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ABSTRACT 

This paper investigates an optimal investment-consumption problem with 

endogenous leverage in a continuous-time market characterized by 

stochastic volatility and housing risk. We develop a unified framework in 

which an investor allocates wealth among a risk-free asset, a risky financial 

asset with Heston-type stochastic volatility, and a non-financial housing 

asset financed partly through debt. The investor simultaneously chooses the 

portfolio allocation, consumption rate, and debt ratio to maximize expected 

discounted utility under constant relative risk aversion preferences. Using 

stochastic dynamic programming, we derive the associated Hamilton-

Jacobi-Bellman equation and obtain explicit closed-form solutions for the 

optimal portfolio policy, optimal debt ratio, and optimal consumption rule. 

The analytical results reveal that stochastic volatility affects investment 

decisions not only directly through the financial asset but also indirectly 

through leverage and housing exposure. Numerical illustrations 

demonstrate the sensitivity of the optimal policies to changes in volatility 

persistence, correlation structures, borrowing costs, and risk preferences.  

1 INTRODUCTION  

Optimal investment and consumption decisions lie at the core of continuous–time financial 

economics. Since the works of Merton [1, 2], stochastic control techniques have been widely 

employed to characterize optimal portfolio allocation and consumption strategies under 

uncertainty. In these classical formulations, investors dynamically allocate wealth between risky 

and risk-free assets so as to maximize expected lifetime utility, typically under simplifying 

assumptions such as constant volatility, frictionless markets, and absence of leverage 

considerations.  
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Subsequent research has substantially extended the Merton framework. Several studies 

incorporated borrowing and consumption constraints (Fleming and Zariphopoulou [3]; Vila and 

Zariphopoulou [4]), transaction costs (Dumas and Luciano [5]; Shreve and Soner [6]), and finite 

investment horizons (Liu and Loewenstein [7]; Dai et al. [8]). Despite their analytical richness, 

these models largely maintained the assumption of constant asset price volatility and often 

abstracted from household balance-sheet structure.  

 

However, empirical evidence strongly suggests that financial market volatility is neither constant 

nor deterministic. Asset returns exhibit volatility clustering, mean reversion, and leverage effects 

that are inconsistent with constant-volatility models. To address these empirical shortcomings, 

stochastic volatility models – most notably the Heston [9] framework – have been introduced, 

allowing volatility itself to evolve as a stochastic process. Building on this development, several 

authors have examined optimal portfolio and consumption problems under stochastic volatility 

(Fleming and Hernandez-Hernandez [10]; Kraft [11]; Chacko and Viceira [12]; Liu [13]). These 

studies demonstrate that time-varying volatility materially alters optimal portfolio weights and 

hedging demands. 

 

Parallel to developments in stochastic volatility, another strand of the literature has emphasized the 

role of leverage, borrowing, and debt dynamics in investment decisions. Debt financing can 

enhance returns when prudently managed, yet excessive leverage exposes investors to heightened 

downside risk and financial distress, a fact underscored by the global financial crisis of 2008. 

Several authors have therefore examined optimal debt and consumption decisions in stochastic 

environments (Bank and Riedel [14]; Jin [15]; Liu and Jin [16]; Nkeki, [17, 18]). These works 

highlight that debt ratios are endogenous decision variables that interact with income risk, asset 

returns, and macroeconomic uncertainty. 

 

Despite these advances, two important gaps remain in the literature. First, most stochastic volatility 

models focus exclusively on financial assets, overlooking non-financial assets such as housing, 

which constitute a significant component of household wealth, especially in emerging economies. 

Housing assets are characterized by distinct features – price volatility, depreciation, illiquidity, and 

borrowing-based financing—that fundamentally affect portfolio risk and consumption smoothing. 

Second, existing models rarely integrate stochastic volatility, housing investment, and endogenous 

debt decisions within a single unified framework. 

 

This paper addresses these gaps by developing a continuous-time portfolio optimization model in 

which an investor simultaneously determines optimal investment in financial assets, optimal 

housing-related debt ratio, and optimal consumption plan under stochastic volatility. The financial 

market consists of a risk-free asset and a risky stock whose volatility follows a Heston-type square-

root diffusion. In addition, the investor holds a non-financial housing asset whose price evolves 

stochastically and depreciates over time. Borrowing is explicitly modeled, and the debt ratio is 

treated as an endogenous control variable alongside portfolio allocation and consumption. 

Using the dynamic programming approach, we derive the Hamilton-Jacobi-Bellman (HJB) 

equation associated with the investor’s optimization problem and obtain explicit closed-form 

solutions under constant relative risk aversion (CRRA) preferences. The analytical results reveal 

how stochastic volatility, housing price risk, and leverage jointly shape optimal portfolio weights, 

debt ratios, and consumption paths. In particular, the model shows that volatility shocks affect not 

only financial investment decisions but also optimal leverage through their interaction with 

housing price uncertainty. 
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The contribution of this paper is threefold. First, it extends the stochastic volatility portfolio 

literature by incorporating housing assets and endogenous debt decisions into a unified continuous-

time framework. Second, it provides explicit analytical characterizations of optimal investment, 

debt, and consumption policies under stochastic volatility. Third, it offers numerical illustrations 

that clarify the sensitivity of optimal decisions to volatility dynamics, housing risk, and investor 

risk aversion. 

2. MODEL SETUP AND METHODOLOGY 

This study considers a continuous-time economy over a finite horizon [0, 𝑇] on a filtered 

probability space (Ω, ℱ, {ℱ𝑡}𝑡∈[0,𝑇], ℙ) satisfying the usual conditions. All stochastic processes are 

adapted to {ℱ𝑡}𝑡∈[0,𝑇], and trading occurs continuously without transaction costs or taxes. The 

market is driven by three Brownian motions 𝑊𝑡
𝑆, 𝑊𝑡

𝑉, and 𝑊𝑡
𝐻, where: 

• 𝑊𝑡
𝑆 drives stock price uncertainty, 

• 𝑊𝑡
𝑉 drives volatility fluctuations under the Heston specification, 

• 𝑊𝑡
𝐻 drives the housing price process, 

with instantaneous correlations 

𝑑𝑊𝑡
𝑆𝑑𝑊𝑡

𝑉 = 𝜌 𝑑𝑡, 𝑑𝑊𝑡
𝑆𝑑𝑊𝑡

𝐻 = 0, 𝑑𝑊𝑡
𝑉𝑑𝑊𝑡

𝐻 = 0  

The investor allocates wealth across a risk–free asset, a risky financial asset, and a non-financial 

housing asset, while consuming continuously and managing debt through time. 

2.1 The Financial Assets of the Investor 

The investor allocates wealth to a risk-free money market account and a risky stock.  

2.1.1 Risk-Free Asset 

The bank account accrues interest at a constant rate 𝑟 > 0, at any time, 𝑡, following the ordinary 

differential equation as suggested by Samuelson [23]: 

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡, 𝐵(0) = 𝐵0 > 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1) 

2.1.2 Risky Financial Asset (Stock) with Stochastic 

Let 𝑆(𝑡) denote the stock price. Its dynamics follow a Heston-type stochastic volatility 

specification:  
𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇𝑆𝑑𝑡 + 𝜎𝑆√𝑉(𝑡)𝑑𝑊𝑡

𝑆, 𝑆(0) = 𝑆0 > 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2) 

where 𝜇𝑠 > 0 is the expected stock return and 𝜎𝑆 is the volatility scaling parameter. The 

instantaneous variance 𝑉(𝑡) evolves according to the CIR/Heston square root diffusion [used by 

Cox et al. [20]:  

𝑑𝑉(𝑡) = 𝑘(𝜃 − 𝑉(𝑡))𝑑𝑡 + 𝜎𝑉𝜌𝑑𝑊𝑡
𝑉 + 𝜎𝑉√1 − 𝜌2𝑑𝑊𝑡

𝑆, . . . . . . . . . . . . . . . . . . . . . . . . . . . (3) 

where 𝜅 > 0 determines the speed of mean reversion, 𝜃 > 0 is the long-run volatility level, 𝜎𝑉 >
0 is the volatility of variance, and 𝜌 ∈ (−1, 1) measures the leverage effect between price and 

volatility shocks.  

Equation (3) ensures positivity of volatility under the classical Feller condition. 

2.2 Housing Asset 

Let 𝐻(𝑡) denote the monetary value of the investor’s housing holdings. Housing evolves as a risky 

non-tradable asset whose price is influenced by macroeconomic conditions: 
𝑑𝐻(𝑡)

𝐻(𝑡)
= 𝜇𝐻𝑑𝑡 + 𝜎𝐻𝑑𝑊𝑡

𝐻, 𝐻(0) = 𝐻0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4) 

where 𝜇𝐻 is the expected appreciation rate and 𝜎𝐻 > 0 is housing price volatility. The Brownian 

motion 𝑊𝑡
𝐻 is independent of 𝑊𝑡

𝑆 and 𝑊𝑡
𝑉. 
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Housing experience physical deterioration over time. Let 𝛿𝐻 > 0 denote the depreciation rate, then 

(4) becomes: 
𝑑𝐻(𝑡)

𝐻(𝑡)
= (𝜇𝐻 − 𝛿𝐻)𝑑𝑡 + 𝜎𝐻𝑑𝑊𝑡

𝐻, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5) 

2.3 Total Assets, Leverage, and Portfolio Weights 

Let 𝐹(𝑡) be the investor’s total financial–market investment. A proportion Δ𝑆(𝑡) ∈ [0, 1] is 

allocated to stocks, and 1 − Δ𝑆(𝑡) to the risk-free asset: 

Δ𝑆(𝑡)𝐹(𝑡) in stocks, (1 − Δ𝑆(𝑡))𝐹(𝑡) in the bank account. 

