Transactions of NAMP 23, (2025) 139-156

Transactions of e
The Nigerian Association of ===

Mathematical Physics
Journal homepage: https:/mampjournals.org.ng | s 0

OPTIMAL INVESTMENT AND CONSUMPTION STRATEGIES WITH
DEBT RATIO IN ASTOCHASTIC VOLATILITY MARKET

OGBUAGU, C. E.**, EKANG, I. F.2, SENGE, I. O.}, AND NKEKI, C. I

!Department of Mathematics, University of Benin, Benin City, Nigeria

2Department of Mathematics, University of Uyo, Uyo, Nigeria

ARTICLE INFO

Article history:
Received XXXxX
Revised  xxxxx
Accepted  XxxXXx
Available online xxxxx

Keywordas:

ABSTRACT
This paper investigates an optimal investment-consumption problem with
endogenous leverage in a continuous-time market characterized by
stochastic volatility and housing risk. We develop a unified framework in
which an investor allocates wealth among a risk-free asset, a risky financial
asset with Heston-type stochastic volatility, and a non-financial housing
asset financed partly through debt. The investor simultaneously chooses the

Optimal portfolio allocation, consumption rate, and debt ratio to maximize expected
investment, discounted utility under constant relative risk aversion preferences. Using
Optical stochastic dynamic programming, we derive the associated Hamilton-
consumption, Jacobi-Bellman equation and obtain explicit closed-form solutions for the
Debt ratio, optimal portfolio policy, optimal debt ratio, and optimal consumption rule.
Stochastic The analytical results reveal that stochastic volatility affects investment
volatility, decisions not only directly through the financial asset but also indirectly
Housing asset, through leverage and housing exposure. Numerical illustrations
Hamilton- demonstrate the sensitivity of the optimal policies to changes in volatility
Jacobi-Bellman persistence, correlation structures, borrowing costs, and risk preferences.
equation.

1 INTRODUCTION

Optimal investment and consumption decisions lie at the core of continuous—time financial
economics. Since the works of Merton [1, 2], stochastic control techniques have been widely
employed to characterize optimal portfolio allocation and consumption strategies under
uncertainty. In these classical formulations, investors dynamically allocate wealth between risky
and risk-free assets so as to maximize expected lifetime utility, typically under simplifying
assumptions such as constant volatility, frictionless markets, and absence of leverage

considerations.
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Subsequent research has substantially extended the Merton framework. Several studies
incorporated borrowing and consumption constraints (Fleming and Zariphopoulou [3]; Vila and
Zariphopoulou [4]), transaction costs (Dumas and Luciano [5]; Shreve and Soner [6]), and finite
investment horizons (Liu and Loewenstein [7]; Dai et al. [8]). Despite their analytical richness,
these models largely maintained the assumption of constant asset price volatility and often
abstracted from household balance-sheet structure.

However, empirical evidence strongly suggests that financial market volatility is neither constant
nor deterministic. Asset returns exhibit volatility clustering, mean reversion, and leverage effects
that are inconsistent with constant-volatility models. To address these empirical shortcomings,
stochastic volatility models — most notably the Heston [9] framework — have been introduced,
allowing volatility itself to evolve as a stochastic process. Building on this development, several
authors have examined optimal portfolio and consumption problems under stochastic volatility
(Fleming and Hernandez-Hernandez [10]; Kraft [11]; Chacko and Viceira [12]; Liu [13]). These
studies demonstrate that time-varying volatility materially alters optimal portfolio weights and
hedging demands.

Parallel to developments in stochastic volatility, another strand of the literature has emphasized the
role of leverage, borrowing, and debt dynamics in investment decisions. Debt financing can
enhance returns when prudently managed, yet excessive leverage exposes investors to heightened
downside risk and financial distress, a fact underscored by the global financial crisis of 2008.
Several authors have therefore examined optimal debt and consumption decisions in stochastic
environments (Bank and Riedel [14]; Jin [15]; Liu and Jin [16]; Nkeki, [17, 18]). These works
highlight that debt ratios are endogenous decision variables that interact with income risk, asset
returns, and macroeconomic uncertainty.

Despite these advances, two important gaps remain in the literature. First, most stochastic volatility
models focus exclusively on financial assets, overlooking non-financial assets such as housing,
which constitute a significant component of household wealth, especially in emerging economies.
Housing assets are characterized by distinct features — price volatility, depreciation, illiquidity, and
borrowing-based financing—that fundamentally affect portfolio risk and consumption smoothing.
Second, existing models rarely integrate stochastic volatility, housing investment, and endogenous
debt decisions within a single unified framework.

This paper addresses these gaps by developing a continuous-time portfolio optimization model in
which an investor simultaneously determines optimal investment in financial assets, optimal
housing-related debt ratio, and optimal consumption plan under stochastic volatility. The financial
market consists of a risk-free asset and a risky stock whose volatility follows a Heston-type square-
root diffusion. In addition, the investor holds a non-financial housing asset whose price evolves
stochastically and depreciates over time. Borrowing is explicitly modeled, and the debt ratio is
treated as an endogenous control variable alongside portfolio allocation and consumption.

