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ABSTRACT 

A mass action epidemic model incorporating vital dynamics was developed 

and examined. This type of model is particularly applicable to several 

childhood illnesses such as Mumps, Rubella, as well as highly contagious 

diseases like influenza. We demonstrated that the biologically meaningful 

region—where solutions are feasible—is positively invariant, meaning that 

any solution starting within this region remains there for all time. The model 

features two equilibrium points: the disease-free equilibrium (DFE) and the 

endemic equilibrium. By utilizing the basic reproduction number, 𝑅0, we 

established that the DFE is locally asymptotically stable when 𝑅0 < 1. 

Additionally, we proved the global stability of the DFE through an 

appropriately chosen Lyapunov function. We also found that the endemic 

equilibrium exists only when 𝑅0 > 1. Numerical simulations highlighted the 

critical role of the contact rate in influencing the transmission dynamics 

within mass action models. 

 

1 INTRODUCTION  

The analysis of infectious diseases increasingly relies on mathematical modeling as an essential 

tool. Its powerful capacity for testing hypotheses and conducting simulations that closely mirror 

real-world outcomes has made it indispensable in epidemiological research. Infectious disease 

models have played a significant role in designing and analyzing epidemiological surveys, 

identifying critical data to be collected, detecting trends, making broad predictions, and assessing 

the uncertainty associated with forecasts. Despite advances, infectious diseases remain the 

foremost threat to human health. Historically, the bubonic plague claimed over 20% of Europe's 

population over seven years in the 14th century, while the Great Plague of London (1664–1666) 

resulted in the deaths of more than 75,000 of the city’s 460,000 inhabitants. The 1918–1919 

influenza pandemic caused an estimated 25 million deaths across Europe.  
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Although medical progress in the 20th and 21st centuries has improved disease control, it has not 

provided a universal solution, as diseases like HIV continue to devastate populations worldwide. 

Since its first identification in 1981, HIV has claimed over 25 million lives, with more than 30 

million individuals currently living with the virus 

Disease incidence refers to the rate at which susceptible individuals become infected through 

contact with infectious persons [1], representing the number of new cases per unit time—

essentially, how quickly new waves of infection emerge. The choice of incidence function in a 

mathematical model is crucial since it directly influences the epidemic's dynamics by determining 

how new infections are generated. The three common incidence functions used in deterministic 

models are the saturated incidence, the standard incidence, and the mass action incidence. 

The mass action incidence is expressed as 𝛽
𝑆𝐼

𝑁
, where 𝑆𝐼 𝑎𝑛𝑑 denote the number of susceptible 

and infectious individuals, respectively, and 𝑁 represents the total population. Here, 𝛽 is the 

transmission coefficient, and the term 
𝑆𝐼

𝑁
  reflects the number of adequate contacts necessary for 

disease transmission. This incidence function is most appropriate when the total population size 𝑁 

is not excessively large [2] as it assumes that the contact rate depends on the population size, 

implying that the frequency of encounters increases with community density. It is a density-

dependent model, with the contact rate per infectious individual proportional to the host density. 

Diseases such as measles, mumps, rubella, chickenpox, polio, and influenza are often modeled 

using the mass action incidence. Although the choice of incidence function primarily depends on 

the disease's transmission characteristics, analytical simplicity sometimes favors the use of mass 

action formulations. Notably, this approach has also been applied in modeling HIV transmission 

[3],[4], [5]. 

In [6], researchers examined how the choice of incidence function influences epidemic behavior, 

particularly in the context of vaccine-induced backward bifurcation in HIV models. Several 

examples demonstrate that backward bifurcations tend to occur with standard incidence but are 

absent when using equivalent models based on the mass action incidence. 