The financial–asset dynamics are therefore: 

𝑑𝐹(𝑡) = [𝑟𝐹(𝑡) + Δ𝑆(𝑡)𝐹(𝑡)(𝜇𝑆 − 𝑟)]𝑑𝑡 + Δ𝑆(𝑡)𝐹(𝑡)𝜎𝑆√𝑉(𝑡)𝑑𝑊𝑡
𝑆, . . . . . . . . . . . . . . . . (6) 

The total wealth allocated to real and financial assets is then: 

𝐺(𝑡) = 𝐹(𝑡) + 𝐻(𝑡), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7) 

It then follows that: 

𝑑𝐺(𝑡) = [𝑟𝐹(𝑡) + Δ𝑆(𝑡)𝐹(𝑡)(𝜇𝑆 − 𝑟) + 𝐻(𝑡)(𝜇𝐻 − 𝛿𝐻)]𝑑𝑡 + Δ𝑆(𝑡)𝐹(𝑡)𝜎𝑆√𝑉(𝑡)𝑑𝑊𝑡
𝑆 +

𝜎𝐻𝐻(𝑡)𝑑𝑊𝑡
𝐻, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8) 

Investors usually borrow money for investments with the hope of repaying the loan from the returns 

on their investment. We suppose the investor borrows a certain amount of money 𝐿(𝑡) with an 

interest rate 𝑟𝐿(𝑡) at time 𝑡 to finance his investments.  

Let 𝑋(𝑡) be the investor’s net wealth: 

𝑋(𝑡) = 𝐺(𝑡) − 𝐿(𝑡), 𝑋(0) = 𝑋0 > 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9) 

Economically, leverage is often measured by the debt-to-asset ratio  

ℓ(𝑡) =
𝐿(𝑡)

𝐺(𝑡)
∈ [0,1), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10) 

however, for analytical convenience we work with the debt-to-wealth ratio:  

𝑎̃(𝑡) =
𝐿(𝑡)

𝑋(𝑡)
∈ [0, 𝑎̅), 𝑎̅ < ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11) 

(11) and (12) are linked by 

𝑎̃(𝑡) =
ℓ(𝑡)

1−ℓ(𝑡)
, ℓ(𝑡) =

𝑎̃(𝑡)

1+𝑎̃(𝑡)
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12) 

The investor allocates net wealth 𝑋(𝑡) across the financial and housing markets as follows: 

• 𝑝(𝑡) is the proportion of net wealth held in financial assets, 𝐹(𝑡) = 𝑝(𝑡)𝑋(𝑡). . . . . (13) 

• 𝜋(𝑡) is the proportion of net wealth invested in the risky stock, so the amount in stock is 

𝜋(𝑡)𝑋(𝑡) and the amount in the bank is [𝑝(𝑡) − 𝜋(𝑡)]𝑋(𝑡). . . . . . . . . . . . . . . . . . (14) 

• The remaining share of net wealth plus borrowed funds is invested in housing: 𝐻(𝑡) =
(1 + 𝑎̃(𝑡) − 𝑝(𝑡))𝑋(𝑡). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15) 

From (13) and (15), it follows that  

𝐺(𝑡) = (1 + 𝑎̃(𝑡))𝑋(𝑡) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16) 

2.4 Income Growth Dynamics 

The investor earns income at the rate 𝛾(𝑡), modelled as a diffusion process capturing 

macroeconomic and labour-market uncertainty, as identified by Jin [15]: 

𝑑𝛾(𝑡) = [𝑎(𝛾(𝑡)) + 𝛾(𝑡)𝜂(𝜔)]𝑑𝑡 + 𝜎𝛾(𝑡)𝑑𝑊𝑡
𝛾
, 𝛾(0) = 𝛾0 . . . . . . . . . . . . . . . . . . . . . . (17) 

where 𝑎(∙) is the expected drift of the income growth rate, 𝜂(𝜔) captures the impact of the 

unemployment rate 𝜔 on income growth, 𝜎𝛾 > 0 is the volatility of the income growth rate, and 

𝑊𝑡
𝛾
 is the Brownian motion of the income growth rate. 

Let 𝐽(𝑡) be the income process of the investor, defined as the product of the income growth rate 

𝛾(𝑡) and total asset value 𝐺(𝑡) at time 𝑡, then the change in income is given by 
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𝑑𝐽(𝑡) = 𝛾(𝑡)𝐺(𝑡)𝑑𝑡 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18) 

(18) gives the income that accrues to the investor from investing the amount 𝐺(𝑡) in both financial 

and housing markets. 

2.5 Consumption and Debt Dynamics 

The investor consumes continuously from net wealth at rate 𝑐(𝑡) ≥ 0. Let 𝐶(𝑡) be the consumption 

of the investor. Then, the consumption process is given by 

𝑑𝐶(𝑡) = 𝑐(𝑡)𝑋(𝑡)𝑑𝑡 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19) 

We model the change in debt as the difference between expenditure (interest on debt and 

consumption) and income. Therefore, the debt dynamics is given by  

𝑑𝐿(𝑡) = 𝑟𝐿(𝑡)𝐿(𝑡)𝑑𝑡 + 𝑐(𝑡)𝑋(𝑡)𝑑𝑡 − 𝛾(𝑡)𝐺(𝑡)𝑑𝑡, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20) 

where 𝑟𝐿(𝑡)𝐿(𝑡)𝑑𝑡 is interest paid on the outstanding loan, 𝑐(𝑡)𝑋(𝑡)𝑑𝑡 is the consumption 

expenditure, and 𝛾(𝑡)𝐺(𝑡)𝑑𝑡 is the income inflow. 

2.6 The Wealth Dynamics 

The wealth process of the investor at time 𝑡 is defined in (9) as the difference between the total 

asset value 𝐺(𝑡) and debt 𝐿(𝑡). 
Using (13), (14), and (15) in equation (8), gives 

𝑑𝐺(𝑡) = [𝑟(𝑡)(𝑝(𝑡) − 𝜋(𝑡))𝑋(𝑡) + 𝜇𝑆(𝑡)𝜋(𝑡)𝑋(𝑡) + (𝜇𝐻(𝑡) − 𝛿𝐻)(1 + 𝑎̃(𝑡) −

𝑝(𝑡))𝑋(𝑡)]𝑑𝑡 + 𝜎𝑆√𝑉(𝑡)𝜋(𝑡)𝑋(𝑡)𝑑𝑊𝑡
𝑆 + 𝜎𝐻(1 + 𝑎̃(𝑡) − 𝑝(𝑡))𝑋(𝑡)𝑑𝑊𝑡

𝐻 . . . . . . . . . . . . (21) 

Using (11) and (16) in (20), gives 

𝑑𝐿(𝑡) = 𝑟𝐿(𝑡)𝑎̃(𝑡)𝑋(𝑡)𝑑𝑡 + 𝑐(𝑡)𝑋(𝑡)𝑑𝑡 − 𝛾(𝑡)(1 + 𝑎̃(𝑡))𝑋(𝑡)𝑑𝑡 . . . . . . . . . . . . . . . . . . . (22) 

From (9), we have 

𝑑𝑋(𝑡) = 𝑑𝐺(𝑡) − 𝑑𝐿(𝑡), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23) 

it then follows that 

𝑑𝑋(𝑡) = [𝜇𝐻(𝑡) − 𝛿𝐻 + 𝛾(𝑡) − 𝑐(𝑡) + (𝑟(𝑡) − 𝜇𝐻(𝑡) + 𝛿𝐻)𝑝(𝑡) + (𝜇𝑆(𝑡) − 𝑟(𝑡))𝜋(𝑡) +

(𝜇𝐻(𝑡) − 𝛿𝐻 − 𝑟𝐿(𝑡) + 𝛾(𝑡))𝑎̃(𝑡)]𝑋(𝑡)𝑑𝑡 + 𝜋(𝑡)𝜎𝑠√𝑉(𝑡)𝑋(𝑡)𝑑𝑊𝑡
𝑆 + 𝜎ℎ(1 + 𝑎̃(𝑡) −

𝑝(𝑡))𝑋(𝑡)𝑑𝑊𝑡
𝐻, 𝑋(0) = 𝑋0 > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (24) 

Equation (24) gives the dynamics of the nominal wealth of the investor at time 𝑡. 

