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Available online xxxxx  region—where solutions are feasible—is positively invariant, meaning that
Keywords: any solution starting within this region remains there for all time. The model
Global features two equilibrium points: the disease-free equilibrium (DFE) and the
stability, endemic equilibrium. By utilizing the basic reproduction number, R,, we
Lyapunov established that the DFE is locally asymptotically stable when R, < 1.
stability, Additionally, we proved the global stability of the DFE through an
Mass action, appropriately chosen Lyapunov function. We also found that the endemic
System of equilibrium exists only when R, > 1. Numerical simulations highlighted the
ODEs, critical role of the contact rate in influencing the transmission dynamics
Invariant within mass action models.
region
1 INTRODUCTION

The analysis of infectious diseases increasingly relies on mathematical modeling as an essential
tool. Its powerful capacity for testing hypotheses and conducting simulations that closely mirror
real-world outcomes has made it indispensable in epidemiological research. Infectious disease
models have played a significant role in designing and analyzing epidemiological surveys,
identifying critical data to be collected, detecting trends, making broad predictions, and assessing
the uncertainty associated with forecasts. Despite advances, infectious diseases remain the
foremost threat to human health. Historically, the bubonic plague claimed over 20% of Europe's
population over seven years in the 14th century, while the Great Plague of London (1664—-1666)
resulted in the deaths of more than 75,000 of the city’s 460,000 inhabitants. The 1918-1919
influenza pandemic caused an estimated 25 million deaths across Europe.
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Although medical progress in the 20th and 21st centuries has improved disease control, it has not
provided a universal solution, as diseases like HIV continue to devastate populations worldwide.
Since its first identification in 1981, HIV has claimed over 25 million lives, with more than 30
million individuals currently living with the virus

Disease incidence refers to the rate at which susceptible individuals become infected through
contact with infectious persons [1], representing the number of new cases per unit time—
essentially, how quickly new waves of infection emerge. The choice of incidence function in a
mathematical model is crucial since it directly influences the epidemic's dynamics by determining
how new infections are generated. The three common incidence functions used in deterministic
models are the saturated incidence, the standard incidence, and the mass action incidence.

The mass action incidence is expressed as ﬁ%, where ST and denote the number of susceptible
and infectious individuals, respectively, and N represents the total population. Here, S is the
transmission coefficient, and the term % reflects the number of adequate contacts necessary for

disease transmission. This incidence function is most appropriate when the total population size N
is not excessively large [2] as it assumes that the contact rate depends on the population size,
implying that the frequency of encounters increases with community density. It is a density-
dependent model, with the contact rate per infectious individual proportional to the host density.
Diseases such as measles, mumps, rubella, chickenpox, polio, and influenza are often modeled
using the mass action incidence. Although the choice of incidence function primarily depends on
the disease's transmission characteristics, analytical simplicity sometimes favors the use of mass
action formulations. Notably, this approach has also been applied in modeling HIV transmission

[31.[4], [5].

In [6], researchers examined how the choice of incidence function influences epidemic behavior,
particularly in the context of vaccine-induced backward bifurcation in HIV models. Several
examples demonstrate that backward bifurcations tend to occur with standard incidence but are
absent when using equivalent models based on the mass action incidence.

2 MODEL FORMULATION

In this section, we introduce a mass action epidemic model incorporating vital dynamics within
the Susceptible-Infected-Recovered (SIR) framework. We will demonstrate that the solutions of
the model remain positive over time and establish their local stability through linearization
techniques

2.1 Model Variables
The variables used in the model are defined as follows

Sit) - The number of susceptible individuals at time t
I(t) - The number of infected individuals at time t
R(t) - The number of recovered individuals at time t

2.2.  Parameters of the model

The model parameters are defined below
Ay - Birth rate
B - Contact rate
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- Natural death rate
Disease induced death rate
- Recovery rate per unit time

o=

2.3.  Assumptions of the Model

(1) All newborns are susceptible

(i) Recovered individuals acquire lifelong immunity

(iii)  Infected individuals transmit the disease to susceptible and remain infectious for a certain
period before transitioning to the recovered class

2.4.  The Model Equation
The governing equations for the model are outlined below
ds

EzAO—ﬁSI—uS

dl

a=,851—(6+1‘+u)1 2.0
dR—I"I R

dt K

2.5.  Feasible Solution Region
The biologically meaningful region for the model is defined by the systems parameters
and initial conditions.

<l>={(S,I,R)e R3+:S+I+R=NSAT°}

It will be demonstrated that this region remains positively invariant under the dynamics of the
model.
The total population considering the interactions among susceptible, infected, and recovered
individuals is expressed as follows:
N=S+I1+R
That is
dN dS dI dR

@t actata

Therefore, when we add the differential equation (2.0), we have

dN A N
. ar o 28
Integrating
dN A N
- - dt — 410 u
has an integrating factor e".
This gives,
dN M N eht
T nive
= Aoeut
Such that,

(NeMt)" < Agett
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f(Ne”t)r < f/loe”t

A
Nett < —Zeont 4 ¢
Now, whent = 0
A
N(0) sf+c

A
C > N(0) — TO
Hence,
A A
Nett < —Leut 4 (N(O) — —0)
W N

A A
N<—+ (N(O) - —0) eht
1 H

—ue Mo _
N < N(0)e ut+I(1—e Hey

Ast — oo, N(t) < Lo This implies that any solution starting within the specified region remains

n
there for all future time. i.e for all ¢ > 0. Consequently, our model, ¢ is biologically realistic,

mathematically well-defined, and maintains its invariance within the region.