2 MODEL FORMULATION 

In this section, we introduce a mass action epidemic model incorporating vital dynamics within 

the Susceptible-Infected-Recovered (SIR) framework. We will demonstrate that the solutions of 

the model remain positive over time and establish their local stability through linearization 

techniques 

2.1 Model Variables 

The variables used in the model are defined as follows 

𝑆(𝑡) -  The number of susceptible individuals at time t 

𝐼(𝑡) - The number of infected individuals at time t 

𝑅(𝑡) - The number of recovered individuals at time t 

 

2.2.  Parameters of the model 

 The model parameters are defined below 

𝛬0 - Birth rate 

β - Contact rate 
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µ - Natural death rate 

δ - Disease induced death rate 

Γ - Recovery rate per unit time 

 

2.3. Assumptions of the Model 

(i) All newborns are susceptible 

(ii) Recovered individuals acquire lifelong immunity 

(iii) Infected individuals transmit the disease to susceptible and remain infectious for a certain 

period before transitioning to the recovered class 

 

2.4. The Model Equation 

 The governing equations for the model are outlined below 
𝑑𝑠

𝑑𝑡
= 𝛬0 − 𝛽𝑆𝐼 − µ𝑆                                           

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛿 + 𝛤 + µ)𝐼                              2.0 

 
𝑑𝑅

𝑑𝑡
= 𝛤𝐼 − µ𝑅                                                          

 

2.5. Feasible Solution Region 

 The biologically meaningful region for the model is defined by the systems parameters 

and initial conditions. 

ɸ = {(𝑆, 𝐼, 𝑅) ∈  ℝ3+: 𝑆 + 𝐼 + 𝑅 = 𝑁 ≤
𝛬0

µ
}  

It will be demonstrated that this region remains positively invariant under the dynamics of the 

model. 

The total population considering the interactions among susceptible, infected, and recovered 

individuals is expressed as follows: 

𝑁 = 𝑆 + 𝐼 + 𝑅 

That is 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

 

Therefore, when we add the differential equation (2.0), we have 
𝑑𝑁

𝑑𝑡
= 𝛬0 − µ𝑁 

Integrating 
𝑑𝑁

𝑑𝑡
= 𝛬0 − µ𝑁 

  has an integrating factor 𝑒µ𝑡. 

This gives,  
𝑑𝑁

𝑑𝑡
𝑒µ𝑡 + µ𝑁𝑒µ𝑡 

= 𝛬0𝑒
µ𝑡 

Such that, 
(𝑁𝑒µ𝑡)𝑟 ≤ 𝛬0𝑒

µ𝑡 
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∫(𝑁𝑒µ𝑡)𝑟 ≤ ∫𝛬0𝑒
µ𝑡 

𝑁𝑒µ𝑡 ≤
𝛬0

µ
𝑒µ𝑡 + 𝑐 

Now, when 𝑡 = 0 

𝑁(0) ≤
𝛬0

µ
+ 𝐶 

𝐶 ≥ 𝑁(0) −
𝛬0

µ
 

Hence,  

𝑁𝑒µ𝑡 ≤
𝛬0

µ
𝑒µ𝑡 + (𝑁(0) −

𝛬0

µ
) 

 

𝑁 ≤
𝛬0

µ
+ (𝑁(0) −

𝛬0

µ
) 𝑒−µ𝑡 

𝑁 ≤ 𝑁(0)𝑒−µ𝑡 +
𝛬0

µ
(1 − 𝑒−µ𝑡) 

As 𝑡 → ∞,𝑁(𝑡) ≤  
𝛬0

µ
. This implies that any solution starting within the specified region remains 

there for all future time. i.e for all 𝑡 > 0. Consequently, our model, ɸ is biologically realistic, 

mathematically well-defined, and maintains its invariance within the region. 