Using the dynamic programming approach, we derive the Hamilton-Jacobi-Bellman (HJB)
equation associated with the investor’s optimization problem and obtain explicit closed-form
solutions under constant relative risk aversion (CRRA) preferences. The analytical results reveal
how stochastic volatility, housing price risk, and leverage jointly shape optimal portfolio weights,
debt ratios, and consumption paths. In particular, the model shows that volatility shocks affect not
only financial investment decisions but also optimal leverage through their interaction with
housing price uncertainty.
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The contribution of this paper is threefold. First, it extends the stochastic volatility portfolio
literature by incorporating housing assets and endogenous debt decisions into a unified continuous-
time framework. Second, it provides explicit analytical characterizations of optimal investment,
debt, and consumption policies under stochastic volatility. Third, it offers numerical illustrations
that clarify the sensitivity of optimal decisions to volatility dynamics, housing risk, and investor
risk aversion.

2. MODEL SETUP AND METHODOLOGY
This study considers a continuous-time economy over a finite horizon [0,T] on a filtered
probability space (Q, F.AF e} e ]P’) satisfying the usual conditions. All stochastic processes are
adapted to {F;}.efo,r7, and trading occurs continuously without transaction costs or taxes. The
market is driven by three Brownian motions W;5, WY, and W/}, where:

e WS drives stock price uncertainty,

e W/ drives volatility fluctuations under the Heston specification,

e W/ drives the housing price process,
with instantaneous correlations

awsdwY = pdt, dwsdwH =0, dwydwH =0

The investor allocates wealth across a risk—free asset, a risky financial asset, and a non-financial
housing asset, while consuming continuously and managing debt through time.

2.1  The Financial Assets of the Investor
The investor allocates wealth to a risk-free money market account and a risky stock.

2.1.1 Risk-Free Asset

The bank account accrues interest at a constant rate r > 0, at any time, t, following the ordinary
differential equation as suggested by Samuelson [23]:

dB(t) =rB(t)dt, B(0) =By > 0, ...ttt Q)

2.1.2 Risky Financial Asset (Stock) with Stochastic

Let S(t) denote the stock price. Its dynamics follow a Heston-type stochastic volatility
specification:

‘f(—(:)) = psdt + ag[VIOAWS, S(0) = S0 > 0+ v veeeee e )
where u, > 0 is the expected stock return and o is the volatility scaling parameter. The
instantaneous variance V (t) evolves according to the CIR/Heston square root diffusion [used by

Cox et al. [20]:

dv(t) = k(0 —V(@©)dt + oypdWY + oy 1 —p2dWS, ..o (3)
where k > 0 determines the speed of mean reversion, 8 > 0 is the long-run volatility level, o, >
0 is the volatility of variance, and p € (—1,1) measures the leverage effect between price and
volatility shocks.

Equation (3) ensures positivity of volatility under the classical Feller condition.

2.2  Housing Asset
Let H(t) denote the monetary value of the investor’s housing holdings. Housing evolves as a risky

non-tradable asset whose price is influenced by macroeconomic conditions:

dH(t
T(o) = Uy dt + oy dWH,  H(O) = Hor v v eeeeee e e e )

where uy is the expected appreciation rate and o > 0 is housing price volatility. The Brownian
motion W{! is independent of W2 and W,”.
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Housing experience physical deterioration over time. Let 5 > 0 denote the depreciation rate, then
(4) becomes:

dH (1)
HH(;) = (uy — Sp)dt +ogdWH, (5)

2.3  Total Assets, Leverage, and Portfolio Weights
Let F(t) be the investor’s total financial-market investment. A proportion Ag(t) € [0,1] is
allocated to stocks, and 1 — Ag(t) to the risk-free asset:
Ag(t)F(t) instocks, (1 — Ag(t))F(t) in the bank account.
The financial-asset dynamics are therefore:

dF(t) = [rF(t) + As(O)F(t)(us — r)]dt + As(F ) osJ/V()dWS, .. .............. (6)
The total wealth allocated to real and financial assets is then:
G(t) = F () F H (), oo ettt et et e e e e e e e (7)

It then follows that:

dG(t) = [rF(t) + As()F () (s — 1) + H() (uy — Sp)]dt + Ag(OF () as/V ()W, +

aH ) AW (8)
Investors usually borrow money for investments with the hope of repaying the loan from the returns
on their investment. We suppose the investor borrows a certain amount of money L(t) with an
interest rate 7, (t) at time t to finance his investments.

Let X(t) be the investor’s net wealth:

X@)=G(t) —L(t), X(0) = Xg >0, .o e e 9)
Economically, leverage is often measured by the debt-to-asset ratio

2(t) = % R (10)
however, for analytical convenience we work with the debt-to-wealth ratio:

a(t) = % E[0,@), @< e (12)
(11) and (12) are linked by

a(t) = 1f(;()t), 2(t) = 11;?0, ................................................. (12)

The investor allocates net wealth X (t) across the financial and housing markets as follows:
e p(t) is the proportion of net wealth held in financial assets, F(t) = p(t)X(t). .. .. (13)
e 1(t) is the proportion of net wealth invested in the risky stock, so the amount in stock is

m(t)X(t) and the amount in the bank is [p(t) —w()]X(t). . ................ (14)
e The remaining share of net wealth plus borrowed funds is invested in housing: H(t) =
(T+aE) = D)) X () ot (15)
From (13) and (15), it follows that
G(E) = (T4 @)X (E) e ettt e (16)

2.4 Income Growth Dynamics

The investor earns income at the rate y(t), modelled as a diffusion process capturing
macroeconomic and labour-market uncertainty, as identified by Jin [15]:

dy(t) = [a(y(t)) + y(t)n(w)]dt + ay(t)dWy, YO)=vYo. i @17)
where a(-) is the expected drift of the income growth rate, n(w) captures the impact of the
unemployment rate w on income growth, o, > 0 is the volatility of the income growth rate, and
W, is the Brownian motion of the income growth rate.

