MATHEMATICAL MODELING OF HUMAN AFRICAN TRYPANOSOMIASIS (HAT) TRANSMISSION DYNAMICS WITH TWO STAGES OF INFECTION
DOI:
https://doi.org/10.60787/tnamp.v22.556Keywords:
Mathematical model, Stability analysis, Basic reproduction number, Relapse, Sensitivity analysisAbstract
Human African Trypanosomiasis (HAT), or sleeping sickness, transmitted by tsetse flies, remains a major health threat in sub-Saharan Africa. This study developed and analysed a mathematical model to better understand HAT transmission dynamics between humans and flies. The model accounts for potential relapse in infected individuals. Ensuring realistic predictions through the positivity and boundedness checks. Stability analysis is determined. Central to our analysis is the basic reproduction number, R0, which tells us whether HAT will spread or decline. Sensitivity analysis identified key parameters influencing the transmission pattern. Visual graphs illustrated these findings effectively. Results suggest that increasing the death rate of tsetse flies can substantially curb the spread of HAT. The study emphasises that controlling the disease requires a multifaceted approach: public health education, vector control, improved healthcare access, and investment in vaccines. These strategies are vital for the goal of eliminating HAT and enhancing health outcomes in affected regions.
Downloads
References
A. M. Ndondo, J. M. W. Munganga, J. N. Mwambakana, C. M. Saad-Roy, P. van den Driessche, and R. O. Walo, “Analysis of a model of Gambiense sleeping sickness in humans and cattle,” J. Biol. Dyn., vol. 10, no. 1, pp. 347–365, 2016, doi: 10.1080/17513758.2016.1190873.
J. Rodgers, I. Steiner, and P. G. E. Kennedy, “Generation of neuroinflammation in human African trypanosomiasis,” vol. 0, 2019, doi: 10.1212/NXI.0000000000000610.
C. Brun, R., Blum, J., Chappuis, F., & Burri, “Human african try- panosomiasis,” Lancet, vol. 375, no. (9709), p. 375 (9709), 2010.
A. G. Kermack, W. O., & McKendrick, “A contribution to the mathematical theory of epidemics,” R. Soc. London. Ser. A, vol. 115, no. 772, pp. 700–721, 1927.
J. A. J. Diekmann, O., Heesterbeek, J. A. P., & Metz, “On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations,” J. Math. Biol., vol. 28, pp. 365–382, 1990.
M. E. Newman, “Spread of epidemic disease on networks,” Phys. Rev.. E, vol. 66, no. 1, p. 016128, 2002
L. Halloran, M. E., Longini, I. M., Struchiner, C. J., Halloran, M. E. and C. J. I. M., & Struchiner, “Overview of vaccine effects and study designs,” Des. Anal. Vaccine Stud., pp. 19–45, 2010.
D. S. Ferguson, N. M., Cummings, D. A., Fraser, C., Cajka, J. C., Cooley, P. C., & Burke, “Strategies for mitigating an influenza pandemic,” Nature, vol. 442, no. 7101, pp. 448–452, 2006.
H. A. Abioye, A. I., Ibrahim, M. O., Peter, O. J., & Ogunseye, “Optimal control on a mathematical model of malaria,” Sci. Bull., Ser. A Appl Math Phy, vol. 82, no. 3, pp. 177–190, 2020.
F. Weidemann, “Optimal control on a mathematical model of malaria,” 2015.
J. W. Hargrove, R. Ouifki, D. Kajunguri, G. A. Vale, and S. J. Torr, “Modeling the control of trypanosomiasis using trypanocides or insecticide-treated livestock,” PLoS Negl. Trop. Dis., vol. 6, no. 5, 2012, doi: 10.1371/journal.pntd.0001615.
G. Liana, Y. A., Shaban, N., & Mlay, “Modeling optimal control of african trypanosomiasis disease with cost-effective strategies,” J. Biol. Syst., vol. 29, no. 04, pp. 823–848, 2021.
H. E. Gervas, N. K. D. O. Opoku, and S. Ibrahim, “Mathematical Modelling of Human African Trypanosomiasis Using Control Measures,” Comput. Math. Methods Med.., vol. 2018, 2018, doi: 10.1155/2018/5293568.
M. O. Onuorah, A. B. Namwanje, Neoline, and A. M. Baba “Optimal Control Model of Human African Trypanosomiasis,” World Sci. News, vol. 178, no. February, pp. 136–153, 2023.
M. Helikumi and S. Mushayabasa, “Mathematical modeling of trypanosomiasis control strategies in communities where human, cattle and wildlife interact,” Anim. Dis., vol. 3, no. 1, pp. 1–15, 2023, doi: 10.1186/s44149-023-00088-6.
P. Van Den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Math. Biosci., vol. 180, no. 1–2, pp. 29–48, 2002, doi: 10.1016/S0025-5564(02)00108-6.
et al. Castillo-Chavez, C., Feng, Z., Huang, W., “On the computation of r (o) and its role on global stability.” 2001.
P. Rakkiyappan, R., & Balasubramaniam, “Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays,” Appl. Math. Comput., vol. 198, no. 2, pp. 526–533, 2008.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Transactions of the Nigerian Association of Mathematical Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.