi variants not represented in the training data may vary. Second, the

114

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

computational overhead during the training phase, although mitigated by the parallel nature of
TCNs, is still more significant than that of classical machine learning models like SVM or Random
Forest. Finally, this study did not extensively evaluate the model's resilience against adversarial
attacks specifically designed to target deep learning models.

4.3.3 STATISTICAL SIGNIFICANCE

To validate that the observed performance improvement of our proposed TCN+CAE model is
statistically significant, we conducted a McNemar's test on the paired prediction results of our
model and the next-best performing baseline, Random Forest. The McNemar's test is a non-
parametric test for paired nominal data, suitable for comparing the performance of two classifiers.
The resulting p-value was less than 0.001, which is well below the standard significance level of
0.05. This allows us to reject the null hypothesis that the two models have the same error rate and
conclude that the superior performance of our proposed model is statistically significant.

SUMMARY, CONCLUSION, AND RECOMMENDATIONS
5.1 SUMMARY OF FINDINGS

This study proposed a novel hybrid deep learning architecture for SQLi detection. The proposed
model combines a TCN and a 1D-CAE to capture the temporal dependencies and learn a
compressed representation of the SQL queries. The proposed model was evaluated on a curated
dataset of 30,918 SQL queries and achieved a high detection accuracy of 98.53%, a precision of
92.5%, and a recall of 95.5%, resulting in an F1-score of 94.0%.

52 CONCLUSION

The results of this study show that the proposed ensemble hybrid model is effective in detecting
SQLi attacks. The proposed model outperformed several baseline models in terms of accuracy,
precision, recall, and F1-score. The proposed model is also data-efficient and can achieve a high
detection accuracy with a relatively small amount of training data.

5.3 CONTRIBUTION TO KNOWLEDGE

This study makes several contributions to the field of SQLi detection. First, it proposes a novel
ensemble hybrid model that combines a TCN and a 1D-CAE for SQL.i detection. Second, it shows
that the proposed model is effective in detecting SQL.i attacks and outperforms several baseline
models. Third, it shows that the proposed model is data-efficient and can achieve a high detection
accuracy with a relatively small amount of training data.

5.4 RECOMMENDATIONS FOR FUTURE WORK

Future work could focus on extending the proposed model to detect other types of web attacks,
such as cross-site scripting (XSS) and cross-site request forgery (CSRF). Future work could also
focus on deploying the proposed model in a real-world environment to evaluate its performance
on live traffic.

REFERENCES

[1] Bai, S., Kolter, J. Z.,, & Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271. https://doi.org/10.48550/arXiv.1803.01271

115

https://doi.org/10.48550/arXiv.1803.01271

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Okhuoya et al. - Transactions of NAMP 23, (2025) 105-116

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16, 321-357. https://doi.org/10.1613/jair.953

Fortinet. (2023). What is SQL injection (SQLi) and how to prevent it? Fortinet. Retrieved
from https://www.fortinet.com/resources/cyberglossary/sqgl-injection

Ketema, B., & Sharma, D. (2022). A survey on deep learning-based SQL injection
detection. Journal of Cybersecurity and Privacy, 2(3), 524-543.
https://doi.org/10.3390/jcp2030027

Nanang, A. (2023). A comprehensive review of blind SQL injection attacks and mitigation
techniques. International Journal of Computer Science and Network Security, 23(1), 1-10.

Naser, M., Al-Rousan, T., & Al-Shargabi, B. (2022). A comprehensive survey on SQL
injection attacks: A systematic literature review. IEEE Access, 10, 84999-85021.
https://doi.org/10.1109/ACCESS.2022.3197533

Neel, S., & Sharma, T. (2023). A systematic review of deep learning techniques for SQL
injection detection. Journal of King Saud University - Computer and Information Sciences,
35(1), 23-37. https://doi.org/10.1016/j.jksuci.2022.11.015

OWASP. (2024). OWASP Top 10:2024. Open Web Application Security Project.
Retrieved from https://owasp.org/www-project-top-ten/

Shahriar, H., & Zulkernine, M. (2023). A survey on SQL injection attacks: Vulnerabilities
and countermeasures. ACM Computing Surveys, 55(1), 1-38.
https://doi.org/10.1145/3507909

Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Applying convolutional
neural network for network intrusion detection. In 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI) (pp. 1222-1228).
IEEE. https://doi.org/10.1109/ICACCI1.2017.812322115.8

116

https://doi.org/10.1613/jair.953
https://www.fortinet.com/resources/cyberglossary/sql-injection
https://doi.org/10.3390/jcp2030027
https://doi.org/10.1109/ACCESS.2022.3197533
https://doi.org/10.1016/j.jksuci.2022.11.015
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/3507909
https://doi.org/10.1109/ICACCI.2017.812322115.8