2.7 Control Variables and Admissible Strategies 

The investor exercises direct control over four dimensions simultaneously: (i) the proportion of 

wealth invested in risky stock assets, 𝜋(𝑡); (ii) the consumption rate, 𝑐(𝑡); (iii) the debt ratio, 𝑎̃(𝑡); 
and, (iv) the share of wealth held in the financial market, 𝑝(𝑡).  
Let 𝑋(𝑡) denote total wealth, 𝛾(𝑡) the stochastic income growth rate, and 𝑉(𝑡) the Heston variance 

process. The investor allocates a proportion 𝑝(𝑡) ∈ [0,1] of total wealth to the financial market 

and a proportion 1 − 𝑝(𝑡) to housing assets. The investor allocates 𝜋(𝑡) ∈ [0, 𝑝(𝑡)] in the risky 

stock and 𝑝(𝑡) − 𝜋(𝑡) in the risk-free asset. Debt evolves as a proportion of total wealth, 𝑎̃(𝑡)𝑋(𝑡), 
and consumption occurs continuously at the rate 𝑐(𝑡)𝑋(𝑡). Altogether, the investor’s decision 

vector is: 

𝑢(𝑡) = (𝜋(𝑡), 𝑝(𝑡), 𝑎(𝑡), 𝑐(𝑡)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (25) 

A control quadruple (𝜋, 𝑝, 𝑎̃, 𝑐) is admissible if it is progressively measurable, square-integrable, 

and satisfies:  

0 ≤ 𝜋(𝑡) ≤ 𝑝(𝑡) ≤ 1,  0 ≤ 𝑐(𝑡) < ∞, 𝑎̃(𝑡) ≥ 0, . . . . . . . . . . . . . . . . . . . . . . (26) 

with wealth bounded away from bankruptcy almost surely. This ensures the investor cannot borrow 

or consume beyond admissibility tolerances and cannot hold negative proportions of housing or 

financial assets. 
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Let 𝒜 be the collection of all admissible strategies, we have that 𝒜 can be defined as  

𝒜 = {𝑢(𝑡) = {𝜋(𝑡), 𝑝(𝑡), 𝑎̃(𝑡), 𝑐(𝑡)) ∈ ℝ × ℝ × ℝ ×ℝ ∶  𝔼∫ 𝜋(𝑡)2𝑑𝑡
𝑇

0
< ∞;  𝔼∫ 𝑝(𝑡)2𝑑𝑡

𝑇

0
<

∞;  𝔼 ∫ 𝑎̃(𝑡)2𝑑𝑡
𝑇

0
< ∞;  𝔼 ∫ 𝑐(𝑡)2𝑑𝑡

𝑇

0
< ∞} . . . . . . . . . . . . . . . . . . . . . (27) 

2.8 Optimization Problem 

The desire of the investor is to choose investment policies for risky financial and non-financial 

assets, debt ratio, and consumption plan that will maximize the total expected discounted utility of 

the intermediate consumption and terminal wealth. 

Setting the wealth dynamics of the investor, 𝑋(𝑡) as 𝑥 and the income growth rate 𝛾(𝑡) as 𝛾, for 

CRRA utility: 

𝐵(𝐶) =
𝐶1−𝛼

1−𝛼
, 𝛼 < 0, 𝛼 ≠ 1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28) 

the optimization objective function is given by: 

𝐹(𝑡, 𝑥, 𝛾, 𝑉) ≔ sup
u∈𝒜

𝔼 [∫ 𝑒−𝛽𝑡𝐵(𝐶)𝑑𝑡 + 𝑒−𝛽𝑇𝐵(𝑋(𝑇))
𝑇

0
], . . . . . . . . . . . . . . . . . . . . . . . . . . (29) 

where 𝛽 > 0 is the subjective discount rate, 𝐶 = 𝑐(𝑡)𝑋(𝑡) is the consumption of the investor of 

which process is defined in (19), and 𝐵(∙) is a CRRA (power) utility function. 

2.9 Solution Methodology 

The optimization problem is solved using the dynamic programming principle. The associated 

Hamilton-Jacobi-Bellman (HJB) equation is derived with state variables (𝑋(𝑡), 𝑉(𝑡), 𝛾(𝑡)). 

Closed-form solutions for the optimal portfolio allocation, debt ratio, and consumption policy are 

obtained under power utility assumptions. 

3. HJB FORMULATION AND OPTIMAL CONTROLS 

3.1 Hamilton-Jacobi-Bellman Equation 

Applying dynamic programming principle, and considering the three state variables 𝑥 (24), 𝑉 (3), 

and 𝛾 (17), produces the four-control Hamilton-Jacobi-Bellman (HJB) equation: 

0 = 𝐹𝑡 + max
𝜋,𝑝,𝑎̃,𝑐

[𝐽𝑥,𝛾,𝑉𝐹 + 𝑒−𝛿𝑡𝐵(𝐶)], . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30) 

where 𝐽𝑥,𝛾,𝑉 is the infinitesimal generator of the wealth-income-volatility system 

Expanding terms, wealth contributions enter as: 

𝐽𝑥𝐹 = [𝜇𝐻 − 𝛿𝐻 + 𝛾 − 𝑐 + 𝑟𝑝 + 𝜋(𝜇𝑆 − 𝑟) + 𝜇𝐻(𝑎̃ − 𝑝) + 𝛿𝐻(𝑝 − 𝑎̃) − (𝑟𝐿 − 𝛾)𝑎̃]𝑥𝐹𝑥 +
1

2
𝑥2𝜋2𝜎𝑆

2𝑉𝐹𝑥𝑥 +
1

2
𝑥2𝜎𝐻

2𝐹𝑥𝑥 +
1

2
𝑥2𝜎𝐻

2𝑎̃2𝐹𝑥𝑥 −
1

2
𝑥2𝜎𝐻

2𝑝2𝐹𝑥𝑥, . . . . . . . . . . . . . . . . . . . . . . . . . (31) 

income contributions enter as: 

𝐽𝛾𝐹 = 𝛾(𝑎 + 𝜂)𝐹𝛾 +
1

2
𝜎𝛾
2𝐹𝛾𝛾, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (32) 

volatility contributions enter as: 

𝐽𝑉𝐹 = 𝑘(𝜃 − 𝑉)𝐹𝑉 +
1

2
𝜎𝑉
2𝐹𝑉𝑉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (33) 

Cross-terms in 𝐹𝑥𝛾, 𝐹𝑥𝑉, and 𝐹𝛾𝑉 emerge directly from stochastic co-movement between wealth, 

volatility, and income shocks, as follows: 

𝐽𝑥𝛾𝐹 = 𝛾(𝑎 + 𝜂)[𝜇𝐻 − 𝛿𝐻 + 𝛾 − 𝑐 + 𝑟𝑝 + 𝜋(𝜇𝑆 − 𝑟) + 𝜇𝐻(𝑎̃ − 𝑝) + 𝛿𝐻(𝑝 − 𝑎̃) − (𝑟𝐿 −

𝛾)𝑎̃]𝑥𝜌𝛾𝑥𝐹𝛾𝑥 + 𝛾(𝑎 + 𝜂)𝜋𝜎𝑆√𝑉𝑥𝜌𝛾𝑥𝐹𝛾𝑥 + 𝛾(𝑎 + 𝜂)𝜎𝐻𝑥𝜌𝛾𝑥𝐹𝛾𝑥 + 𝛾(𝑎 + 𝜂)𝜎𝐻𝑎̃𝑥𝜌𝛾𝑥𝐹𝛾𝑥 −

𝛾(𝑎 + 𝜂)𝜎𝐻𝑝𝑥𝜌𝛾𝑥𝐹𝛾𝑥 + 𝜎𝛾[𝜇𝐻 − 𝛿𝐻 + 𝛾 − 𝑐 + 𝑟𝑝 + 𝜋(𝜇𝑆 − 𝑟) + 𝜇𝐻(𝑎̃ − 𝑝) + 𝛿𝐻(𝑝 − 𝑎̃) −

(𝑟𝐿 − 𝛾)𝑎̃]𝑥𝜌𝛾𝑥𝐹𝛾𝑥 + 𝜋𝜎𝛾𝜎𝑆√𝑉𝑥𝜌𝛾𝑥𝐹𝛾𝑥 + 𝜎𝛾𝜎𝐻𝑥𝜌𝛾𝑥𝐵𝛾𝑥 + 𝜎𝛾𝜎𝐻𝑎̃𝑥𝜌𝛾𝑥𝐹𝛾𝑥 − 𝜎𝛾𝜎𝐻𝑝𝑥𝜌𝛾𝑥𝐹𝛾𝑥, . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (34)  
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𝐽𝑥𝑉𝐹 = 𝑘(𝜃 − 𝑉)[𝜇𝐻 − 𝛿𝐻 + 𝛾 − 𝑐 + 𝑟𝑝 + 𝜋(𝜇𝑆 − 𝑟) + 𝜇𝐻(𝑎̃ − 𝑝) + 𝛿𝐻(𝑝 − 𝑎̃) − (𝑟𝐿 −

𝛾)𝑎̃]𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝑘(𝜃 − 𝑉)𝜋𝜎𝑆√𝑉𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝑘(𝜃 − 𝑉)𝜎𝐻𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝑘(𝜃 − 𝑉)𝜎𝐻𝑎̃𝑥𝜌𝑉𝑥𝐹𝑉𝑥 −
𝑘(𝜃 − 𝑉)𝜎𝐻𝑝𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉𝜌[𝜇𝐻 − 𝛿𝐻 + 𝛾 − 𝑐 + 𝑟𝑝 + 𝜋(𝜇𝑆 − 𝑟) + 𝜇𝐻(𝑎̃ − 𝑝) + 𝛿𝐻(𝑝 − 𝑎̃) −

