TORSION POINTS OF ELLIPTIC CURVES OVER QUADRATIC FIELD
Keywords:
Quadratic Field, torsion points, Elliptic CurveAbstract
An elliptic curve is a cubic polynomial in two variables in which there is at least one rational solution. The set of all rational solutions to an elliptic curve is known to be an abelian group which is finitely generated. In this paper, we obtained the 2 – torsion and 3 – torsion points for the family of elliptic curves of the forms ???????? = ???????? + ???????? and ???????? = ???????? + ???????????? + ???????? over quadratic field.
Downloads
References
Poincare, H. (1901). Sur les proprieties arithmetique des courbes algebrique. Journal mathematics pure and applied 7.
Nagell, T. (1935). Solution de quelque problemes dans la theorie arithmetique des cubiques planes du premier genre. Wid. Akad. Skrifter Oslo I. Nr.1.(Springer).
Lutz, E. (1937). Sur l’equation ???? 2 = ???? 3 − ???????? − ???? dans les corps p-adic. Journal of Reine Angewandte Mathematik. 177:431–466.
Mazur, B. (1978). Rational isogenies of prime degree. Inventiones Mathematicae. 44, 129–162.
Kenku, M. A. and Momose, F. (1988). Torsion points on elliptic curves defined over quadratic fields. Nagoya mathematics Journal, 125 – 149.
Kamienny, S. (1992). Torsion points on elliptic curves and q – coefficient of modular form. Inventiones Mathematicae Journal, 109, 221 – 229.
Jody, R. and Sophie, D. (2014). Torsion of elliptic curves over quadratic fields. OAlib Journal.
Christian, C. (2006). Torsion points of elliptic curves over number fields. Honors thesis University of Massachusetts.
Silverman, H. J. and Tate, J. (1992). Rational Points on elliptic curves (2nd. ed.). Springer – Verlag, New York.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The Transactions of the Nigerian Association of Mathematical Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.