Let J(t) be the income process of the investor, defined as the product of the income growth rate
y(t) and total asset value G (t) at time ¢, then the change in income is given by
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AJ(t) = Y(E)GE)At . .ot (18)
(18) gives the income that accrues to the investor from investing the amount G (t) in both financial

and housing markets.

2.5  Consumption and Debt Dynamics

The investor consumes continuously from net wealth at rate ¢(t) > 0. Let C(t) be the consumption
of the investor. Then, the consumption process is given by

AC(t) = c(O)X ()t . .o (19)
We model the change in debt as the difference between expenditure (interest on debt and
consumption) and income. Therefore, the debt dynamics is given by

dL(t) = r()L(t)dt + c()X(®)dt —y(®)G(O)dLt, . ... (20)
where 1, (t)L(t)dt is interest paid on the outstanding loan, c(t)X(t)dt is the consumption
expenditure, and y (t)G (t)dt is the income inflow.

2.6 The Wealth Dynamics

The wealth process of the investor at time t is defined in (9) as the difference between the total
asset value G (t) and debt L(t).

Using (13), (14), and (15) in equation (8), gives

dG () = [r®)(p(®) — ()X (®) + usOmTOX(®) + (uu(®) = 5, (1 +a®) -

p())X(®)]dt + asy/V ()T (O)X®)AWS + oy (1 + @) —p(O))X@dWH ............ (21)
Using (11) and (16) in (20), gives

dL(t) = r,()a®X@©)dt + c®X(O)dt —y@®)(1+a®))X@dt ... .oovovviiii... (22)
From (9), we have

AX(t) = dG(t) —AL(t), .« oot (23)

it then follows that
dX(©) = [ug(@®) = 8y +y(®) — c(©) + (r(©) — up(®) + )P @) + (ps(®) — () (e) +

(pa(®) = 6y — () + ¥(@®)a®) X (©)dt + () o[V (O X ()AWS + 0, (1 + a@(t) —
p())X(®)dWH, X(0) = Xo > 0.0 (24)
Equation (24) gives the dynamics of the nominal wealth of the investor at time t.

2.7  Control Variables and Admissible Strategies

The investor exercises direct control over four dimensions simultaneously: (i) the proportion of
wealth invested in risky stock assets, m(t); (ii) the consumption rate, c(t); (iii) the debt ratio, @(t);
and, (iv) the share of wealth held in the financial market, p(t).

Let X (t) denote total wealth, y (t) the stochastic income growth rate, and V (t) the Heston variance
process. The investor allocates a proportion p(t) € [0,1] of total wealth to the financial market
and a proportion 1 — p(t) to housing assets. The investor allocates (t) € [0,p(t)] in the risky
stock and p(t) — m(t) in the risk-free asset. Debt evolves as a proportion of total wealth, a(t)X(t),
and consumption occurs continuously at the rate c(t)X(t). Altogether, the investor’s decision
vector is:

u(t) = (n(t),p(t), a(t), c(t)) ............................................... (25)

A control quadruple (T, p, @, ¢) is admissible if it is progressively measurable, square-integrable,
and satisfies:

0<m(t)<p() <1, 0 <c(t) < oo, at)=0,.....oii (26)
with wealth bounded away from bankruptcy almost surely. This ensures the investor cannot borrow
or consume beyond admissibility tolerances and cannot hold negative proportions of housing or
financial assets.

143



Ogbuagu et al. - Transactions of NAMP 23, (2025) 139-156

Let A be the collection of all admissible strategies, we have that A can be defined as
= {u(t) = {n(0),p(D),a(t),c()) e RXx Rx Rx R: E [ m(t)2dt < ; E [, p(t)2dt <

o; E [, a(t)?dt < oo; E [, c(t)2dt < oo} ..................... 27)

2.8 Optimization Problem

The desire of the investor is to choose investment policies for risky financial and non-financial
assets, debt ratio, and consumption plan that will maximize the total expected discounted utility of
the intermediate consumption and terminal wealth.

Setting the wealth dynamics of the investor, X(t) as x and the income growth rate y(t) as y, for
CRRA utility

-a

B(C)— —, s A0, FE L (28)
the optlmlzatlon objective function is given by:
F(tx,y,V) = SupE [ [T e PtB(C)de + e—ﬁTB(X(T))] .......................... (29)

where 8 > 0 is the subjective discount rate, C = c(t)X(t) is the consumption of the investor of
which process is defined in (19), and B(-) is a CRRA (power) utility function.

2.9  Solution Methodology

The optimization problem is solved using the dynamic programming principle. The associated
Hamilton-Jacobi-Bellman (HJB) equation is derived with state variables (X(t),V(t),y(t)).
Closed-form solutions for the optimal portfolio allocation, debt ratio, and consumption policy are
obtained under power utility assumptions.