(𝑟𝐿 − 𝛾)𝑎̃]𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉𝜌𝜋𝜎𝑆√𝑉𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉𝜌𝜎𝐻𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉𝜌𝜎𝐻𝑎̃𝑥𝜌𝑉𝑥𝐹𝑉𝑥 −

𝜎𝑉𝜌𝜎𝐻𝑝𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉√1 − 𝜌2[𝜇𝐻 − 𝛿𝐻 + 𝛾 − 𝑐 + 𝑟𝑝 + 𝜋(𝜇𝑆 − 𝑟) + 𝜇𝐻(𝑎̃ − 𝑝) + 𝛿𝐻(𝑝 −

𝑎̃) − (𝑟𝐿 − 𝛾)𝑎̃]𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉√1 − 𝜌2𝜋𝜎𝑆√𝑉𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉√1 − 𝜌2𝜎𝐻𝑥𝜌𝑉𝑥𝐹𝑉𝑥 +

𝜎𝑉√1 − 𝜌2𝜎𝐻𝑎̃𝑥𝜌𝑉𝑥𝐹𝑉𝑥 + 𝜎𝑉√1 − 𝜌2𝜎𝐻𝑝𝑥𝜌𝑉𝑥𝐹𝑉𝑥, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (35) 

𝐽𝛾𝑉𝐹 = 𝛾𝑘(𝑎 + 𝜂)(𝜃 − 𝑉)𝜌𝛾𝑉𝐹𝛾𝑉 + 𝛾(𝑎 + 𝜂)𝜎𝑉𝜌𝜌𝛾𝑉𝐹𝛾𝑉 + 𝛾(𝑎 + 𝜂)𝜎𝑉√1 − 𝜌2𝜌𝛾𝑉𝐹𝛾𝑉 +

𝑘(𝜃 − 𝑉)𝜎𝛾𝜌𝛾𝑉𝐹𝛾𝑉 + 𝜎𝛾𝜎𝑉𝜌𝜌𝛾𝑉𝐹𝛾𝑉 + 𝜎𝛾𝜎𝑉√1 − 𝜌2𝜌𝛾𝑉𝐹𝛾𝑉 . . . . . . . . . . . . . . . . . . . . . . . . (36) 

where 𝐵𝑡, 𝐵𝑥, 𝐵𝑥𝑥, 𝐵𝛾, 𝐵𝛾𝛾, 𝐵𝑉, 𝐵𝑉𝑉, 𝐵𝛾𝑥, 𝐵𝑉𝑥, and 𝐵𝛾𝑉 denote partial derivatives of first-order and 

second-order with respect to time 𝑡, wealth process 𝑥, income growth rate 𝛾, and volatility process 

𝑉. 

Because 𝐹(⋅) and 𝐵(⋅) are concave and the control set in (𝑝, 𝜋, 𝑎̃, 𝑐) is convex, the Hamiltonian in 

(30) is concave in the control variables, which guarantees that the first–order conditions indeed 

characterize the optimal controls. 

Explicitly, equation (3) is: 

0 = 𝐹𝑡 + 𝐽
𝑥𝐹 + 𝐽𝛾𝐹 + 𝐽𝑉𝐹 + 𝐽𝑥𝛾𝐹 + 𝐽𝑥𝑉𝐹 + 𝐽𝛾𝑉𝐹 + 𝑒−𝛽𝑡𝐵(𝐶) . . . . . . . . . . . . . . . . . . . . . (37) 

To determine the optimal portfolios, consumption plan, and debt ratio, we have to specify the forms 

of the utility functions 𝐵. 

3.2 Power Utility 

To obtain explicit optimal policies we specialize to a constant-relative-risk-aversion (CRRA) 

specification for intermediate consumption (28), and search for a value function of the isoelastic 

form 

𝐹(𝑥, 𝛾, 𝑉, 𝑡) =
(𝑥+𝑉)1−𝜀𝑒𝑔(𝑡,𝛾)

1−𝜀
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (38) 

where 𝜀 ∈ (0, 1) ∪ (1,∞) is the risk aversion factor in relation to the wealth process 𝑥, 𝛾 is the 

income-growth state, 𝑉 is the variance process, and 𝑔 is a deterministic function to be determined. 

Under (38) the first- and second- order derivatives of 𝐹 are proportional to 𝐹 itself: 

𝐹𝑡 = 𝑔𝑡𝐹, 𝐹𝑥 =
(1−𝜀)𝐹

𝑥+𝑉
, 𝐹𝑥𝑥 =

−𝜀(1−𝜀)𝐹

(𝑥+𝑉)2
, 𝐹𝑉 =

(1−𝜀)𝐹

𝑥+𝑉
, 𝐹𝑉𝑉 =

−𝜀(1−𝜀)𝐹

(𝑥+𝑉)2
, 𝐹𝛾 = 𝑔𝛾𝐹,

 𝐹𝛾𝛾 = (𝑔𝛾
2 + 𝑔𝛾𝛾)𝐹, 𝐹𝛾𝑥 =

(1−𝜀)𝑔𝛾𝐹

𝑥+𝑉
, 𝐹𝛾𝑉 =

(1−𝜀)𝑔𝛾𝐹

𝑥+𝑉
, 𝐹𝑉𝑥 =

−𝜀(1−𝜀)𝐹

(𝑥+𝑉)2
 . . .(39) 

Substituting these (39) into (37) and collecting like terms yields 

0 = max
𝜋,𝑝,𝑎̃,𝑐

{𝑔𝑡𝐹 +
(1−𝜀)

𝑥+𝑉
Φ0𝑥𝐹 −

𝜀(1−𝜀)

2(𝑥+𝑉)2
[𝜎𝐻
2 + 𝜎𝑆

2𝑉𝜋2 − 𝜎𝐻
2𝑝2 + 𝜎𝐻

2𝑎̃2]𝑥2𝐹 + 𝛾(𝑎 + 𝜂)𝑔𝛾𝐹 +

1

2
𝜎𝛾
2(𝑔𝛾

2 + 𝑔𝛾𝛾)𝐹 +
𝑘(𝜃−𝑉)(1−𝜀)

𝑥+𝑉
𝐹 −

𝜎𝑉
2𝜀(1−𝜀)

2(𝑥+𝑉)2
𝐹 +

(1−𝜀)𝑔𝛾

𝑥+𝑉
Φ0𝑥𝛾(𝑎 + 𝜂)𝜌𝛾𝑥𝐹 +

(1−𝜀)𝑔𝛾

𝑥+𝑉
Φ1𝑥𝛾(𝑎 +

𝜂)𝜌𝛾𝑥𝐹 +
(1−𝜀)𝑔𝛾

𝑥+𝑉
Φ0𝑥𝜎𝛾𝜌𝛾𝑥𝐹 +

(1−𝜀)𝑔𝛾

𝑥+𝑉
Φ1𝑥𝜎𝛾𝜌𝛾𝑥𝐹 −

𝜀(1−𝜀)

(𝑥+𝑉)2
Φ0𝑥𝑘(𝜃 − 𝑉)𝜌𝑉𝑥𝐹 −

𝜀(1−𝜀)

(𝑥+𝑉)2
Φ1𝑥𝑘(𝜃 − 𝑉)𝜌𝑉𝑥𝐹 −

𝜀(1−𝜀)

(𝑥+𝑉)2
Φ0𝑥𝜎𝑉𝜌𝜌𝑉𝑥𝐹 −

𝜀(1−𝜀)

(𝑥+𝑉)2
Φ1𝑥𝜎𝑉𝜌𝜌𝑉𝑥𝐹 −

𝜀(1−𝜀)

(𝑥+𝑉)2
Φ0𝑥𝜎𝑉√1 − 𝜌2𝜌𝑉𝑥𝐹 −

𝜀(1−𝜀)

(𝑥+𝑉)2
Φ1𝑥𝜎𝑉√1 − 𝜌2𝜌𝑉𝑥𝐹 +

𝛾𝑘(𝑎+𝜂)(𝜃−𝑉)(1−𝜀)𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
𝐹 +

𝛾(𝑎+𝜂)𝜎𝑉𝜌(1−𝜀)𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
𝐹 +

𝛾(𝑎+𝜂)𝜎𝑉√1−𝜌2(1−𝜀)𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
𝐹 +

𝑘(𝜃−𝑉)𝜎𝛾(1−𝜀)𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
𝐹 +

𝜎𝛾𝜎𝑉𝜌(1−𝜀)𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
𝐹 +

𝜎𝛾𝜎𝑉√1−𝜌2(1−𝜀)𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
𝐹 + 𝑒−𝛽𝑡

𝐶1−𝛼

1−𝛼
} . . . . . . . . . . . . . . . . . . . . . . . . . . . (40) 
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where Φ0 = (𝜇𝐻 − 𝛿𝐻 + 𝛾) + (𝜇𝑆 − 𝑟)𝜋 + (𝑟 − 𝜇𝐻 + 𝛿𝐻)𝑝 + (𝜇𝐻 − 𝛿𝐻 − 𝑟𝐿 + 𝛾)𝑎̃ − 𝑐 and 

