PREDICTING NEUTRON STAR MAXIMUM MASS THROUGH RELATIVISTIC EQUATION OF STATE MODELLING

Authors

  • B. Bringen Department of Physics, Borno State University, Maiduguri,  Author
  • D. D. Bakwa Department of Physics, University of Jos, Plateau State. Author
  • Y. Y. Jabil Department of Physics, University of Jos, Plateau State. Author
  • E. N. J Omaghali Department of Physics, University of Jos, Plateau State. Author

DOI:

https://doi.org/10.60787/tnamp.v22.552

Keywords:

Neutron star, maximum mass, General relativity, Equation of state, Ultra-dense matte, Gravitational collapse

Abstract

The maximum mass of neutron stars (NSs) marks a fundamental limit set by general relativity and the equation of state (EOS) of ultra-dense matter. This study systematically explores NS maximum masses using relativistic models across a range of EOS types, including nucleonic, hyperonic, and quark matter. By solving the Tolman-Oppenheimer-Volkoff equations with piecewise-polytropic EOS parameterizations, we identify collapse thresholds and their sensitivity to high-density physics. Observational constraints from NICER (PSR J0740+6620: 2.08±0.07 M⊙) and GW170817 tidal deformability are incorporated. Results show that the maximum mass (Mmax) strongly depends on EOS stiffness above nuclear saturation, with Mmax approaching or exceeding 3M⊙. Hybrid EOS with quark deconfinement predict distinct kinks in the mass-radius relation near Mmax. These findings offer theoretical limits for distinguishing NSs from black holes in gravitational and electromagnetic signals, and enable stringent.

         Views | Downloads: 63 / 25

Downloads

Download data is not yet available.

Author Biography

  • B. Bringen, Department of Physics, Borno State University, Maiduguri, 

    Department of Physics, University of Jos, Plateau State

References

Harydeen, D. D. (2022). An Introduction to numerical relativity and simulation of the binary neutron star. UND Scholarly Comment. https://www.commons.und.edu/theses/4335

Sumiyoshi, K., Kojo, T., & Furusawa, S. (2023). Equation of State in Neutron Stars and Supernovae. In Handbook of Nuclear Physics (pp. 1–51). https://doi.org/10.1007/978-981-15-8818-1_104-1

Kalogera, V., & Baym, G. (1995). The maximum mass of a neutron star. The Astrophysical Journal, 470(1), L61–L64. https://doi.org/10.1086/310296

Takami, K., Rezzolla, L., & Baiotti, L. (2014). Constraining the Equation of State of Neutron Stars from Binary Mergers. Physical Review Letters, 113(9). https://doi.org/10.1103/physrevlett.113.091104

Prix, R. (2009). Gravitational Waves from Spinning Neutron Stars. In Astrophysics and space science library (pp. 651–685). https://doi.org/10.1007/978-3-540-76965-1_24

Rhoades, C. E., & Ruffini, R. (1974). Maximum mass of a neutron star. Physical Review Letters, 32(6), 324–327. https://doi.org/10.1103/physrevlett.32.324

O’Boyle, M. F., Markakis, C., Stergioulas, N., & Read, J. (2020). Parametrized equation of state for neutron star matter with continuous sound speed. Physical Review, 102(8). https://doi.org/10.1103/physrevd.102.083027

Dar, J. A. (2014). Mass limit of Neutron Star. International Journal of Astronomy and Astrophysics. https://doi.org/10.4236/ijaa.2014.42036

Kyutoku, K., Okawa, H., Shibata, M., & Taniguchi, K. (2011). Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state. Physical Review, 84(6). https://doi.org/10.1103/physrevd.84.064018

Vivanco, F. H., Smith, R. J. E., Thrane, E., Lasky, P. D., Talbot, C., & Raymond, V. (2019). Measuring the neutron star equation of state with gravitational waves: The first forty binary neutron star merger observations. Physical Review, 100(10). https://doi.org/10.1103/physrevd.100.103009

Friedman, J. L., Ipser, J. R., & Parker, L. (1984). Models of rapidly rotating neutron stars. Nature, 312(5991), 255–257. https://doi.org/10.1038/312255a0

Fujimoto, Y., Fukushima, K., & Murase, K. (2021). Extensive studies of the neutron star equation of state from the deep learning inference with the observational data augmentation. Journal of High Energy Physics, 2021(3). https://doi.org/10.1007/jhep03(2021)273

Gittins, F., Andersson, N., & Jones, D. I. (2020). Modelling neutron star mountains. Monthly Notices of the Royal Astronomical Society, 500(4), 5570 5582. https://doi.org/10.1093/mnras/staa3635

Radice, D., Perego, A., Zappa, F., & Bernuzzi, S. (2018). GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations. The Astrophysical Journal, 852(2), L29. https://doi.org/10.3847/2041-8213/aaa402

Diener, P., Rosswog, S., & Torsello, F. (2022). Simulating neutron star mergers with the Lagrangian Numerical Relativity code SPHINCS_BSSN. The European Physical Journal A, 58(4). https://doi.org/10.1140/epja/s10050-022-00725-7

Özel, F., Psaltis, D., Guver, T., Baym, G., Heinke, C. O., & Guillot, S. (2016). The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements. The Astrophysical Journal, 820(1), 28. https://doi.org/10.3847/0004-637x/820/1/28

Weinberg, S., & Dicke, R. H. (1973). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. American Journal of Physics, 41(4), 598–599. https://doi.org/10.1119/1.1987308

Downloads

Published

2025-07-21

Issue

Section

Articles

How to Cite

PREDICTING NEUTRON STAR MAXIMUM MASS THROUGH RELATIVISTIC EQUATION OF STATE MODELLING. (2025). The Transactions of the Nigerian Association of Mathematical Physics, 22, 1-10. https://doi.org/10.60787/tnamp.v22.552

Share

Similar Articles

1-10 of 81

You may also start an advanced similarity search for this article.