3. POSITIVITY OF SOLUTION
We will now demonstrate that all variables in the model described in (2.0) remain non-negative.
ie.(SSLR)=0 €

Lemma 1
Suppose the initial conditions are given; then, the solutions (S, I, R) (t) to model (2.0) stay positive
forall timeie. t >0

Proof
From the first equation of (2.0) assuming

ds

2t = Ao = BSI—nS 2 —(BI + WS
Then,

dS> (BI +w)S
7 2 Bl + u

Or

dS> (Bl + wdt
7 2 pl+

When we integrate both sides of the inequalities, we have
as
J5=[-BI+wadt

InS(t) = —(BI + wdt + C
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S(t) = ce~(Bl+wat
Now,

When t = 0, we have
S(t) = S(0)e~B+wat > g

From the second equation of (2.0), we have

dl
d—tzﬁSI—(6+F+u)I > —(6+T+wI
We have
d1> G+r+wl
dt = H
Or

a., (6 + T +pdt
dt = H

When both sides of the equation are integrated, it gives

f#z—f(6+r+u)dt

Ini(t)=—(@+T+wt

When t = 0, we have

I(t) = 1(0)e~G+T+0t > ¢
Since, 6 +T+w >0
Next, from the third equation of our model

dR =TI R
dt H
This has an integrating factor e*, so
dR
T e"t + pReMt = I[ett

(Re")" = I'le™

r'l
(Re"t)" = Fe”t +c

Whent =0
rl
R(0)=—+c
i
rl
R(0O)——=c
i

rl r'l
ReMt = —ekt 4 (R(O) ——>
n n
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rl ri
R(t) = — + (R(O) ——)e‘“t
n n
ri
R(t) = R(0)e ™™ + I(l — e > 0sincepn >0

Therefore, all variables are positive for t > 0

4, EXISTENCE AND STABILITY OF THE DISEASE FREE EQUILIBRIUM (DFE)
The equilibrium points of the system (SIR) was obtained by equating the rate of change to zero ie

ds B dl B dR B

dt dt dt
From our model, we have

Ao —BSI—puS =0

BSI—(5+T+WI=0
F—uR =0

All the disease state variables are all zeros (ie. The disease dies out or goes into extinction).
From the above model only the first equation remains as there is no disease and is reduced to

Ao—pS =0
So =2
o

Therefore, E, = (S,,0,0) = (A—u", 0,0)

4.1. The Basic Reproduction Number, R,

In the field of mathematical epidemiology, the concept of the basic reproduction number, denoted
by Ry, is fundamental. It quantifies the potential of an infectious disease to spread within a
population or to die out after introduction. Specifically, R, is defined as the expected number of
secondary cases generated by a single infectious individual in a completely susceptible population
[7]. This threshold parameter determines the disease dynamics; if the disease-free equilibrium is
locally asymptotically stable, then the disease cannot establish itself in the population (i.e. Ry < 1
) whereas if the number of infected individuals increases over time, the disease has the capacity to
invade and spread i.e. R, > 1. [8],[9]

The calculation of the basic reproduction number for the system described by equation (2.0) can
be derived through the following process

F = (BSo)l
Where S, = A—u"

V=W@+d6+T)

1 1
T (u+s+D)

R, = Spectral radius of FV !
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S

Ro = BSo
u+d6+rT

R — BAo
f=— o
p(p+6+7)

4.2.  Local Asymptotic Stability of the Disease Free Equilibrium
We will study the local stability of the disease free equilibrium in this section. This will be
determined by Jacobian matrix J(S, I, R) of the equation (2.0).

—Bl—n BS 0
](5,1,R)=[ Bl  BS—(u+6+T) 0
0 r —LU
gl
" W

0
2,0,0) = A
]<u 0 ﬁf(u+5+r) 0
0 r —l
The given eigen values are

A
A=A =—pand A, = ,Bf(u+6+1")

A
/11,/13<0,/12<0if,8f—(u+6+1“)<0

BAo
p(ut+d+0)

Alternatively ,BAT" <(u+é6+I) or <0 or Ry<1

Thus, the following theorem has been proved.