3. HJB FORMULATION AND OPTIMAL CONTROLS

3.1  Hamilton-Jacobi-Bellman Equation

Applying dynamic programming principle, and considering the three state variables x (24), V (3),
and y (17), produces the four-control Hamilton-Jacobi-Bellman (HJB) equation:

0=F + g%xc[]x'%VF +e B0 (30)

where J*¥V is the infinitesimal generator of the wealth-income-volatility system
Expanding terms, wealth contributions enter as:

]"F [y —5H+V—c+rp+ﬂ(us—r)+uH(d—p)+6H(p—ﬁ)—(rL—V)ﬁ]xe+

—xznzaszVFxx + %xz AF, + = xzaHazFxx - —x 202D Fogy e (31)
income contributions enter as:

JYF =y @+, 4202 Ry oo (32)
volatility contributions enter as:

JUF = k(O =V)Fy +203Fyy .o (33)
Cross-terms in Fy,, Fyy, and F,,, emerge directly from stochastic co-movement between wealth,

volatility, and income shocks, as follows:

JVF=y@a+mlus —6u+y—c+rp+nlus —r) +pu(@—p) +6u(p— @) — (1, —
y)&]xpnyyx +vy(a+ U)ﬂUs‘/VxPnyyx +vy(a+ n)Uprnyyx +vy(a+ U)O-Haxpnyyx -
v(@a+m)oupxpyxFyx + oyliy =0y +y —c+rp+n(us —7) + py(@—p) + 6p(p — @) -

(r, —y)alxpyxFyx + nayasx/prnyyx + 0,0yxXpyxByx + 0,040XpyFyy — 0,04DXpyxFy - .
...................................................................... (34)
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JVF =k -V)[ug — 6y +y—c+rp+n(us—r) +puy(@—p) +8y(p — @ — (r, —
VaxpyxFyx + k(0 = VITasVVxpyyFyy + k(0 = V)ouxpyxFyy + k(6 = V)oydxpy,Fy, —
k(@ = V)oupxpyxFyx + oypliy =6y +y —c+rp+m(us —7) + py(@—p) + 64y(p — @ —
(1, — V) alxpyxFyx + 0y priosNVxpyxFyx + 0y pouxpyxFyx + 0y poyaxpyFyy —

oy poupxpPyxFyx + oyy1 = p?lug =6y +vy —c+rp+n(us —7) + pu(@—p) + 65(p -

a) — (r, —y)alxpyxFyx + oy /1 — panS\/vxpVxFVx + oy 1 — pPoyxpyxFyy +

oy 1 = p2oyaxpyxFyy + oyyJ 1 = p2OupXPyxFyx, oo (39)

JWVE =vyk(a+m)(6 —V)pywFpy +v(a+mnoyppyFp +v(a+noy1—pip,yFy +

k(6 —V)o,pywFyy + oyovppyvFyy + 0,01 —p2pyyFpy oo (36)
where By, By, Byx, By, Byy, By, Byy, Byx, By, and B,,;, denote partial derivatives of first-order and
second-order with respect to time t, wealth process x, income growth rate y, and volatility process
V.

Because F () and B(+) are concave and the control set in (p, m, @, ¢) is convex, the Hamiltonian in
(30) is concave in the control variables, which guarantees that the first—order conditions indeed
characterize the optimal controls.

Explicitly, equation (3) is:

O=F, +JF+]F+]JVF+JYF+]JYF+]"F+e PFB(C)..................... (37)
To determine the optimal portfolios, consumption plan, and debt ratio, we have to specify the forms
of the utility functions B.

3.2  Power Utility
To obtain explicit optimal policies we specialize to a constant-relative-risk-aversion (CRRA)
specification for intermediate consumption (28), and search for a value function of the isoelastic

form

1-£,9(ty)
F(x"y’V’ t) — %
where € € (0,1) U (1, ) is the risk aversion factor in relation to the wealth process x, y is the
income-growth state, I/ is the variance process, and g is a deterministic function to be determined.
Under (38) the first- and second- order derivatives of F are proportional to F itself:

_ _ (1-9F _ —e(1-9)F _ (1-9F _ —e(1-9)F _
Fe = g.F, = x+v ! Fox = (x+v)2 '’ Fy = x+V ! Fpv = (x+v)2 '’ Fy - gyF'
_ 2 _ (1-&)g,F _ (1-&)g,F _ —e(1-9)F
= (g2 + g, )F, G-dayr Ry = 22207, Fre = . (39)

Substituting these (39) into (37) and collecting like terms yields
0 = max {gtF + 49 — DoxF — M[ + 02Vn? — g2p? + cha?|x%F + y(a +n)g,F +
m,p,a

2(x+V)2
k(e V)(1-¢) ve(1-¢) (1- s)g e)g
_JV 7(97 + 9y )F + AT —F - UZV(;V; F+ L Doxy(a +n)pyF + 9 ®ixy(a+
(1- )gy (1_5)91/ 5(1 €)

U)Pny + CI)OXO'ypny + q)lxaypyx ( +V)2 —— Pox k(H V)pVxF -
£(1-¢) £(1-¢) £(1-¢)
(x+V); ¢1xk(9 = VdpvxF = (x+z/)2 Poxyppyxk = (x+V)2 q’le(VPP)ZgF s
e(1-¢ e(1-¢) yk(a+n)(0-V)(1—-¢€)gypyy
G Doxoy+1 — p2py, F — mcblxav 1— p?py,F + — " F +
y(a+n)oyp(1-€)gypyv F i y(a+n)oy1-p2(1-&)gypyy F i k(6-V)oy,(1-8)gypyv F i ayoyp(1-€)gypyv F 4+

x+V x+V x+V x+V
oyovy1-p*(1-€)gypyy FieBt cl-« (40)

ey vl CER R
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where @ = (uy — 6y +y)+(us—m)n+ (@ —pp+8p + (uy — 6y —7m, +y)d—c and
@, = oy + osVVn + oyp + oyd

Dividing (40) through by —(1 — &)F < 0, we obtain the equivalent minimization problem. Thus,
we have

