A Fractional Mathematical Model For The Dynamics Of Malaria Transmission And Control

Authors

  • Daniel Omeje Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria Author
  • Bolarinwa Bolaji Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria Author
  • William Atokolo Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria Author
  • Joseph Egbemhenghe Department of Mathematics Education, Prince Abubakar Audu University, Anyigba Author
  • Emmanuel Abah Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria Author
  • Jeremiah Amos Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria Author

DOI:

https://doi.org/10.60787/tnamp.v21.472

Keywords:

Malaria, Fractional, Simulation, Adams–Bashforth–Moulton

Abstract

This study examines many epidemiological features of malaria infection using a fractional-order mathematical model to assess how therapy affects the dynamics of malaria transmission. Fractional Adams–Bashforth–Moulton numerical simulations show how fractional-order values and model parameters affect malaria dynamics and control. More surface and contour plot simulations show that the prevalence of malaria would rise with increasing contact rates and less effective treatment. Additionally, the study reveals that improving treatment approaches can dramatically lower the frequency of malaria in the general population. 

         Views | Downloads: 3 / 7

Downloads

Download data is not yet available.

Author Biographies

  • Daniel Omeje, Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria

    Laboratory of Mathematical Epidemiology, Prince Abubakar Audu University, Anyigba.

  • Bolarinwa Bolaji, Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria

    Laboratory of Mathematical Epidemiology, Prince Abubakar Audu University, Anyigba.

  • William Atokolo, Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria

    Laboratory of Mathematical Epidemiology, Prince Abubakar Audu University, Anyigba.

  • Emmanuel Abah, Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria

    Laboratory of Mathematical Epidemiology, Prince Abubakar Audu University, Anyigba.

  • Jeremiah Amos, Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Nigeria

    Laboratory of Mathematical Epidemiology, Prince Abubakar Audu University, Anyigba.

References

World Health Organization. (2023). Malaria. Retrieved from https://www.who.int/news-room/fact-sheets/detail/malaria.

Centers for Disease Control and Prevention. (2023). World Malaria Day 2023. Accessible at: https://www.cdc.gov/malaria/index.html

World Health Organization. (2022). *World malaria report 2022*. https://www.afro.who.int/countries/nigeria/publication/report-malaria-nigeria-2022

Ali, A., Khan, M. Y., Sinan, M., Allehiany, F. M., Mahmoud, E. E., Abdel-Aty, A., & Ali, G. (2021). Theoretical and numerical analysis of novel COVID-19 via fractional order mathematical model. *Results in Physics, 20*, 103676. https://doi.org/10.1016/j.rinp.2020.103676.

Gómez-Aguilar, J. F., Cordova, T., Abdeljawad, T., Khan, A., & Khan, H. (2020). Analysis of fractal-fractional malaria transmission model. *Fractals, 28*. https://doi.org/10.1142/S0218348X20400411

Cui, X., Xue, D., & Li, T. (2021). Fractional-order delayed Ross-Macdonald model for malaria transmission. https://doi.org/10.21203/rs.3.rs-357785/v1

Cheneke, K. (2023). Fractional derivative model for analysis of HIV and malaria transmission dynamics. *Discrete Dynamics in Nature and Society, 2023*, 1–17. https://doi.org/10.1155/2023/5894459

Rezapour, S., Etemad, S., Asamoah, J., Ahmad, H., & Nonlaopon, K. (2022). A mathematical approach for studying the fractal-fractional hybrid Mittag-Leffler model of malaria under some control factors. *AIMS Mathematics, 8*, 3120–3162. https://doi.org/10.3934/math.2023161

Pawar, D. D., Patil, W. D., & Raut, D. K. (2021). Analysis of malaria dynamics using its fractional order mathematical model. *Journal of Applied Mathematics & Informatics, 39*(1–2), 197–214. https://doi.org/10.14317/jami.2021.197

Alqahtani, A. S., Ramzan, S., Zanib, S. A., Nazir, A., Masood, K., & Malik, M. Y. (2024). Mathematical modeling and simulation for malaria disease transmission using the CF fractional derivative. *Alexandria Engineering Journal, 101*, 193–204. https://doi.org/10.1016/j.aej.2024.05.055

Rehman, A. ul, Singh, R., Abdeljawad, T., Okyere, E., & Guran, L. (2021). Modeling, analysis, and numerical solution to malaria fractional model with temporary immunity and relapse. *Advances in Difference Equations, 2021*(390). https://doi.org/10.1186/s13662-021-03532-4

Sweilam, N. H., AL-Mekhlafi, S. M., & Albalawi, A. O. (2020). Optimal control for a fractional order malaria transmission dynamics mathematical model. *Alexandria Engineering Journal*, Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/