Φ1 = 𝜎𝐻 + 𝜎𝑆√𝑉𝜋 + 𝜎𝐻𝑝 + 𝜎𝐻𝑎̃ 

Dividing (40) through by −(1 − 𝜀)𝐹 < 0, we obtain the equivalent minimization problem. Thus, 

we have  

0 = min
𝜋,𝑝,𝑎̃,𝑐

{−
𝑔𝑡

1−𝜀
−
Φ0𝑥

𝑥+𝑉
+

𝜀𝑥2

2(𝑥+𝑉)2
[𝜎𝐻
2 + 𝜎𝑆

2𝑉𝜋2 − 𝜎𝐻
2𝑝2 + 𝜎𝐻

2𝑎̃2] −
𝛾(𝑎+𝜂)

1−𝜀
𝑔𝛾 −

𝜎𝛾
2

2(1−𝜀)
(𝑔𝛾

2 +

𝑔𝛾𝛾) −
𝑘(𝜃−𝑉)

𝑥+𝑉
+

𝜎𝑉
2𝜀

2(𝑥+𝑉)2
−

𝑔𝛾

𝑥+𝑉
Φ0𝑥𝛾(𝑎 + 𝜂)𝜌𝛾𝑥 −

𝑔𝛾

𝑥+𝑉
Φ1𝑥𝛾(𝑎 + 𝜂)𝜌𝛾𝑥 −

𝑔𝛾

𝑥+𝑉
Φ0𝑥𝜎𝛾𝜌𝛾𝑥 −

𝑔𝛾

𝑥+𝑉
Φ1𝑥𝜎𝛾𝜌𝛾𝑥 +

𝜀

(𝑥+𝑉)2
Φ0𝑥𝑘(𝜃 − 𝑉)𝜌𝑉𝑥 +

𝜀

(𝑥+𝑉)2
Φ1𝑥𝑘(𝜃 − 𝑉)𝜌𝑉𝑥 +

𝜀

(𝑥+𝑉)2
Φ0𝑥𝜎𝑉𝜌𝜌𝑉𝑥 +

𝜀

(𝑥+𝑉)2
Φ1𝑥𝜎𝑉𝜌𝜌𝑉𝑥 +

𝜀

(𝑥+𝑉)2
Φ0𝑥𝜎𝑉√1 − 𝜌2𝜌𝑉𝑥 +

𝜀

(𝑥+𝑉)2
Φ1𝑥𝜎𝑉√1 − 𝜌2𝜌𝑉𝑥 −

𝛾𝑘(𝑎+𝜂)(𝜃−𝑉)𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
−
𝛾(𝑎+𝜂)𝜎𝑉𝜌𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
−
𝛾(𝑎+𝜂)𝜎𝑉√1−𝜌2𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
−
𝑘(𝜃−𝑉)𝜎𝛾𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
−
𝜎𝛾𝜎𝑉𝜌𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
−

𝜎𝛾𝜎𝑉√1−𝜌2𝑔𝛾𝜌𝛾𝑉

𝑥+𝑉
−

𝑒−𝛽𝑡𝐶1−𝛼

(1−𝛼)(𝑥+𝑉)1−𝜀𝑒𝑔(𝑡,𝛾)
} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (41) 

The minimization problem (41) is quadratic in the portfolio and debt controls (𝜋, 𝑝, 𝑎̃) and strictly 

concave in 𝑐. The first-order conditions therefore yield closed-form expressions for the optimal 

policies (𝜋∗, 𝑝∗, 𝑎̃∗, 𝑐∗) as affine functions of the state variables (𝑥, 𝛾, 𝑉). 

3.3 Optimal Debt Ratio 

We consider the optimal debt ratio of the investor at time 𝑡. 
The optimal policy for the debt ratio 𝑎̃∗ of the investor at time 𝑡, is defined as 

𝑎̃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎̃𝑓1(𝑎̃), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (42) 

where 

𝑓1(𝑎̃) = −
(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝑎̃𝑥

𝑥+𝑉
+
𝜀𝜎𝐻

2 𝑎̃2𝑥2

2(𝑥+𝑉)2
− [

𝛾(𝑎+𝜂)(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝑎̃𝑥𝑔𝛾

𝑥+𝑉
+
𝛾(𝑎+𝜂)𝜎𝐻𝑎̃𝑥𝑔𝛾

𝑥+𝑉
+

𝜎𝛾(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝑎̃𝑥𝑔𝛾

𝑥+𝑉
+
𝜎𝛾𝜎𝐻𝑎̃𝑥𝑔𝛾

𝑥+𝑉
] 𝜌𝛾𝑥 + [

𝑘(𝜃−𝑉)(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝑎̃𝜀𝑥

(𝑥+𝑉)2
+
𝑘(𝜃−𝑉)𝜎𝐻𝑎̃𝜀𝑥

(𝑥+𝑉)2
+

𝜎𝑉𝜌(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝑎̃𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉𝜌𝜎𝐻𝑎̃𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉√1−𝜌2(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝑎̃𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉√1−𝜌2𝜎𝐻𝑎̃𝜀𝑥

(𝑥+𝑉)2
] 𝜌𝑉𝑥 . . . . . . . . (43) 

Let 𝑎̃∗ be the optimal debt ratio of the investor at time 𝑡, then by first-order conditions 

𝑎̃∗ =
(𝑥+𝑉)(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)

𝑥𝜎𝐻
2 𝜀

(1 + 𝜆) +
(𝑥+𝑉)𝜆

𝑥𝜎𝐻𝜀
−
(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝜏

𝑥𝜎𝐻
2 −

𝜏

𝑥𝜎𝐻
 . . . . . . . . . . . . . . . . . . . . . (44) 

where 

𝜆 = (𝛾𝑎 + 𝛾𝜂 + 𝜎𝛾)𝑔𝛾𝜌𝛾𝑥 and 𝜏 = (𝑘(𝜃 − 𝑉) + 𝜎𝑉𝜌 + 𝜎𝑉√1 − 𝜌2)𝜌𝑉𝑥 . . . . . . . . . . . . . . (45) 

The above optimal debt ratio can also be written as 

𝑎̃∗ =
(𝑥+𝑉)(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)

𝑥𝜎𝐻
2 𝜀⏟          
𝜑1

+
(𝑥+𝑉)(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝜆

𝑥𝜎𝐻
2 𝜀⏟            
φ2

+
(𝑥+𝑉)𝜆

𝑥𝜎𝐻𝜀⏟  
𝜑3

−
(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)𝜏

𝑥𝜎𝐻
2⏟        

𝜑4

−
𝜏

𝑥𝜎𝐻⏟
𝜑5

 . . . . . . . . . (46) 

3.4 Optimal Investment Policy 

3.4.1 Optimal Allocation to the Financial Market 

The optimal policy for the portfolio weights strategy in financial market assets 𝑝∗ of the investor 

at time 𝑡, is defined as 

𝑝∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜋𝑓2(𝑝), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (47) 

where 
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𝑓2(𝑝) = −
(𝑟−𝜇𝐻+𝛿𝐻)𝑝𝑥

𝑥+𝑉
+
𝜀𝜎𝐻

2𝑝2𝑥2

2(𝑥+𝑉)2
− [

𝛾(𝑎+𝜂)(𝑟−𝜇𝐻+𝛿𝐻)𝑝𝑥𝑔𝛾

𝑥+𝑉
+
𝛾(𝑎+𝜂)𝜎𝐻𝑝𝑥𝑔𝛾

𝑥+𝑉
+
𝜎𝛾(𝑟−𝜇𝐻+𝛿𝐻)𝑝𝑥𝑔𝛾

𝑥+𝑉
+

𝜎𝛾𝜎𝐻𝑝𝑥𝑔𝛾

𝑥+𝑉
] 𝜌𝛾𝑥 + [

𝑘(𝜃−𝑉)(𝑟−𝜇𝐻+𝛿𝐻)𝑝𝜀𝑥

(𝑥+𝑉)2
+
𝑘(𝜃−𝑉)𝜎𝐻𝑝𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉𝜌(𝑟−𝜇𝐻+𝛿𝐻)𝑝𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉𝜌𝜎𝐻𝑝𝜀𝑥

(𝑥+𝑉)2
+

𝜎𝑉√1−𝜌2(𝑟−𝜇𝐻+𝛿𝐻)𝑝𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉√1−𝜌2𝜎𝐻𝑝𝜀𝑥

(𝑥+𝑉)2
] 𝜌𝑉𝑥 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (48) 

Let 𝑝∗ be the optimal investment policy strategy in financial market assets of the investor at time 

𝑡, then by first-order conditions 

𝑝∗ =
(𝑥+𝑉)(𝑟−𝜇𝐻+𝛿𝐻)

𝑥𝜎𝐻
2 𝜀

(1 + 𝜆) +
(𝑥+𝑉)𝜆

𝑥𝜎𝐻𝜀
−
(𝑟−𝜇𝐻+𝛿𝐻)𝜏

𝑥𝜎𝐻
2 −

𝜏

𝑥𝜎𝐻
 . . . . . . . . . . . . . . . . . . . . . . . . . . (49) 