— pip 9t Dox | ex? _ g2l _rem 9 (.2
0= nrglglc{ 1 " oav T sty (96 + oSV — ofip? + 0ha’] = == gy — 55 (gy +
k(6-V) obe g
)’Y) I + Z(xKV)Z - _q)Oxy(a + n)pyx ot — q)lxy(a + n)pyx - ﬁcboxo-ypyx -

_cD1nyPyx (+V)2 ——Doxk(0 — V)pyy + q)1351((9 V)pyx + (+€V)2 Doxoyppyx +

(x +V)2

(x+V)2 —— P1x0yppyy + —(x+V)2 Poxoyy/1— p?pyx + mcblxav 1—p2%py, —
vk(a+m)(6-V)gypyy _ v(atmoypgypyv _ v(a+moyyi-p2gypyy  k(6-V)oygypyv  oy0vpGyPyv
x+V x+V x+V x+V x+V
oyoyy 1-p2gypyv _ e~Btcl-a (41)
otV L) GEaV)IF@@Er | * * " fr vt r et

The minimization problem (41) is quadratic in the portfolio and debt controls (7, p, @) and strictly
concave in c. The first-order conditions therefore yield closed-form expressions for the optimal
policies (¥, p*, @*, c*) as affine functions of the state variables (x,y, V).

3.3  Optimal Debt Ratio
We consider the optimal debt ratio of the investor at time t.
The optimal policy for the debt ratio @* of the investor at time ¢, is defined as

A = argmingfi(@), . ..o (42)
where
s 5 2 52,2 —Spy— i i
f@) = - (1H 61;Ic+1‘*/L+y)ax s;;,jva)cz _ [y(a+n)(uH fo rL+y)axgy n V(M?f:axgy n
oy(Upg—8y—rL+y)dxg, n o'ycerxgy] n k(0-V)(ug—S8y-ri+y)dex . k(0-V)oydex n
x+V x+V Pyx (x+V)2 (x+Vv)2
oyp(ug—8y—riL+y)dex . oypopdex n oy 1-p2(ug—8y—ry+y)dex n oy 1-p2oydex (43)
(x+V)? (x+V)? (x+V)? (x+V)? Py cooenes
Let @* be the optimal debt ratio of the investor at time t, then by first-order conditions
gt = X f“ Tty 1+1)+ VA w-dumtv)e T L (44)
xoge XOHE xcrH X0y
where
A=(ya+yn+o,)gyppeandt=(k(0 =V)+oyp+0oyy1—p2)pyxooveoeein. .. (45)
The above optimal debt ratio can also be written as
& = (x+V)(uH—28H—rL+]/) n (x+V)(#H_(§H_rL+V))L 4 A (MH_SH_ZrL"'V)T — (46)
XOop€ Xoge€ XOHE xog XoH
P1 ©2 @3 Pa Ps

3.4 Optimal Investment Policy

3.4.1 Optimal Allocation to the Financial Market
The optimal policy for the portfolio weights strategy in financial market assets p* of the investor
at time ¢, is defined as

P = argming fo(D), . oo 47)
where
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_ (r-pp+8wpx | eofpix?  [v(a+n)(r—pp+8p)pxgy | v(a+moypxgy . oy (r—up+Sp)pxgy
f2(p) = — 7 + + +
x+V 2(x+V) x+V x+V x+V
oyoprgy] n k(0-V)(r—ug+Sy)pex | k(6-V)oupex | oyp(r—uy+Oy)pex |, oypoppPEX +
x+V rx (x+V)?2 (x+V)2 (x+V)2 (x+V)2
oy 1=p?(r—uy+8y)pex 4 o 1-p2oupex (48)
(x+V)2 (x+V)2 Vx .............................

Let p* be the optimal investment policy strategy in financial market assets of the investor at time
t, then by first-order conditions

« _ tV)(r—pup+6n) &+ r—pptdp)t T
p’ = e 1+1)+ e o7 el SRR PR R PR R R RRERE (49)
The above optimal investment strategy can also be written as
pr = S bnton)  CADUbit Ot | (VR Lottt (50)
H H H H J
2 9, 193 Uy CH

3.4.2 Optimal Allocation to Risky Asset
The optimal policy for the portfolio weights strategy in risky assets * of the investor at time t, is
defined as

T = argming f5(T0), . oo (51)
where
fi(m) = — (ui—:;nx s;r(fxt-n;;z _ [V(a+n)(xltj‘;r)nxgy 4 Y(a+n)xa:://7nxgy n Uy(ﬂi;r;nxgy
JYUS\/VTExgy k(0-V)(us-r)mex | k(0-V)osVVrex | oyp(us—-r)mex , oyposVVmex
X+V ] yx T [ (x+V)2 (x+V)2 (x+V)2 (x+V)2
ovy1-p2(us—r)mex | oy\1-pZosVVmex
£l roner 4 vilopos ] e (52)

Let =* be the optimal investment policy strategy in risky assets of the investor at time ¢, then by
first-order conditions

« _ x+V)(us-1) (x+V)A  (ps—mt T
m= x02Ve A+ + xasVVe xo2v xagV T (53)
The above optimal investment strategy can also be written as

Tt = k) (us—r) | +V(us—r)A | x+VA ~ (us—n)t 7 (54)
- XU§V€ xa_%Vs an\/VE XO'S%V xo_s\/v .........................
{1 {2 € Ca s

3.5  Optimal Consumption Policy
Let c* be the optimal consumption strategy of the investor at time t, then by first-order conditions

1 &-1 Bt+g
c*=Y e(x+ V)Te_( ) (55)
where
Y = ﬁ(l +1A- %), 2= (ya+yn+0y)gypyr andt = (k(9 —V)+oyp+oyy1— pz)pVx ......