Sudsutad, W., Thaiprayoon, C., Kongson, J., & Sae-dan, W. (2024). A mathematical model for fractal-fractional monkeypox disease and its application to real data. *AIMS Mathematics, 9*(4), 8516–8563. https://doi.org/10.3934/math.2024414

Farman, M., Akgül, A., Askar, S., Botmart, T., Ahmad, A., & Ahmad, H. (2022). Modeling and analysis of fractional order Zika model. *AIMS Mathematics, 7*(3), 3912–3938. https://doi.org/10.3934/math.2022216

Atokolo, W., Aja, R., Omale, D., Ahman, Q., Acheneje, G., & Amos, J. (2024). Fractional mathematical model for the transmission dynamics and control of Lassa fever. *Franklin Open, 7*, 2773–1863. https://doi.org/10.1016/j.fraope.2024.100110.

Omede, B., Israel, M., Mustapha, M., Amos, J., Atokolo, W., & Oguntolu, F. (2024). Approximate solution to fractional order soil-transmitted helminth infection model using Laplace Adomian decomposition method, 16–40. https://doi.org/10.5281/zenodo.11630908

Milici, C., Draganescu, G., & Machado, J. T. (2018). Introduction to fractional differential equations. Springer.

Podlubny, I. (1998). Fractional differential equations, an introduction to fractional derivatives. In *Fractional Differential Equations*, Methods of their Solutions and Some of their Applications. Elsevier.

Chen, S. B., Rajaee, F., Yousefpour, A., Alcaraz, R., Chu, Y. M., Gómez-Aguilar, J. F., & Jahanshahi, H. (2021). Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy. Alexandria engineering journal, 60(1), 1545-1555.

Diethelm, K. (1999). The FracPECE subroutine for the numerical solution of differential equations of fractional order.

Liu, B., Farid, S., Ullah, S., Altanji, M., Nawaz, R., & Teklu, S. W. (2023). Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach. *Scientific Reports*. https://doi.org/10.1038/541598-023-40745

Baskonus, H. M., & Bulut, H. (2015). On the numerical solutions of some fractional ordinary differential equations by fractional Adams Bashforth-Moulton Method. *Open Math, 13*, 1.

Zhang, R. F., Li, M.-C., Gan, J. Y., Li, Q., & Lan, Z.-Z. (2022). Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. *Chaos, Solitons & Fractals, 154*(C).

Atokolo W a, Remigius Aja .O. , Omale .D., Paul .R. V. ,Amos . J.,Ocha S. O., (2023) Mathematical modeling of the spread of vector borne diseases with influence of vertical transmission and preventive strategies FUDMA Journal of sciences: Vol. 7 No. 6, December (Special Issue), pp 75 -91 DOI: https://doi.org/10.33003/fjs-2023-0706-2174

Afolabi, M. O., Adebiyi, A., Cano, J., Sartorius, B., Greenwood, B., Johnson, O., & Wariri, O. (2022). Prevalence and distribution pattern of malaria and soil-transmitted helminth co-endemicity in sub-Saharan Africa, 2000–2018: A geospatial analysis. *PLoS Neglected Tropical Diseases, 16*(9), e0010321.

Castillo-Chavez, C., & Song, B. (2004). Dynamics models of tuberculosis and their applications. *Math. Biosci, 2*, 361–404.

Nayeem, J., & Sultana, I. (2019). Transmission dynamics of tuberculosis at the population level: A dynamical model. *Chaos, Solitons & Fractals, 119*, 133–142.

Ojo, M. M., Olumuyiwa, P., Goufo, E. F., & Nisar, K. S. (2023). A mathematical model for the co-dynamics of COVID-19 and tuberculosis. *Mathematics and Computers in Simulation, 207*, 499–520. https://doi.org/10.1016/j.matcom.2023.01.014

Pinto, C. M., & Machado, J. T. (2013). Fractional model for malaria transmission under control strategies. *Computers & Mathematics with Applications, 66*(5), 908–916.

Vanden Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. *Math. Biosci, 180*(1–2), 29–48.

Zhao, S., Stone, L., Gao, D., & He, D. (2018). Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. *PLoS Neglected Tropical Diseases, 12*(1), e0006158. https://doi.org/10.1371/journal.pntd.0006158.

Downloads

Published

2025-03-03

Issue

Section

Articles

How to Cite

A Fractional Mathematical Model For The Dynamics Of Malaria Transmission And Control. (2025). The Transactions of the Nigerian Association of Mathematical Physics, 21, 41-57. https://doi.org/10.60787/tnamp.v21.472

Share