Theorem 1: Local Asymptotic Stability of E,
The disease free equilibrium (DFE) is locally asymptotically stable if Ry < 1

GLOBAL ASYMPTOTIC STABILITY OF THE DISEASE FREE EQUILIBRIUM
Let’s consider the Lyapunov function L=I
L=1=BSI—(+T+wl

BS—@+T+pI < BSo— (O +T + i
Ao
=,3I—(5+F+|J.)I

=0 +T+wWR—DI<0 for Ry<1

Given that all model parameters are positive, it follows that for; the lyapunov function is valid only
if the condition holds. Consequently, this function serves as a lyapunov function as the domain D.
Applying La Salle’s invariance principle; we conclude that all solutions to the system described
by equation (2.0), with initial conditions within D, tend to the equilibrium point as t — co. Hence,
we have established the following theorem.
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Theorem 2: Global Asymptotic Stability of E

If R, <1,the disease free equilibrium of system (2.0)is globally asymptotically stable.

S. EXISTENCE OF ENDEMIC EQUILIBRIUM

The persistence of the disease in the population will be investigated in this section.

All the model equations equal zero at equilibrium, that is

dS dl _dR

@
Or
Ay— BSI—pS =0

BSI—(6+T+wWI=0
NN—pR=0
Taking the second equation of (2.1) gives

BSI = (6 +T +wli

(6+4T+p

Alternatively, $* = 5

From the first equation of (2.1), we have

Ao —BSI—puS =0
Or
(6+I"+u)_0

B

I*_ﬁAo—H(5+F+H)
- BH+T+W

(Ro— Du@6+ '+ p)

N— (@b +T+wWI—np

I =

B +T +w)

B

I'=(Ro -1

From the third equation of (2.1)
'l =pR
= _p L
OrR* = " (Ry— 1) r

Thus, the lemma below has been proven.

Lemma 2.
The Endemic equilibrium state of the model given as

« _ [+ +p R T ..
E _( Ry = D2, (Ry 1)B)eX|st|ffR0>1

2.1
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5.1. GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM

The local stability of the endemic equilibrium will be studied in this section.

Theorem 3. (Routh-Hurwitz conditions)

fe(oy) (v

Let] =
/ Ix (X0 V) Gy (X, Yi)

Be the Jacobian matrix of the non-linear system
dx _
dt - f(x’ y)

dy

- g(x,y)
Evaluate at the critical point (x,, y,).
Then the critical point(x,, y,) is

(i) Asymptotically stable if Trace(J) < 0 and Det(J) > 0
(ii)Stable but not asymptotically stable if Trace(J) = 0 and Det(J) > 0
(iii) Unstable if Trace(J) < 0 and Det(J) < 0

Next, we will study the stability of the endemic equilibrium by applying the Routh-Hurwitz. The
Jacobian matrix associated with the system (2.0) is

—pI" — BS* 0
](S*,I*,R*)z[ prr BS*—(u+6+r) O
0 r —l

Clearly, —p is an eigen value, the other two eigen values are negative if the Routh-Hurwitz
condition hold.

i.e. Traceof G <0
Determinant of G < 0

B - Bs*
Where G = | “gp T pst—(u+s+1)

The trace of G is given as

TraceG = —fI" —pn+pS*—(n+6+1)

GRS
B B
:—ﬁ(Ro—l)E—u<0forRo>1

B

The determinant of G is given by
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Det G = —(BI"+ W[BS*— (u+ 6+ )] — p*S*I*

_ u pu+d6+1)
—(—B(Ro—l)lg+u)[T—(u+5+F)]
2(W+8+T
_(/3 (u+ﬁ+ ) (R0—1)%>

= —(3(R0—1)%+ u) [0] = ((n+ 8+ (Ry — D)

=—((m+8+T)(Ry— 1) <0 for Ry > 1.

One of the conditions given above for negativity of the eigen values is violated. This implies that
the endemic equilibrium of the model system (2.0) is unstable for R, > 1.

6. MODEL SIMULATION
A numerical simulation of the model is performed using the parameter values as listed below

SRS csasaczenga>t it lanr s
=

Parameter Value
Ay 3
B [0.003,0.03]
r 0.4
) 0.0023
U 0.02

Table: Parameter values used in simulation

bRl B
m
| i

EERERRRERR R ERREE

e T
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Fig. 1. Simulation of the mass action epidemic ~ Fig.2. Simulation of the mass action epidemic
model with f = 0.003 model with f = 0.03

Figures 1 and 2 show that an increase in the contact rate has an impact on the transmission
dynamics of the disease which is detrimental. When the contact rate is higher, the number of
infectious individuals rise significantly leading to a rapid spread of the disease and has the potential
to cause the infection to dominate the entire population quickly.

CONCLUSION

In this study, we examined a mass action epidemic model incorporating vital dynamics. Our
findings primarily hinge on the behavior of the basic reproduction number, R,. Specifically, if
when R, < 1, the disease free equilibrium is both locally and globally asymptotically stable,
indicating disease elimination.
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Conversely, the endemic equilibrium exists only when R, > 1 , suggesting that effective control
strategies should aim to reduce R, below unity to eradicate the disease from the population. One
practical approach to achieve this is by lowering the contact rate, which is a parameter that can be
readily adjusted through intervention measures.

As demonstrated in Figures 1 and 2 increasing the contact rate has a detrimental impact on disease
transmission dynamics. Higher contact rates lead to a significant rise in the number of infectious
individuals, facilitating rapid disease spread and potentially causing the infection to dominate the
entire population quickly.
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