3.6 The Explicit Form of the HIB Equation
The explicit form of the HIB equation (41) is given by

1 e-1 Bt+g _ .2 2 _ .2
_ 9 _ L(#H Sty —Y (x4 V)Te—(T)) (141 - 2) - Qo2 | Gorre

1-g x4V x+V 202Ve (x+V)o2v
2 2 2 2
(us—7)*t’e (r—py+6p) A+ | (r—py+6n) 1+D)7 _ (r—py+6y) 3¢ _ (uy=6u—r1+y)" (1+1)? n
2(x+V)202V 20} (x+V)a} 2(x+V)20} 20}ke
2
(yH—6H—rL+y)2(1+/1)r _ (uH—(SH—rL+y)212£ 32% 3t%c  3Ar x*ahe  v(atmgy ”)3((9)/) "'gw) _
(x+V)o} 2(x+V)20% 26 2(x+V)2 x4V 2(x+V)2 1-¢ 2(1-¢)
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oyovPgy . oyoy1-p2gy —0 (57)
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RESULTS AND DISCUSSION

3.7.1 Optimal Debt Ratio
The optimal debt ratio a@* obtained in equation (44) admits the decomposition (46), where A and t
reflect the joint effects of income risk, housing-price risk, and volatility risk.
This structure yields five economically meaningful components, each capturing a distinct driver of
leverage:
1. Speculative debt demand ¢;.
This component increases with investor wealth and volatility, and with the excess return
on housing relative to loan cost. It decreases with . Thus, when housing-price risk is low
relative to expected appreciation, the investor optimally takes on more leverage.
2. Income-growth speculative component ¢,.
Driven by 1= (ya+yn+0,)gyp, this term increases with income growth and the
correlation between income shocks and wealth. It decreases with stock and housing
volatility and with higher CRRA risk aversion.
3. Income-risk hedging component ¢5.
This component hedges the covariance between income shocks and wealth. It rises with the
volatility process V', income growth, and the correlation p,,, but falls with o and oy Thus,
households facing income volatility hedge by partially adjusting leverage.
4. Housing-risk hedging component ¢,.
This term responds to shocks in the housing-price volatility process. It increases when V is
high and when income growth contributes positively to consumption and housing wealth
but falls with /3. Higher housing volatility induces deleveraging.
5. Volatility-risk hedging component ¢s.

Driven by 7= (k(6 —V) + ayp + oy/1 — p?)pyy, this term hedges shocks to the
stochastic volatility process. It is increasing in the volatility process VV and decreasing in
both wealth x and the dispersion of housing-price shocks.

Overall, the decomposition reveals a nuanced pattern: leverage increases when the expected return
on housing exceeds the loan rate and when income and volatility positively co-move with wealth.
However, the investor optimally reduces debt when volatility risk or housing-price risk becomes
elevated. This heterogeneity in components highlights why the debt ratio is highly sensitive to both
income dynamics and stochastic volatility.

3.7.2 Optimal Allocation to the Financial Market
The optimal portfolio weight p* for investment in financial-market assets (equation 49)
decomposes into five components analogous to the debt case:
1. Speculative portfolio 9: increases with (x + V) and the spread (r — uy + &y); decreases
with o3.
2. Income-growth speculative component 9,: increases with income growth y, with the
correlation between income risk and wealth, and with the volatility process.
3. Income-risk hedging component 995: lowers exposure when income-wealth covariance is
high; increases with V.
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4. Volatility-risk hedging component 9,: protects against shocks in the variance process V;
decreases in ay.
5. Housing-risk hedging component 95: reduces exposure when housing-price volatility or
volatility-of-volatility rises.
6.
High volatility or high covariance between housing and income shocks reduces the attractiveness
of financial-market investment. When the variance process V is low, the investor optimally
increases exposure to financial assets, but deleverages from p as V rises.

3.7.3 Optimal Allocation to the Risky Market
The optimal risky-asset weight =* (equation 53) shares the same five components but is driven by
the excess return of the risky asset (ug — r) rather than housing or loan costs. The dominant
mechanisms are:
1. Speculative term {,: positively related to (x + V) and (us — 7); decreases with ¢&.
2. Income-speculative term {,: relevant when income shocks correlate with wealth;
increases with V.
3. Income-hedging term {53: reduces risky-asset exposure during periods of income
instability.
4. Volatility-hedging term {4: particularly sensitive to movements of the stochastic variance
process; decreases with ag/V.
5. Housing-hedging term {5: arises because housing acts as a non-tradeable asset correlated
with wealth.

The optimal risky-asset weight is very sensitive to the volatility process. When V rises, the hedging
components dominate, and the investor optimally reduces exposure to the financial risky asset,
even if expected returns remain favorable. This reinforces the importance of stochastic volatility
in shaping optimal portfolio choice.

3.7.4 Optimal Consumption

The optimal consumption rule c¢* (equation 55) exhibits intuitive homogeneity in wealth and
volatility. The term Y captures the interaction between wealth, income dynamics, and intertemporal
substitution.

Consumption rises with wealth x 4+ V' and falls with higher effective discounting a. As a — o,
consumption tends to consume nearly all available resources; as a — 0, the investor prefers to
allocate more wealth to investment. Increased volatility V raises consumption through
precautionary motives but only proportionally to the CRRA parameter.