 

3.  POSITIVITY OF SOLUTION 

We will now demonstrate that all variables in the model described in (2.0) remain non-negative. 

i.e. (𝑆, 𝐼, 𝑅) ≥ 0 ∈ ɸ 

 

Lemma 1 

Suppose the initial conditions are given; then, the solutions (𝑆, 𝐼, 𝑅)(𝑡) to model (2.0) stay positive 

for all time i.e. 𝑡 > 0 

Proof 

From the first equation of (2.0) assuming 

𝑑𝑆

𝑑𝑡
= 𝛬0 − 𝛽𝑆𝐼 − µ𝑆 ≥ −(𝛽𝐼 + µ)𝑆 

Then, 

𝑑𝑆

𝑑𝑡
≥  −(𝛽𝐼 + µ)𝑆 

 Or  
𝑑𝑆

𝑑𝑡
≥  −(𝛽𝐼 + µ)𝑑𝑡 

When we integrate both sides of the inequalities, we have 

 ∫
𝑑𝑆

𝑆
≥ ∫−(𝛽𝐼 + µ)𝑑𝑡 

𝑙𝑛𝑆(𝑡) ≥ −(𝛽𝐼 + µ)𝑑𝑡 + 𝐶 
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𝑆(𝑡) ≥ 𝑐𝑒−(𝛽𝐼+µ)𝑑𝑡 

Now,  

When 𝑡 = 0, we have  

𝑆(𝑡) ≥ 𝑆(0)𝑒−(𝛽𝐼+µ)𝑑𝑡 ≥ 0 

From the second equation of (2.0), we have 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛿 + 𝛤 + µ)𝐼 ≥  −(𝛿 + 𝛤 + µ)𝐼  

We have 
𝑑𝐼

𝑑𝑡
≥ −(𝛿 + 𝛤 + µ)𝐼 

Or  
𝑑𝐼

𝑑𝑡
≥ −(𝛿 + 𝛤 + µ)𝑑𝑡 

When both sides of the equation are integrated, it gives 

∫
𝑑𝐼

𝐼
≥ −∫(𝛿 + 𝛤 + µ)𝑑𝑡 

ln 𝐼(𝑡) ≥ − (𝛿 + 𝛤 + µ)𝑡 

When 𝑡 = 0,𝑤𝑒 ℎ𝑎𝑣𝑒 

𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝛿+𝛤+µ)𝑡 ≥ 0 

Since, (𝛿 + 𝛤 + µ) > 0 

Next, from the third equation of our model 

𝑑𝑅

𝑑𝑡
= 𝛤𝐼 − µ𝑅 

This has an integrating factor 𝑒µ𝑡, so 

𝑑𝑅

𝑑𝑡
𝑒µ𝑡 + µ𝑅𝑒µ𝑡 = 𝛤𝐼𝑒µ𝑡 

(𝑅𝑒µ𝑡)𝑟 =  𝛤𝐼𝑒µ𝑡 

(𝑅𝑒µ𝑡)𝑟 = 
𝛤𝐼

µ
𝑒µ𝑡 + 𝑐 

When 𝑡 = 0 

𝑅(0) =
𝛤𝐼

µ
+ 𝑐 

𝑅(0) −
𝛤𝐼

µ
= 𝑐 

𝑅𝑒µ𝑡 = 
𝛤𝐼

µ
𝑒µ𝑡 + (𝑅(0) −

𝛤𝐼

µ
) 
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𝑅(𝑡) =  
𝛤𝐼

µ
+ (𝑅(0) −

𝛤𝐼

µ
) 𝑒−µ𝑡 

𝑅(𝑡) = 𝑅(0)𝑒−µ𝑡 +
𝛤𝐼

µ
(1 − 𝑒µ𝑡 > 0 𝑠𝑖𝑛𝑐𝑒 µ > 0 

Therefore, all variables are positive for 𝑡 > 0 

4.  EXISTENCE AND STABILITY OF THE DISEASE FREE EQUILIBRIUM (DFE) 

The equilibrium points of the system (SIR) was obtained by equating the rate of change to zero ie 

𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

From our model, we have 

𝛬0 − 𝛽𝑆𝐼 − µ𝑆 = 0 

𝛽𝑆𝐼 − (𝛿 + 𝛤 + µ)𝐼 = 0 

𝛤𝐼 − µ𝑅 = 0 

All the disease state variables are all zeros (ie. The disease dies out or goes into extinction). 

