PREDICTING NEUTRON STAR MAXIMUM MASS THROUGH RELATIVISTIC EQUATION OF STATE MODELLING
DOI:
https://doi.org/10.60787/tnamp.v22.552Keywords:
Neutron star, maximum mass, General relativity, Equation of state, Ultra-dense matte, Gravitational collapseAbstract
The maximum mass of neutron stars (NSs) marks a fundamental limit set by general relativity and the equation of state (EOS) of ultra-dense matter. This study systematically explores NS maximum masses using relativistic models across a range of EOS types, including nucleonic, hyperonic, and quark matter. By solving the Tolman-Oppenheimer-Volkoff equations with piecewise-polytropic EOS parameterizations, we identify collapse thresholds and their sensitivity to high-density physics. Observational constraints from NICER (PSR J0740+6620: 2.08±0.07 M⊙) and GW170817 tidal deformability are incorporated. Results show that the maximum mass (Mmax) strongly depends on EOS stiffness above nuclear saturation, with Mmax approaching or exceeding 3M⊙. Hybrid EOS with quark deconfinement predict distinct kinks in the mass-radius relation near Mmax. These findings offer theoretical limits for distinguishing NSs from black holes in gravitational and electromagnetic signals, and enable stringent.
Downloads
References
Harydeen, D. D. (2022). An Introduction to numerical relativity and simulation of the binary neutron star. UND Scholarly Comment. https://www.commons.und.edu/theses/4335
Sumiyoshi, K., Kojo, T., & Furusawa, S. (2023). Equation of State in Neutron Stars and Supernovae. In Handbook of Nuclear Physics (pp. 1–51). https://doi.org/10.1007/978-981-15-8818-1_104-1
Kalogera, V., & Baym, G. (1995). The maximum mass of a neutron star. The Astrophysical Journal, 470(1), L61–L64. https://doi.org/10.1086/310296
Takami, K., Rezzolla, L., & Baiotti, L. (2014). Constraining the Equation of State of Neutron Stars from Binary Mergers. Physical Review Letters, 113(9). https://doi.org/10.1103/physrevlett.113.091104
Prix, R. (2009). Gravitational Waves from Spinning Neutron Stars. In Astrophysics and space science library (pp. 651–685). https://doi.org/10.1007/978-3-540-76965-1_24
Rhoades, C. E., & Ruffini, R. (1974). Maximum mass of a neutron star. Physical Review Letters, 32(6), 324–327. https://doi.org/10.1103/physrevlett.32.324
O’Boyle, M. F., Markakis, C., Stergioulas, N., & Read, J. (2020). Parametrized equation of state for neutron star matter with continuous sound speed. Physical Review, 102(8). https://doi.org/10.1103/physrevd.102.083027
Dar, J. A. (2014). Mass limit of Neutron Star. International Journal of Astronomy and Astrophysics. https://doi.org/10.4236/ijaa.2014.42036
Kyutoku, K., Okawa, H., Shibata, M., & Taniguchi, K. (2011). Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state. Physical Review, 84(6). https://doi.org/10.1103/physrevd.84.064018
Vivanco, F. H., Smith, R. J. E., Thrane, E., Lasky, P. D., Talbot, C., & Raymond, V. (2019). Measuring the neutron star equation of state with gravitational waves: The first forty binary neutron star merger observations. Physical Review, 100(10). https://doi.org/10.1103/physrevd.100.103009
Friedman, J. L., Ipser, J. R., & Parker, L. (1984). Models of rapidly rotating neutron stars. Nature, 312(5991), 255–257. https://doi.org/10.1038/312255a0
Fujimoto, Y., Fukushima, K., & Murase, K. (2021). Extensive studies of the neutron star equation of state from the deep learning inference with the observational data augmentation. Journal of High Energy Physics, 2021(3). https://doi.org/10.1007/jhep03(2021)273
Gittins, F., Andersson, N., & Jones, D. I. (2020). Modelling neutron star mountains. Monthly Notices of the Royal Astronomical Society, 500(4), 5570 5582. https://doi.org/10.1093/mnras/staa3635
Radice, D., Perego, A., Zappa, F., & Bernuzzi, S. (2018). GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations. The Astrophysical Journal, 852(2), L29. https://doi.org/10.3847/2041-8213/aaa402
Diener, P., Rosswog, S., & Torsello, F. (2022). Simulating neutron star mergers with the Lagrangian Numerical Relativity code SPHINCS_BSSN. The European Physical Journal A, 58(4). https://doi.org/10.1140/epja/s10050-022-00725-7
Özel, F., Psaltis, D., Guver, T., Baym, G., Heinke, C. O., & Guillot, S. (2016). The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements. The Astrophysical Journal, 820(1), 28. https://doi.org/10.3847/0004-637x/820/1/28
Weinberg, S., & Dicke, R. H. (1973). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. American Journal of Physics, 41(4), 598–599. https://doi.org/10.1119/1.1987308

Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Transactions of the Nigerian Association of Mathematical Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.