3.7.5 Overall Insights
Three broad qualitative conclusions emerge:
1. Stochastic volatility plays a central role across all decisions.
Every optimal policy includes at least one volatility-hedging component. As V increases,
the investor systematically reduces leverage, risky-asset exposure, and financial-market
allocation.
2. Housing-price volatility is a major determinant of leverage and asset allocation.
High oy reduces debt and risky-asset exposure, reflecting the non-tradable nature of
housing and its effect on wealth risk.
3. Income dynamics interact strongly with investment and debt decisions.
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Correlation between income shocks and wealth p,,, amplifies both speculative and hedging

motives, with the sign determined by whether income risk augments or dilutes effective
wealth.

4, NUMERICAL ILLUSTRATIONS AND DISCUSSION
The objective of this section is twofold. First, it provides quantitative illustrations of the analytical
results derived in Sections 2 and 3, thereby clarifying the economic implications of the optimal
investment, debt, consumption, and financial-market allocation policies. Second, it examines the
sensitivity of these optimal policies to changes in market volatility, risk preferences, and housing
price uncertainty.
To ensure economic plausibility, parameter values are informed by observed characteristics of the
Nigerian financial market, with particular reference to equity price behavior. Daily closing prices
of SEPLAT Petroleum Development Company Plc, listed on the Nigerian Exchange Group
(NGX), were used as a representative equity series due to their relatively high liquidity and
consistent trading history over the sample period. The stock price data were converted to
continuously compounded returns. These returns were employed to obtain preliminary estimates
of the drift and volatility parameters of the risky asset. While the analytical model assumes a
Heston-type stochastic volatility process, full maximum likelihood or Bayesian estimation of the
Heston parameters is beyond the scope of this paper. Instead, the empirical data are used to anchor
the numerical magnitudes of the parameters, ensuring that simulations reflect realistic market
conditions rather than purely arbitrary values.
The volatility process parameters were selected to satisfy standard admissibility conditions,
including positivity of the variance process and mean-reversion. In particular, the Feller condition
is respected to ensure that the volatility process remains strictly positive. Housing price dynamics
are modeled separately and are not estimated directly from the SEPLAT data. Instead, housing
appreciation and volatility parameters are chosen to reflect stylized facts from emerging housing
markets, where price growth tends to be moderate, but uncertainty can be substantial. In the
numerical illustrations we approximate the macro channel with a constant reduced-form coefficient
7.
All model parameters are expressed in annualized terms, consistent with continuous-time finance
conventions. The benchmark parameter values used in the numerical simulations are summarized
below:
r = 0.125, pug = 0.28, 05 = 4, uy = 0.19, oy = 1, 6y = 0.02, r, = 0.2, y = 0.05, o5, = 0.155,
k=09, 6 =014, oy =0.7, p=—0.3, € ={1.5,3,6}, a =0.1, n = 0.05, g, = [0.01,0.1],
Pyx = 0.23, py,y = —0.1, f = 0.05,a = 5, t = [0,10], g, = [0, 1].
The optimal policies for the four control variables — risky asset allocation 7(t), debt ratio d@(t),
consumption rate c(t), and financial-market allocation proportion p(t) — are computed using the
closed-form expressions derived from the Hamilton—Jacobi—Bellman equation (57).The state
variables considered in the simulations are:

e Wealth X € [1,10],

e Stochastic variance V € [0,1].
These ranges allow examination of both low- and high-wealth regimes, as well as tranquil versus
turbulent market conditions.
Three-dimensional surface plots are used to illustrate how optimal controls respond jointly to
changes in wealth and market volatility.
Figures 1-4 illustrate the optimal debt ratio a@*(X, V) as a function of investor wealth X € [1,10]
and market variance V € [0,1], under different levels of risk aversion & and housing price volatility
Oy-
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We observe across all figures that the optimal debt ratio declines monotonically with wealth. At
low wealth levels, borrowing serves as a leverage mechanism that allows the investor to smooth
consumption and finance exposure to productive assets. As wealth increases, the marginal benefit
of leverage diminishes, and the investor relies more on internal resources, leading to a lower
optimal debt ratio. This behavior is consistent with classical portfolio—consumption theory under
borrowing costs and reflects decreasing leverage incentives as financial constraints relax. For a
fixed level of wealth, the optimal debt ratio decreases as market variance V increases. Higher
volatility amplifies downside risk, making debt financing less attractive due to its asymmetric
payoff structure. As volatility rises, the investor optimally reduces leverage to avoid magnifying
losses during adverse market conditions. This effect is particularly pronounced at lower wealth
levels, where the investor is more vulnerable to volatility shocks. Figures 1-3 reveals that higher
risk aversion leads to systematically lower optimal debt ratios across the entire state space. More
risk-averse investors place greater weight on downside risk and therefore choose more
conservative debt policies. Figure 4 shows that higher housing volatility significantly suppresses
optimal borrowing, especially in low-wealth and low-variance regions where leverage would
otherwise be most attractive. This finding highlights the role of housing risk as an additional
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channel through which uncertainty discourages debt accumulation, reinforcing the interaction
between real asset risk and financial leverage.