From the above model only the first equation remains as there is no disease and is reduced to 

𝛬0 − µ𝑆 = 0 

𝑆0 =
𝛬0

µ
 

Therefore, 𝐸0 = (𝑆0, 0, 0) = (
𝛬0

µ
, 0,0) 

4.1. The Basic Reproduction Number, 𝑹𝟎 

In the field of mathematical epidemiology, the concept of the basic reproduction number, denoted 

by 𝑅0, is fundamental. It quantifies the potential of an infectious disease to spread within a 

population or to die out after introduction. Specifically, 𝑅0 is defined as the expected number of 

secondary cases generated by a single infectious individual in a completely susceptible population 

[7]. This threshold parameter determines the disease dynamics; if the disease-free equilibrium is 

locally asymptotically stable, then the disease cannot establish itself in the population (i.e. 𝑅0 < 1 

) whereas if the number of infected individuals increases over time, the disease has the capacity to 

invade and spread i.e. 𝑅0 > 1. [8],[9] 

The calculation of the basic reproduction number for the system described by equation (2.0) can 

be derived through the following process 

𝐹 = (𝛽𝑆0)𝐼 

Where 𝑆0 =
𝛬0

µ
 

𝑉 = (µ + 𝛿 + 𝛤) 

𝑉−1 =
1

(µ + 𝛿 + 𝛤)
 

𝑅0 = Spectral radius of F𝑉−1 
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𝑅0 =
𝛽𝑆0

µ + 𝛿 + 𝛤
 

𝑅0 =
𝛽𝛬0

µ(µ + 𝛿 + 𝛤)
 

4.2.  Local Asymptotic Stability of the Disease Free Equilibrium 

We will study the local stability of the disease free equilibrium in this section. This will be 

determined by Jacobian matrix 𝐽(𝑆, 𝐼, 𝑅) of the equation (2.0). 

𝐽(𝑆, 𝐼, 𝑅) = [

−𝛽𝐼 − µ 𝛽𝑆 0
𝛽𝐼 𝛽𝑆 − (µ + 𝛿 + 𝛤) 0
0 𝛤 −µ

] 

𝐽 (
𝛬0

µ
, 0,0) =

[
 
 
 
 −µ 𝛽

𝛬0

µ
0

0 𝛽
𝛬0

µ
(µ + 𝛿 + 𝛤) 0

0 𝛤 −µ]
 
 
 
 

 

The given eigen values are 

𝜆1 = 𝜆3 = −µ 𝑎𝑛𝑑 𝜆2 =  𝛽
𝛬0

µ
(µ + 𝛿 + 𝛤) 

𝜆1, 𝜆3 < 0, 𝜆2 < 0 𝑖𝑓 𝛽
𝛬0

µ
− (µ + 𝛿 + 𝛤) < 0 

Alternatively            𝛽
𝛬0

µ
< (µ + 𝛿 + 𝛤)     or       

𝛽𝛬0

µ(µ+𝛿+𝛤)
< 0  or    𝑅0 < 1 

Thus, the following theorem has been proved. 

Theorem 1: Local Asymptotic Stability of 𝐸0 

The disease free equilibrium (DFE) is locally asymptotically stable if 𝑅0 < 1 

GLOBAL ASYMPTOTIC STABILITY OF THE DISEASE FREE EQUILIBRIUM 

Let’s consider the Lyapunov function L=I 

𝐿 = 𝐼 = 𝛽𝑆𝐼 − (𝛿 + 𝛤 + µ)𝐼 

(𝛽𝑆 − (𝛿 + 𝛤 + µ)𝐼 ≤            𝛽𝑆0 − (𝛿 + 𝛤 + µ)𝐼 

= 𝛽
𝛬0

µ
− (𝛿 + 𝛤 + µ)𝐼 

= (𝛿 + 𝛤 + µ)(𝑅0 − 1)𝐼 ≤ 0    for     𝑅0 < 1 

Given that all model parameters are positive, it follows that for; the lyapunov function is valid only 

if the condition holds. Consequently, this function serves as a lyapunov function as the domain D. 

