ON INVERSES OF THIRD HANKEL DETERMINANT INVOLVING SYMMETRIC AND CONJUGATE POINTS
DOI:
https://doi.org/10.60787/tnamp.v23.622Keywords:
Univalent function, Analytic function, Starlike function, Convex function, Symmetric point, Conjugate pointAbstract
After thorough investigations, the authors observed that the third-order Hankel determinant for inverses associated with the symmetric and conjugate points have not appeared in print. This prompted the authors to investigate the third-order Hankel determinant for inverses for the classes and using Gelova and Tuneski’s approach. This work establishes new upper bounds for the third-order Hankel determinant for these classes of inverse functions.
Downloads
References
Ahmed, M. B., and Roy, P. P. (2023). The third Hankel determinant for inverse coefficients of starlike functions of order 1/2. arXiv:2307.02746 [[math.CV](http://math.CV)]. <https://doi.org/10.48550/ARXIV.2307.02746>
Babalola, K. O. (2008). Quasi-convolution of analytic functions with applications. Journal of Mathematical Inequalities, 2(2), 269–277. <https://doi.org/10.7153/jmi-02-24>
Carlson, F. (1940). Sur les coefficients d’une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys., 27, 8.
El-Ashwah, A., and Thomas, D. K. (1987). Starlike functions with respect to conjugate points. Serdica Bulg. Math. Publ., 13, 280–285.
Fadipe‑Joseph, O. A., Moses, B. O., and Oluwayemi, M. O. (2016). Certain new classes of analytic functions defined by using sigmoid function. Adv. Math.: Sci. J., 5(1), 83-89. Retrieved from <https://www.research-publication.com/amsj/uploads/>
Gelova, E. K., and Tuneski, N. (2024). Third-order Hankel determinant for inverse functions of a class of starlike functions of order . Int. J. Appl. Math., 37, 369–381.
Gelova, E. K., and Tuneski, N. (2025). Third-order Hankel Determinant for Inverse Functions of a Class of Univalent Functions with Bounded Turning. Int. J. Anal. Appl., 23, 123. <https://doi.org/10.28924/2291-8639-23-2025-123>
Khatter, K., Ravichandran, V., and Kumar, S. S. (2020). Third Hankel determinant of starlike and convex functions. J. Anal., 28, 45–56. <https://doi.org/10.1007/s41478-017-0037-6>
Lecko, A., Sim, Y. J., and Śmiarowska, B. (2019). The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory, 13, 2231–2238. <https://doi.org/10.1007/s11785-018-0819-0>
Obradović, M., and Tuneski, N. (2020). Upper bounds of the third Hankel determinant for classes of univalent functions with bounded turning. arXiv:2004.04960 [[math.CV](http://math.CV)]. <https://doi.org/10.48550/arXiv.2004.04960>
Obradović, M., and Tuneski, N. (2022). On the third-order Hankel determinant for inverse functions of certain classes of univalent functions. Eur. J. Math. Appl., 2, 2. <https://doi.org/10.28919/ejma.2022.2.2>
Oladipo, A. T., Fadipe‑Joseph, O. A., and Ejieji, C. N. (2013). New classes of analytic functions. Int. J. Pure Appl. Math., 88(3), 341–349. <https://doi.org/10.12732/ijpam.v88i3.2>
Olatunji, S. O., and Oladipo, A. T. (2011). On a new subfamilies of analytic and univalent functions with negative coefficient with respect to other points. Bulletin of Mathematical Analysis and Applications, 3(2), 159–166.
Opoola, T. O., Oyekan, E. A., Oluwasegun, S. D., and Adepoju, P. O. (2023). New subfamilies of univalent functions defined by Opoola differential operator and connected with modified Sigmoid function. Malaya Journal of Matematik, 11(S), 53–69. <https://doi.org/10.26637/mjm11S/004>
Prokhorov, D., and Szynal, J. (1981). Inverse coefficients for -convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 35, 125–143.
Rath, B., Kumar, K. S., Krishna, D. V., and Lecko, A. (2022). The sharp bound of the third Hankel determinant for starlike functions of order 1/2. Complex Anal. Oper. Theory, 16, 65. <https://doi.org/10.1007/s11785-022-01241-8>
Raza, M., Riaz, A., and Thomas, D. K. (2024). The third Hankel determinant for inverse coefficients of convex functions. Bull. Aust. Math. Soc., 109, 94–100. <https://doi.org/10.1017/S0004972723000357>
Sakaguchi, K. (1959). On a certain univalent mapping. J. Math. Soc. Japan, 11(1), 72–75. <https://doi.org/10.2969/jmsj/01110072>
Selvaraj, C., and Vasanthi, N. (2011). Subclasses of analytic functions with respect to symmetric and conjugate points. Tamkang J. Math., 42(1), 87–94.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Transactions of the Nigerian Association of Mathematical Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