Figures 5-7 illustrate the investor’s optimal allocation to the risky financial asset, 7*(X, V), for
wealth levels X € [1,10] and stochastic variance levels V € [0,1], under moderate stock price
volatility a; = 4 and increasing degrees of risk aversion € = 1.5, 3, and 6, respectively. Figure 8
presents the corresponding allocation when stock price volatility is substantially higher, o5 = 40,
with risk aversion fixed at € =1.5
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We observe that across all figures, the optimal risky-asset allocation is monotonically decreasing
in market variance V. As volatility rises, the investor systematically reduces exposure to the risky
asset. This behavior is consistent with classical portfolio theory and stochastic-volatility models,
where higher uncertainty increases the effective risk premium required to justify holding risky
assets. In the present model, volatility enters both the diffusion term and the intertemporal hedging
component of the optimal policy, amplifying its dampening effect on *. The heatmaps show that
for low volatility levels V = 0, risky-asset allocation is positive and economically meaningful,
whereas for higher volatility levels, the allocation rapidly declines toward zero, indicating a flight-
to-safety response. For a fixed level of volatility, the risky-asset allocation exhibits weak sensitivity
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to wealth, particularly at moderate and high volatility levels. This is consistent with the CRRA
preference structure, under which relative portfolio proportions are largely scale-invariant. Small
variations observed at very low wealth levels reflect precautionary behavior driven by borrowing
and consumption considerations embedded in the wealth dynamics. Figures 5, 6, and 7 reveal a
clear and systematic effect of risk aversion. As ¢ increases from 1.5 to 6, the overall magnitude of
m* decreases sharply across all wealth and volatility regimes. Highly risk-averse investors allocate
only a negligible fraction of wealth to the risky asset, even when market volatility is low. This
confirms that risk aversion dominates speculative incentives in the presence of stochastic volatility
and debt considerations. Figure 8 demonstrates the impact of extreme stock price volatility. When
os increases from 10 to 100, the optimal risky-asset allocation collapses toward zero throughout
the entire state space, even for relatively low market variance V7. This result highlights the strong
interaction between instantaneous volatility and stochastic variance: high stock-specific risk
overwhelms the expected return advantage of risky assets, rendering equity investment unattractive
regardless of wealth level.

Figures 9-11 illustrate the investor’s optimal consumption policy ¢*(X, V) as a function of wealth
X € [1,10] and stochastic market variance V € [0, 1], for a fixed wealth-risk aversion parameter
e = 1.5 and three values of the CRRA consumption parameter « = 1.5, 3, and 6, respectively
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Across all three figures, optimal consumption is monotonically increasing in wealth. For any fixed
volatility level, higher wealth states lead to higher consumption rates. This behavior is consistent
with standard CRRA preferences and confirms that the derived policy respects the fundamental
economic principle that consumption scales positively with available resources. The gradient of
consumption with respect to wealth becomes progressively flatter as a increases. When a = 1.5,
consumption responds strongly to changes in wealth, whereas for ¢ = 6, consumption increases
more conservatively. This reflects stronger intertemporal smoothing incentives under higher
consumption risk aversion. For any fixed wealth level, optimal consumption increases mildly with
increasing market volatility. Regions of high variance V' are associated with higher consumption
intensity, indicating that higher volatility can induce a reallocation toward present consumption
rather than precautionary saving. The investor optimally consumes more than invest when market
conditions are volatile. The figures also reveal a clear risk-aversion ordering:
e Atalow a = 1.5, consumption is relatively high and more responsive to both wealth and
volatility.
e Atamoderate @ = 3, consumption levels decline and become smoother across states.
e Atahigh a = 6, consumption is markedly conservative, with weaker sensitivity to wealth
and volatility.
Higher values of a amplify the investor’s preference for smoothing consumption over time, leading
to systematically lower consumption rates across the state space.

CONCLUSION

This paper developed a continuous-time stochastic control framework for jointly determining
optimal investment, consumption, and debt-financing decisions in an economy characterized by
stochastic volatility and housing market risk. Unlike classical portfolio selection models that
assume constant volatility and exclude leverage-housing interactions, the proposed model
integrates a Heston-type stochastic volatility process with a housing asset and an endogenous debt
ratio. Within this unified setting, the investor optimally allocates wealth among a risk-free asset, a
risky financial asset, and housing, while simultaneously choosing consumption and borrowing
policies under CRRA preferences. Using the dynamic programming approach, the associated
Hamilton-Jacobi-Bellman equation was derived and solved explicitly. Closed-form expressions
were obtained for the optimal risky asset allocation, optimal debt ratio, and optimal consumption
rule. The analytical results demonstrate that stochastic volatility plays a central role in shaping both
portfolio and leverage decisions. In particular, higher market volatility reduces optimal exposure
to risky financial assets and lowers the optimal debt ratio, reflecting the investor’s precautionary
response to increased uncertainty. Housing price volatility was shown to be a key determinant of
leverage, with optimal borrowing decreasing as housing risk intensifies. Consumption decisions,
in contrast, are primarily driven by risk aversion, with volatility exerting only an indirect effect
through its impact on wealth dynamics. The numerical analysis complemented the theoretical
results by illustrating the sensitivity of optimal policies to changes in volatility, risk aversion, and
asset price uncertainty. The simulations confirmed that increases in either financial or housing
volatility lead to more conservative investment and borrowing behavior, while higher risk aversion
shifts the investor’s preference toward consumption and away from risky exposure. These findings
reinforce the economic intuition of the model and highlight the importance of incorporating
stochastic volatility and housing risk when evaluating optimal financial behavior. Overall, this
study contributes to the literature by extending continuous-time portfolio theory to a richer and
more realistic setting that captures the interaction between stochastic volatility, housing assets, and
debt financing. The results provide insights into how investors optimally adjust consumption,
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leverage, and portfolio composition in volatile markets, particularly in economies where housing
represents a significant component of household wealth.
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