The above optimal investment strategy can also be written as 

𝑝∗ =
(𝑥+𝑉)(𝑟−𝜇𝐻+𝛿𝐻)

𝑥𝜎𝐻
2 𝜀⏟        
𝜗1

+
(𝑥+𝑉)(𝑟−𝜇𝐻+𝛿𝐻)𝜆

𝑥𝜎𝐻
2𝜀⏟          
ϑ2

+
(𝑥+𝑉)𝜆

𝑥𝜎𝐻𝜀⏟  
𝜗3

−
(𝑟−𝜇𝐻+𝛿𝐻)𝜏

𝑥𝜎𝐻
2⏟      

𝜗4

−
𝜏

𝑥𝜎𝐻⏟
𝜗5

 . . . . . . . . . . . . . . . . . (50) 

3.4.2 Optimal Allocation to Risky Asset 

The optimal policy for the portfolio weights strategy in risky assets 𝜋∗ of the investor at time 𝑡, is 

defined as 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜋𝑓3(𝜋), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (51) 

where 

𝑓3(𝜋) = −
(𝜇𝑆−𝑟)𝜋𝑥

𝑥+𝑉
+
𝜀𝜎𝑆

2𝑉𝜋2𝑥2

2(𝑥+𝑉)2
− [

𝛾(𝑎+𝜂)(𝜇𝑆−𝑟)𝜋𝑥𝑔𝛾

𝑥+𝑉
+
𝛾(𝑎+𝜂)𝜎𝑆√𝑉𝜋𝑥𝑔𝛾

𝑥+𝑉
+
𝜎𝛾(𝜇𝑆−𝑟)𝜋𝑥𝑔𝛾

𝑥+𝑉
+

𝜎𝛾𝜎𝑆√𝑉𝜋𝑥𝑔𝛾

𝑥+𝑉
] 𝜌𝛾𝑥 + [

𝑘(𝜃−𝑉)(𝜇𝑆−𝑟)𝜋𝜀𝑥

(𝑥+𝑉)2
+
𝑘(𝜃−𝑉)𝜎𝑆√𝑉𝜋𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉𝜌(𝜇𝑆−𝑟)𝜋𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉𝜌𝜎𝑆√𝑉𝜋𝜀𝑥

(𝑥+𝑉)2
+

𝜎𝑉√1−𝜌2(𝜇𝑆−𝑟)𝜋𝜀𝑥

(𝑥+𝑉)2
+
𝜎𝑉√1−𝜌2𝜎𝑆√𝑉𝜋𝜀𝑥

(𝑥+𝑉)2
] 𝜌𝑉𝑥 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (52) 

Let 𝜋∗ be the optimal investment policy strategy in risky assets of the investor at time 𝑡, then by 

first-order conditions 

𝜋∗ =
(𝑥+𝑉)(𝜇𝑆−𝑟)

𝑥𝜎𝑆
2𝑉𝜀

(1 + 𝜆) +
(𝑥+𝑉)𝜆

𝑥𝜎𝑆√𝑉𝜀
−
(𝜇𝑆−𝑟)𝜏

𝑥𝜎𝑆
2𝑉

−
𝜏

𝑥𝜎𝑆√𝑉
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (53) 

The above optimal investment strategy can also be written as 

𝜋∗ =
(𝑥+𝑉)(𝜇𝑆−𝑟)

𝑥𝜎𝑆
2𝑉𝜀⏟      
𝜁1

+
(𝑥+𝑉)(𝜇𝑆−𝑟)𝜆

𝑥𝜎𝑆
2𝑉𝜀⏟      
𝜁2

+
(𝑥+𝑉)𝜆

𝑥𝜎𝑆√𝑉𝜀⏟  
𝜁3

−
(𝜇𝑆−𝑟)𝜏

𝑥𝜎𝑆
2𝑉⏟  
𝜁4

−
𝜏

𝑥𝜎𝑆√𝑉⏟  
𝜁5

 . . . . . . . . . . . . . . . . . . . . . . . . . (54) 

3.5 Optimal Consumption Policy 

Let 𝑐∗ be the optimal consumption strategy of the investor at time 𝑡, then by first-order conditions 

𝑐∗ = 𝑌−
1

𝛼(𝑥 + 𝑉)
𝜀−1

𝛼 𝑒
−(

𝛽𝑡+𝑔

α
)
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (55) 

where 

𝑌 =
𝑥

𝑥+𝑉
(1 + 𝜆 −

𝜏𝜀

𝑥+𝑉
), 𝜆 = (𝛾𝑎 + 𝛾𝜂 + 𝜎𝛾)𝑔𝛾𝜌𝛾𝑥, and 𝜏 = (𝑘(𝜃 − 𝑉) + 𝜎𝑉𝜌 + 𝜎𝑉√1− 𝜌

2)𝜌𝑉𝑥 . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (56) 

3.6 The Explicit Form of the HJB Equation 

The explicit form of the HJB equation (41) is given by  

−
𝑔𝑡

1−𝜀
−

𝑥

𝑥+𝑉
(𝜇𝐻 − 𝛿𝐻 + 𝛾 − 𝑌

−
1

𝛼(𝑥 + 𝑉)
𝜀−1

𝛼 𝑒
−(

𝛽𝑡+𝑔

α
)
)(1 + 𝜆 −

𝜏𝜀

𝑥+𝑉
) −

(𝜇𝑆−𝑟)
2(1+𝜆)2

2𝜎𝑆
2𝑉𝜀

+
(𝜇𝑆−𝑟)

2(1+𝜆)𝜏

(𝑥+𝑉)𝜎𝑆
2𝑉

−

(𝜇𝑠−𝑟)
2𝜏2𝜀

2(𝑥+𝑉)2𝜎𝑆
2𝑉
−
(𝑟−𝜇𝐻+𝛿𝐻)

2
(1+𝜆)2

2𝜎𝐻
2𝜀

+
(𝑟−𝜇𝐻+𝛿𝐻)

2
(1+𝜆)𝜏

(𝑥+𝑉)𝜎𝐻
2 −

(𝑟−𝜇𝐻+𝛿𝐻)
2
𝜏2𝜀

2(𝑥+𝑉)2𝜎𝐻
2 −

(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)
2
(1+𝜆)2

2𝜎𝐻
2𝜀

+

(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)
2
(1+𝜆)𝜏

(𝑥+𝑉)𝜎𝐻
2 −

(𝜇𝐻−𝛿𝐻−𝑟𝐿+𝛾)
2
𝜏2𝜀

2(𝑥+𝑉)2𝜎𝐻
2 +

3𝜆2

2𝜀
+

3𝜏2𝜀

2(𝑥+𝑉)2
−

3𝜆𝜏

𝑥+𝑉
+

𝑥2𝜎𝐻
2𝜀

2(𝑥+𝑉)2
−
𝛾(𝑎+𝜂)𝑔𝛾

1−𝜀
−
𝜎𝛾
2((𝑔𝛾)

2
+𝑔𝛾𝛾)

2(1−𝜀)
−
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𝑘(𝜃−𝑉)

𝑥+𝑉
+

𝜎𝑉
2𝜀

2(𝑥+𝑉)2
−
𝛾(𝑎+𝜂)𝑘(𝜃−𝑉)𝑔𝛾

𝑥+𝑉
𝜌𝛾𝑉 −

𝛾(𝑎+𝜂)𝜎𝑉𝜌𝑔𝛾

𝑥+𝑉
𝜌𝛾𝑉 −

𝛾(𝑎+𝜂)𝜎𝑉√1−𝜌
2𝑔𝛾

𝑥+𝑉
𝜌𝛾𝑉 −

𝑘(𝜃−𝑉)𝜎𝛾𝑔𝛾

𝑥+𝑉
𝜌𝛾𝑉 −

𝜎𝛾𝜎𝑉𝜌𝑔𝛾

𝑥+𝑉
𝜌𝛾𝑉 −

𝜎𝛾𝜎𝑉√1−𝜌
2𝑔𝛾

𝑥+𝑉
𝜌𝛾𝑉 = 0 . . . . . . . . . . . . . . . . . (57) 

RESULTS AND DISCUSSION 

3.7.1 Optimal Debt Ratio 

The optimal debt ratio 𝑎̃∗ obtained in equation (44) admits the decomposition (46), where 𝜆 and 𝜏 
reflect the joint effects of income risk, housing-price risk, and volatility risk. 

This structure yields five economically meaningful components, each capturing a distinct driver of 

leverage: 

1. Speculative debt demand 𝝋𝟏. 

This component increases with investor wealth and volatility, and with the excess return 

on housing relative to loan cost. It decreases with 𝜎𝐻
2. Thus, when housing-price risk is low 

relative to expected appreciation, the investor optimally takes on more leverage. 

2. Income-growth speculative component 𝝋𝟐. 

Driven by 𝜆 = (𝛾𝑎 + 𝛾𝜂 + 𝜎𝛾)𝑔𝛾𝜌𝛾𝑥, this term increases with income growth and the 

correlation between income shocks and wealth. It decreases with stock and housing 

volatility and with higher CRRA risk aversion. 

