SEMI-ANALYTIC METHODS FOR THE SOLUTION OF TWO EPIDEMIOLOGICAL MODELS
Abstract
In this paper, we apply three semi-analytical methods, viz: the Differential Transform Method (DTM), Homotopy Perturbation Method (HPM) and the Variational Iteration Method (VIM) to compute approximate solutions of a continuous mathematical model of Shigella diarrhea comprising of a non-constant population and a deterministic model on the impact of stress on the dynamics and treatment of Tuberculosis.
Downloads
References
Ojaswita, C., Tiny, M., Shedden, M. A. (2014). A Continuous Mathematical Model for Shigella Outbreaks. American Journal of Biomedical Engineering, 4(1): 10-16.
Namawejje, H. (2011). Modelling the Effect of Stress on the Dynamics and Treatment of Tuberculosis, M.Sc. Dissertation, University of Dar se Salaam, Tanzania.
Zhou, J. K. (1986). Differential Transformation and its Applications for Electrical Circuits. Huazhong University Press, Wuhan, China.
Enoch, Ashezua and Somma Trans. Of NAMP Batiha, B. (2015). The Solution of the Prey and Predator Problem by Differential Transform Method. International Journal of Basic and Applied Sciences, 4 (1): 36-43.
Paripour, M., karimi, L. and Abbasbandy, S. (2017). Differential Transform Method for Volterra’s Population Growth Model. 24(1): 227-234.
Mehmet, M., Ahmet, G. and Vedat, S. E. (2011). On Solving Coullet System by Differential Transform Method. Cankaya University Journal of Science and Engineering, 8(1): 111-121.
Akinboro, F. S., Alao, S., Akinpelu, F. O. (2014). Numerical Solution of SIR Model using Differential Transform Method and Variational Iteration Method. General Mathematics Notes, 22(2): 82-92.
Suayip, Y. and Nurbol I. (2014). Solving Systems of Volterra Integral and Integro-differential Equations with Proportional Delays by Differential Transform Method. doi:10.1155/2014/725648.
He, J. H. (1999). Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering, 178: 257-262.
He J.H. (2006). New Interpretation of Homotopy Perturbation Method. International Journal of Modern Physics , 20, 2561-2568.
He, J. H. (2000). A Coupling Method of Homotopy Technique and Perturbation Technique for non-linear Problems. International Journal of Non-linear Mechanics, 35: 37-43
He, J. H. (2006). Some Asymptotic Methods for Strongly Non-linear Equations. International Journal of Modern Physics B, 20: 1141-1199.
He, J. H. (2000). New Perturbation Technique which is valid for Large Parameters. Journal of Sound and Vibration, 2229: 1257-1263.
He, J. H. (2004). Asymptotology by Homotopy Perturbation Method. Appl. Math. Comput. 156 (3): 591-5 6.
He, J. H. (2004). The Homotopy Perturbation Method for Nonlinear Oscillators with Discontinuities. Appl. Math. Comput. 151: 287-292.
He, J. H. (2005). Application of Homotopy Perturbation Method to Nonlinear Wave Equations. Chaos Solitons Fractals, 26: 695-700.
He, J. H. (2005). Homotopy Perturbation Method for Bifurcation on Nonlinear Problems. Int. Journal of Non- linear Sci. Numer. Simul. 8: 207-218.
Ganji, D. D., Rajabi, A. (2006). Assessment of Homotopy -Perturbation and Perturbation Methods in Heat Radiation Equations. Int. Commun. Heat Mass Transfer, 33: 391-400.
Abubakar, S., Akinwande, N. I., Jimoh, O. R., Oguntolu, F. A., Ogwumu, O. D. (2013). Approximate Solution of SIR Infectious Disease Model using Homotopy Perturbation Method. Pacific Journal of Science and Technology, 14 (2): 163-169.
He, J. H. (1999). A New Approach to Nonlinear Partial Differential Equations. Commun. Nonlin. Sci. Numer. Simul, 2: 230-235.
Inokuti, M., Sekine H., Mura T. (1978). General Use of Lagrange Multiplier in Nonlinear Mathematical Physics. In: Nemat – Nassed S, editor. Varaitional Method in Mechanics of Solids. Pergamon Press.
He, J. H. (1999). Variational Iteration Method – a kind of nonlinear analytical technique: some examples. Int. J. Nonlin. Mech. 34: 699-708.
He, J. H. (2000). Variational Iteration Method for Autonomous Ordinary Differential Systems. Applied Math.Comput, 114: 115-123.
He, J. H. (1998). Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media. Comput. Meth. Appl. Mech. Engrg. 167: 57-68.
Soliman, A. A. (2006). A Numerical Simulation and Explicit Solution of KdV-Burgers’ and Lax’s seventh-order KdV Equations. Chaos Solitons Fractals, 29(2): 294-302.
Momani, S., Abuasad, S. (2006). Application of He’s Variational Iteration Method to Helmholtz Equation . chaos Solitons Fractals, 27: 1119-1123.
Odibat, Z. M., Momani, S. (2006). Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order. Int. J. Nonlin. Sci. Numer. Simul., 7: 27-34.
Bildik, N., Konuralp, A. (2006). The Use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for Solving Different Types of Nonlinear Partial Differential Equations. Int. J.
Nolin. Sci. Numer. Simul. 7: 65-70. Enoch, Ashezua and Somma Trans. Of NAMP
Abbasbandy, S. (2007). A New Application of He’s Variational Iteration Method for Quadratic Riccati Differential Equation by Using Adomian Polynomials. J. Comput. Appl. Math. 207(1): 59-63.
Jufeng, L. (2007). Variational Iteration Method for Solving two-point Boundary Value Problems. J. Comput. Appl. Math. 207(1): 92-95.
Batiha, K. and Batiha, B. (2011). A New Algorithm for Solving Linear ODEs. World Applied Sciences Journal, 15 (12): 1774-1779.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The Transactions of the Nigerian Association of Mathematical Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.