Applying La Salle’s invariance principle; we conclude that all solutions to the system described 

by equation (2.0), with initial conditions within D, tend to the equilibrium point as 𝑡 → ∞. Hence, 

we have established the following theorem. 
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Theorem 2: Global Asymptotic Stability of 𝑬𝟎 

If     𝑅0 < 1 , the disease free equilibrium of system (2.0)is globally asymptotically stable. 

5.  EXISTENCE OF ENDEMIC EQUILIBRIUM 

The persistence of the disease in the population will be investigated in this section. 

All the model equations equal zero at equilibrium, that is 

𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

Or 

𝛬0 − 𝛽𝑆𝐼 − µ𝑆 = 0                                       

𝛽𝑆𝐼 − (𝛿 + 𝛤 + µ)𝐼 = 0                                  2.1     

𝛤𝐼 − µ𝑅 = 0                          

Taking the second equation of (2.1) gives 

𝛽𝑆𝐼 = (𝛿 + 𝛤 + µ)𝐼 

Alternatively, 𝑆∗ =
(𝛿+𝛤+µ)

𝛽
 

From the first equation of (2.1), we have 

𝛬0 − 𝛽𝑆𝐼 − µ𝑆 = 0                                       
Or  

𝛬0 − (𝛿 + 𝛤 + µ)𝐼 − µ
(𝛿 + 𝛤 + µ)

𝛽
= 0                                       

𝐼∗ =
𝛽𝛬0 − µ(𝛿 + 𝛤 + µ)

𝛽(𝛿 + 𝛤 + µ)
 

𝐼∗ =
(𝑅0 − 1)µ(𝛿 + 𝛤 + µ)

𝛽(𝛿 + 𝛤 + µ)
 

𝐼∗ = (𝑅0 − 1)
µ

𝛽
 

From the third equation of (2.1) 

𝛤𝐼 = µ𝑅 

Or 𝑅∗ =
𝛤𝐼∗

µ
= (𝑅0 − 1)

𝛤

𝛽
 

Thus, the lemma below has been proven. 

Lemma 2. 

The Endemic equilibrium state of the model given as 

𝐸∗ = (
𝛿+𝛤+µ

𝛽
, (𝑅0 − 1)

µ

𝛽
, (𝑅0 − 1)

𝛤

𝛽
) exist iff 𝑅0 > 1 
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5.1. GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM 

The local stability of the endemic equilibrium will be studied in this section. 

Theorem 3. (Routh-Hurwitz conditions) 

Let 𝐽 = [
𝑓𝑥(𝑥∗, 𝑦∗) 𝑓𝑦(𝑥∗, 𝑦∗)

𝑔𝑥(𝑥∗, 𝑦∗) 𝑔𝑦(𝑥∗, 𝑦∗)
] 

Be the Jacobian matrix of the non-linear system 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦) 

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦) 

Evaluate at the critical point (𝑥∗, 𝑦∗). 

Then the critical point(𝑥∗, 𝑦∗) is 

(i) Asymptotically stable if 𝑇𝑟𝑎𝑐𝑒(𝐽) < 0 𝑎𝑛𝑑 𝐷𝑒𝑡(𝐽) > 0 

(ii)Stable but not asymptotically stable if 𝑇𝑟𝑎𝑐𝑒(𝐽) = 0 𝑎𝑛𝑑 𝐷𝑒𝑡(𝐽) > 0 

(iii) Unstable if 𝑇𝑟𝑎𝑐𝑒(𝐽) < 0 𝑎𝑛𝑑 𝐷𝑒𝑡(𝐽) < 0 

Next, we will study the stability of the endemic equilibrium by applying the Routh-Hurwitz. The 

Jacobian matrix associated with the system (2.0) is 

𝐽(𝑆∗, 𝐼∗, 𝑅∗) = [

−𝛽𝐼∗ − µ 𝛽𝑆∗ 0
𝛽𝐼∗ 𝛽𝑆∗ − (µ + 𝛿 + 𝛤) 0
0 𝛤 −µ

] 