3. Income-risk hedging component 𝝋𝟑. 

This component hedges the covariance between income shocks and wealth. It rises with the 

volatility process 𝑉, income growth, and the correlation 𝜌𝛾𝑥, but falls with 𝜎𝐻
2 and 𝜎𝐻. Thus, 

households facing income volatility hedge by partially adjusting leverage. 

4. Housing-risk hedging component 𝝋𝟒. 

This term responds to shocks in the housing-price volatility process. It increases when 𝑉 is 

high and when income growth contributes positively to consumption and housing wealth 

but falls with 𝜎𝐻
2. Higher housing volatility induces deleveraging.  

5. Volatility-risk hedging component 𝝋𝟓. 

Driven by 𝜏 = (𝑘(𝜃 − 𝑉) + 𝜎𝑉𝜌 + 𝜎𝑉√1 − 𝜌2)𝜌𝑉𝑥, this term hedges shocks to the 

stochastic volatility process. It is increasing in the volatility process 𝑉 and decreasing in 

both wealth 𝑥 and the dispersion of housing-price shocks. 

 

Overall, the decomposition reveals a nuanced pattern: leverage increases when the expected return 

on housing exceeds the loan rate and when income and volatility positively co-move with wealth. 

However, the investor optimally reduces debt when volatility risk or housing-price risk becomes 

elevated. This heterogeneity in components highlights why the debt ratio is highly sensitive to both 

income dynamics and stochastic volatility. 

3.7.2 Optimal Allocation to the Financial Market 

The optimal portfolio weight 𝑝∗ for investment in financial-market assets (equation 49) 

decomposes into five components analogous to the debt case: 

1. Speculative portfolio 𝝑𝟏: increases with (𝑥 + 𝑉) and the spread (𝑟 − 𝜇𝐻 + 𝛿𝐻); decreases 

with 𝜎𝐻
2. 

2. Income-growth speculative component 𝝑𝟐: increases with income growth 𝛾, with the 

correlation between income risk and wealth, and with the volatility process. 

3. Income-risk hedging component 𝝑𝟑: lowers exposure when income-wealth covariance is 

high; increases with 𝑉. 
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4. Volatility-risk hedging component 𝝑𝟒: protects against shocks in the variance process 𝑉; 

decreases in 𝜎𝐻.  

5. Housing-risk hedging component 𝝑𝟓: reduces exposure when housing-price volatility or 

volatility-of-volatility rises. 

6.  

High volatility or high covariance between housing and income shocks reduces the attractiveness 

of financial-market investment. When the variance process 𝑉 is low, the investor optimally 

increases exposure to financial assets, but deleverages from 𝑝 as 𝑉 rises. 

 

3.7.3 Optimal Allocation to the Risky Market 

The optimal risky-asset weight 𝜋∗ (equation 53) shares the same five components but is driven by 

the excess return of the risky asset (𝜇𝑆 − 𝑟) rather than housing or loan costs. The dominant 

mechanisms are: 

1. Speculative term 𝜻𝟏: positively related to (𝑥 + 𝑉) and (𝜇𝑆 − 𝑟); decreases with 𝜎𝑆
2. 

2. Income-speculative term 𝜻𝟐: relevant when income shocks correlate with wealth; 

increases with 𝑉. 

3. Income-hedging term 𝜻𝟑: reduces risky-asset exposure during periods of income 

instability. 

4. Volatility-hedging term 𝜻𝟒: particularly sensitive to movements of the stochastic variance 

process; decreases with 𝜎𝑆√𝑉.  

5. Housing-hedging term 𝜻𝟓: arises because housing acts as a non-tradeable asset correlated 

with wealth. 

 

The optimal risky-asset weight is very sensitive to the volatility process. When 𝑉 rises, the hedging 

components dominate, and the investor optimally reduces exposure to the financial risky asset, 

even if expected returns remain favorable. This reinforces the importance of stochastic volatility 

in shaping optimal portfolio choice. 

3.7.4 Optimal Consumption 

The optimal consumption rule 𝑐∗ (equation 55) exhibits intuitive homogeneity in wealth and 

volatility. The term 𝑌 captures the interaction between wealth, income dynamics, and intertemporal 

substitution. 

Consumption rises with wealth 𝑥 + 𝑉 and falls with higher effective discounting 𝛼. As 𝛼 → ∞, 

consumption tends to consume nearly all available resources; as 𝛼 → 0, the investor prefers to 

allocate more wealth to investment. Increased volatility 𝑉 raises consumption through 

precautionary motives but only proportionally to the CRRA parameter. 

3.7.5 Overall Insights 

Three broad qualitative conclusions emerge: 

1. Stochastic volatility plays a central role across all decisions. 

Every optimal policy includes at least one volatility-hedging component. As 𝑉 increases, 

the investor systematically reduces leverage, risky-asset exposure, and financial-market 

allocation. 

2. Housing-price volatility is a major determinant of leverage and asset allocation. 

High 𝜎𝐻 reduces debt and risky-asset exposure, reflecting the non-tradable nature of 

housing and its effect on wealth risk. 

3. Income dynamics interact strongly with investment and debt decisions. 
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Correlation between income shocks and wealth 𝜌𝛾𝑥 amplifies both speculative and hedging 

motives, with the sign determined by whether income risk augments or dilutes effective 

wealth. 

 

4. NUMERICAL ILLUSTRATIONS AND DISCUSSION 

The objective of this section is twofold. First, it provides quantitative illustrations of the analytical 

results derived in Sections 2 and 3, thereby clarifying the economic implications of the optimal 

investment, debt, consumption, and financial-market allocation policies. Second, it examines the 

sensitivity of these optimal policies to changes in market volatility, risk preferences, and housing 

price uncertainty.  

To ensure economic plausibility, parameter values are informed by observed characteristics of the 

Nigerian financial market, with particular reference to equity price behavior. Daily closing prices 

of SEPLAT Petroleum Development Company Plc, listed on the Nigerian Exchange Group 

(NGX), were used as a representative equity series due to their relatively high liquidity and 

consistent trading history over the sample period. The stock price data were converted to 

continuously compounded returns. These returns were employed to obtain preliminary estimates 

of the drift and volatility parameters of the risky asset. While the analytical model assumes a 

Heston-type stochastic volatility process, full maximum likelihood or Bayesian estimation of the 

Heston parameters is beyond the scope of this paper. Instead, the empirical data are used to anchor 

the numerical magnitudes of the parameters, ensuring that simulations reflect realistic market 

conditions rather than purely arbitrary values. 

The volatility process parameters were selected to satisfy standard admissibility conditions, 

including positivity of the variance process and mean-reversion. In particular, the Feller condition 

is respected to ensure that the volatility process remains strictly positive. Housing price dynamics 

are modeled separately and are not estimated directly from the SEPLAT data. Instead, housing 

appreciation and volatility parameters are chosen to reflect stylized facts from emerging housing 

markets, where price growth tends to be moderate, but uncertainty can be substantial. In the 

numerical illustrations we approximate the macro channel with a constant reduced-form coefficient 

𝜂. 

All model parameters are expressed in annualized terms, consistent with continuous-time finance 

conventions. The benchmark parameter values used in the numerical simulations are summarized 

below: 

𝑟 = 0.125, 𝜇𝑆 = 0.28, 𝜎𝑆 = 4, 𝜇𝐻 = 0.19, 𝜎𝐻 = 1, 𝛿𝐻 = 0.02, 𝑟𝐿 = 0.2, 𝛾 = 0.05, 𝜎𝛾 = 0.155, 

𝑘 = 0.9, 𝜃 = 0.14, 𝜎𝑉 = 0.7, 𝜌 = −0.3, 𝜖 = {1.5, 3, 6}, 𝑎 = 0.1, 𝜂 = 0.05, 𝑔𝛾 = [0.01, 0.1], 

𝜌𝛾𝑥 = 0.23, 𝜌𝑉𝑥 = −0.1, 𝛽 = 0.05, 𝛼 = 5, 𝑡 = [0, 10], 𝑔𝑡 = [0, 1]. 

The optimal policies for the four control variables – risky asset allocation 𝜋(𝑡), debt ratio 𝑎̃(𝑡), 
consumption rate 𝑐(𝑡), and financial-market allocation proportion 𝑝(𝑡) – are computed using the 

closed-form expressions derived from the Hamilton–Jacobi–Bellman equation (57).The state 

variables considered in the simulations are: 

• Wealth 𝑋 ∈ [1,10], 
• Stochastic variance 𝑉 ∈ [0,1]. 

These ranges allow examination of both low- and high-wealth regimes, as well as tranquil versus 

turbulent market conditions. 

Three-dimensional surface plots are used to illustrate how optimal controls respond jointly to 

changes in wealth and market volatility.  

