ANALYTICAL AND FIRST PRINCIPLE CALCULATIONS OF THE LATTICE DYNAMICS OF CAESIUM (Cs) AND TUNGSTEN (W)
Keywords:
Born – von Kármán, Dynamical Matrix, Force Constants, Interatomic, Phonon, Bcc MetalsAbstract
The phonon dispersion curves of Cs and W have been calculated from analytical (IFCs technique using Born – von Kármán model) with different numbers of interacting nearest-neighbours (NN) and computational approach (first principle using density functional theory) with the exchange correlation functionals. The different branches of the phonon band structure follow from the Eigen values after diagonalizing the dynamical matrix. The phonon frequencies in the first Brillouin zone were calculated along the directions of high symmetry, ???? → ????, ???? → ????, ???? → ???? and ???? → ????. Obtain also are the thermodynamic properties from IFCs and first principle. It is observed that the phonon dispersion curve of Cs and W just like the first principle calculations, the IFCs calculation also gave a good agreement with experiment.
Downloads
References
Da Cunha Lima, I. C., Brescansin, L. M and Shukla, M. M. (1974). Lattice Dynamics of Alkali Metals. Physica 72, 179 – 187.
Baroni, S., de Gironcoli, S., Dal Corso, A. and Giannozzi. P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys., 73:515
Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. B 136, 864
Kohn, W. and Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133
Zein, E. N. (1984). Density Functional Calculations of Elastic Moduli and Phonon Spectra of Crystals. Fiz. Tverd. Tela (Leningrad) 26 3024 Sov. Phys. Solid State26, 1825
Baroni, S., Giannozzi, P. and Testa, A. (1987). Green's-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861
Jones, R. O. and Gunnarson, O. (1989). The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689.
Becke, A. D., (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098.
Perdew, J. P., Burke, K. and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865.
Dal Corso, A. (2013). Ab-initio phonon dispersions of transition and noble metal: effects of the exchange and correlation functional. J. Phys.: Condensed Matter, 25, 1-9
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. and Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter21, 395502.
Giannozzi, P., Andreussi, O., Brumme, T, Bunau, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio Jr, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H-Y., Kokalj, A ., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F.,
Nguyen, N. L., Nguyen, H-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M ., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., and Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condensed. Matter. Vol. 29. 24.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1989). Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, U.K.).
Gilat, G. and Raubenheimer, L. T. (1966). Accurate numerical method for calculating frequency-distribution functions in solids. Phys. Rev. 144, 390
Landau, L. D. and Lifshitz, E. M. (1980). Statistical Physics, 3rd. ed. (Pergamon, London), Pt. 1, Pp. 193.
Changyol, L. and Xavier, G. (1995). Ab-initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite. Phys. Rev. B 51, 8610.
Peng, F.,ZhiFu, H., and LuCheng, X. (2007). First-principles calculations of thermodynamic properties of TiB 2 at high pressure. Physica B: Condensed Matter. Vol. 400, Issues 1–2, Pg. 83-87.
Minamoto, S., Kato, M.,Konashi, K., andYoshiyuki Kawazoe, Y. (2009). Calculations of thermodynamic properties of PuO2 by the first-principles and lattice vibration. Journal of Nuclear Materials.Vol. 385, Issue 1, Pg. 18-20
[20]Mizuki, J. and Stassis, C. (1986). Lattice dynamics of bcc Cs. Phys. Rev. B, 34, 8, p 5890-5893. Chen, S. H. and Brockhouse, B. N. (1964). Lattice vibrations of tungsten. Solid State Communications2, 73-77