Clearly, −µ is an eigen value, the other two eigen values are negative if the Routh-Hurwitz 

condition hold. 

i.e. 𝑇𝑟𝑎𝑐𝑒 𝑜𝑓 𝐺 < 0 

Determinant of 𝐺 < 0 

Where 𝐺 = [
−𝛽𝐼∗ − µ 𝛽𝑆∗

𝛽𝐼∗ 𝛽𝑆∗ − (µ + 𝛿 + 𝛤)
] 

The trace of G is given as 

𝑇𝑟𝑎𝑐𝑒 𝐺 = −𝛽𝐼∗ − µ + 𝛽𝑆∗ − (µ + 𝛿 + 𝛤) 

= −𝛽(𝑅0 − 1)
µ

𝛽
− µ + 𝛽

(µ + 𝛿 + 𝛤)

𝛽
− (µ + 𝛿 + 𝛤) 

= −𝛽(𝑅0 − 1)
µ

𝛽
− µ < 0 𝑓𝑜𝑟 𝑅0 > 1 

The determinant of G is given by 
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𝐷𝑒𝑡 𝐺 =  −(𝛽𝐼∗ + µ)[𝛽𝑆∗ − (µ + 𝛿 + 𝛤)] − 𝛽2𝑆∗𝐼∗ 

= (−𝛽(𝑅0 − 1)
µ

𝛽
+ µ) [

𝛽(µ + 𝛿 + 𝛤)

𝛽
− (µ + 𝛿 + 𝛤)] 

 − (
𝛽2(µ + 𝛿 + 𝛤)  

𝛽
(𝑅0 − 1)

µ

𝛽
)  

= −(𝛽(𝑅0 − 1)
µ

𝛽
+ µ) [0] − ((µ + 𝛿 + 𝛤)(𝑅0 − 1)µ) 

= −((µ + 𝛿 + 𝛤)(𝑅0 − 1)µ) < 0 𝑓𝑜𝑟 𝑅0 > 1. 

One of the conditions given above for negativity of the eigen values is violated. This implies that 

the endemic equilibrium of the model system (2.0) is unstable for 𝑅0 > 1. 

6. MODEL SIMULATION 

A numerical simulation of the model is performed using the parameter values as listed below 

Parameter Value 

𝛬0 

β 

Γ 

δ 

µ 

3 
[0.003,0.03] 

0.4 

0.0023 

0.02 

Table: Parameter values used in simulation 
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Fig. 1. Simulation of the mass action epidemic       Fig.2. Simulation of the mass action epidemic   

model with 𝛽 = 0.003   model with 𝛽 = 0.03 

Figures 1 and 2 show that an increase in the contact rate has an impact on the transmission 

dynamics of the disease which is detrimental. When the contact rate is higher, the number of 

infectious individuals rise significantly leading to a rapid spread of the disease and has the potential 

to cause the infection to dominate the entire population quickly. 

CONCLUSION 

In this study, we examined a mass action epidemic model incorporating vital dynamics. Our 

findings primarily hinge on the behavior of the basic reproduction number, 𝑅0. Specifically, if 

when 𝑅0 < 1, the disease free equilibrium is both locally and globally asymptotically stable, 

indicating disease elimination.  
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Conversely, the endemic equilibrium exists only when 𝑅0 > 1 , suggesting that effective control 

strategies should aim to reduce 𝑅0 below unity to eradicate the disease from the population. One 

practical approach to achieve this is by lowering the contact rate, which is a parameter that can be 

readily adjusted through intervention measures. 

As demonstrated in Figures 1 and 2 increasing the contact rate has a detrimental impact on disease 

transmission dynamics. Higher contact rates lead to a significant rise in the number of infectious 

individuals, facilitating rapid disease spread and potentially causing the infection to dominate the 

entire population quickly. 
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