Figures 1-4 illustrate the optimal debt ratio 𝑎̃∗(𝑋, 𝑉) as a function of investor wealth 𝑋 ∈ [1,10] 
and market variance 𝑉 ∈ [0,1], under different levels of risk aversion 𝜀 and housing price volatility 

𝜎𝐻. 
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Figure 1: Optimal debt ratio of the   Figure 2: Optimal debt ratio of the 

investor for 𝝈𝑯 = 𝟏 and 𝜺 = 𝟏. 𝟓    investor for 𝝈𝑯 = 𝟏 and 𝜺 = 𝟑 

 
Figure 3: Optimal debt ratio of the   Figure 4: Optimal debt ratio of the 

investor for 𝝈𝑯 = 𝟏 and 𝜺 = 𝟔    investor for 𝝈𝑯 = 𝟏𝟎 and 𝜺 = 𝟏. 𝟓 

We observe across all figures that the optimal debt ratio declines monotonically with wealth. At 

low wealth levels, borrowing serves as a leverage mechanism that allows the investor to smooth 

consumption and finance exposure to productive assets. As wealth increases, the marginal benefit 

of leverage diminishes, and the investor relies more on internal resources, leading to a lower 

optimal debt ratio. This behavior is consistent with classical portfolio–consumption theory under 

borrowing costs and reflects decreasing leverage incentives as financial constraints relax. For a 

fixed level of wealth, the optimal debt ratio decreases as market variance 𝑉 increases. Higher 

volatility amplifies downside risk, making debt financing less attractive due to its asymmetric 

payoff structure. As volatility rises, the investor optimally reduces leverage to avoid magnifying 

losses during adverse market conditions. This effect is particularly pronounced at lower wealth 

levels, where the investor is more vulnerable to volatility shocks. Figures 1-3 reveals that higher 

risk aversion leads to systematically lower optimal debt ratios across the entire state space. More 

risk-averse investors place greater weight on downside risk and therefore choose more 

conservative debt policies. Figure 4 shows that higher housing volatility significantly suppresses 

optimal borrowing, especially in low-wealth and low-variance regions where leverage would 

otherwise be most attractive. This finding highlights the role of housing risk as an additional 



Ogbuagu et al. - Transactions of NAMP 23, (2025) 139-156 

152 

channel through which uncertainty discourages debt accumulation, reinforcing the interaction 

between real asset risk and financial leverage. 

Figures 5-7 illustrate the investor’s optimal allocation to the risky financial asset, 𝜋∗(𝑋, 𝑉), for 

wealth levels 𝑋 ∈ [1,10] and stochastic variance levels 𝑉 ∈ [0,1], under moderate stock price 

volatility 𝜎𝑆 = 4 and increasing degrees of risk aversion 𝜀 = 1.5, 3, and 6, respectively. Figure 8 

presents the corresponding allocation when stock price volatility is substantially higher, 𝜎𝑆 = 40, 

with risk aversion fixed at ε =1.5  

  

 

Figure 5: Optimal risky asset allocation of   Figure 6: Optimal risky asset allocation 

the investor for 𝝈𝑺 = 𝟒 and 𝜺 = 𝟏. 𝟓    of the investor for 𝝈𝑺 = 𝟒 and 𝜺 = 𝟑  

 
Figure 7: Optimal risky asset allocation of the  Figure 8: Optimal risky asset allocation  

investor for 𝝈𝑺 = 𝟒 and 𝜺 = 𝟔    of the investor for 𝝈𝑺 = 𝟒𝟎 and 𝜺 = 𝟏. 𝟓 

 

We observe that across all figures, the optimal risky-asset allocation is monotonically decreasing 

in market variance 𝑉. As volatility rises, the investor systematically reduces exposure to the risky 

asset. This behavior is consistent with classical portfolio theory and stochastic-volatility models, 

where higher uncertainty increases the effective risk premium required to justify holding risky 

assets. In the present model, volatility enters both the diffusion term and the intertemporal hedging 

component of the optimal policy, amplifying its dampening effect on 𝜋∗. The heatmaps show that 

for low volatility levels 𝑉 ≈ 0, risky-asset allocation is positive and economically meaningful, 

whereas for higher volatility levels, the allocation rapidly declines toward zero, indicating a flight-

to-safety response. For a fixed level of volatility, the risky-asset allocation exhibits weak sensitivity 
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to wealth, particularly at moderate and high volatility levels. This is consistent with the CRRA 

preference structure, under which relative portfolio proportions are largely scale-invariant. Small 

variations observed at very low wealth levels reflect precautionary behavior driven by borrowing 

and consumption considerations embedded in the wealth dynamics. Figures 5, 6, and 7 reveal a 

clear and systematic effect of risk aversion. As 𝜀 increases from 1.5 to 6, the overall magnitude of 

𝜋∗ decreases sharply across all wealth and volatility regimes. Highly risk-averse investors allocate 

only a negligible fraction of wealth to the risky asset, even when market volatility is low. This 

confirms that risk aversion dominates speculative incentives in the presence of stochastic volatility 

and debt considerations. Figure 8 demonstrates the impact of extreme stock price volatility. When 

𝜎𝑆 increases from 10 to 100, the optimal risky-asset allocation collapses toward zero throughout 

the entire state space, even for relatively low market variance 𝑉. This result highlights the strong 

interaction between instantaneous volatility and stochastic variance: high stock-specific risk 

overwhelms the expected return advantage of risky assets, rendering equity investment unattractive 

regardless of wealth level. 

Figures 9-11 illustrate the investor’s optimal consumption policy 𝑐∗(𝑋, 𝑉) as a function of wealth 

𝑋 ∈ [1, 10] and stochastic market variance 𝑉 ∈ [0, 1], for a fixed wealth-risk aversion parameter 

𝜀 = 1.5 and three values of the CRRA consumption parameter 𝛼 = 1.5, 3, and 6, respectively 

 

Figure 9: Optimal consumption plan of   Figure 10: Optimal consumption plan of  

the investor 𝜶 = 𝟏. 𝟓       the investor for 𝜶 = 𝟑 

 

Figure 11: Optimal consumption plan of the investor for 𝜶 = 𝟔 
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Across all three figures, optimal consumption is monotonically increasing in wealth. For any fixed 

volatility level, higher wealth states lead to higher consumption rates. This behavior is consistent 

with standard CRRA preferences and confirms that the derived policy respects the fundamental 

economic principle that consumption scales positively with available resources. The gradient of 

consumption with respect to wealth becomes progressively flatter as 𝛼 increases. When 𝛼 = 1.5, 

consumption responds strongly to changes in wealth, whereas for 𝛼 = 6, consumption increases 

more conservatively. This reflects stronger intertemporal smoothing incentives under higher 

consumption risk aversion. For any fixed wealth level, optimal consumption increases mildly with 

increasing market volatility. Regions of high variance 𝑉 are associated with higher consumption 

intensity, indicating that higher volatility can induce a reallocation toward present consumption 

rather than precautionary saving. The investor optimally consumes more than invest when market 

conditions are volatile. The figures also reveal a clear risk-aversion ordering:  

• At a low 𝛼 = 1.5, consumption is relatively high and more responsive to both wealth and 

volatility. 

• At a moderate 𝛼 = 3, consumption levels decline and become smoother across states. 

• At a high 𝛼 = 6, consumption is markedly conservative, with weaker sensitivity to wealth 

and volatility. 

Higher values of 𝛼 amplify the investor’s preference for smoothing consumption over time, leading 

to systematically lower consumption rates across the state space. 

 

CONCLUSION 

This paper developed a continuous-time stochastic control framework for jointly determining 

optimal investment, consumption, and debt-financing decisions in an economy characterized by 

stochastic volatility and housing market risk. Unlike classical portfolio selection models that 

assume constant volatility and exclude leverage-housing interactions, the proposed model 

integrates a Heston-type stochastic volatility process with a housing asset and an endogenous debt 

ratio. Within this unified setting, the investor optimally allocates wealth among a risk-free asset, a 

risky financial asset, and housing, while simultaneously choosing consumption and borrowing 

policies under CRRA preferences. Using the dynamic programming approach, the associated 

Hamilton-Jacobi-Bellman equation was derived and solved explicitly. Closed-form expressions 

were obtained for the optimal risky asset allocation, optimal debt ratio, and optimal consumption 

rule. The analytical results demonstrate that stochastic volatility plays a central role in shaping both 

portfolio and leverage decisions. In particular, higher market volatility reduces optimal exposure 

to risky financial assets and lowers the optimal debt ratio, reflecting the investor’s precautionary 

response to increased uncertainty. Housing price volatility was shown to be a key determinant of 

leverage, with optimal borrowing decreasing as housing risk intensifies. Consumption decisions, 

in contrast, are primarily driven by risk aversion, with volatility exerting only an indirect effect 

through its impact on wealth dynamics. The numerical analysis complemented the theoretical 

results by illustrating the sensitivity of optimal policies to changes in volatility, risk aversion, and 

asset price uncertainty. The simulations confirmed that increases in either financial or housing 

volatility lead to more conservative investment and borrowing behavior, while higher risk aversion 

shifts the investor’s preference toward consumption and away from risky exposure. These findings 

reinforce the economic intuition of the model and highlight the importance of incorporating 

stochastic volatility and housing risk when evaluating optimal financial behavior. Overall, this 

study contributes to the literature by extending continuous-time portfolio theory to a richer and 

more realistic setting that captures the interaction between stochastic volatility, housing assets, and 

debt financing. The results provide insights into how investors optimally adjust consumption, 
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leverage, and portfolio composition in volatile markets, particularly in economies where housing 

represents a significant component of household wealth.  
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