THEORETICAL PREDICTION OF INSTABILITY AND HALF-METALLICITY IN THE NaCaO3 PEROVSKITE: A DFT APPROACH

Authors

  • O. P. OSUHOR Department of Physics, University of Delta, Agbor, Delta State, Nigeria.. Author
  • D. N. NWACHUKU Department of Physics, University of Delta, Agbor, Delta State, Nigeria. Author

DOI:

https://doi.org/10.60787/tnamp.v23.626

Keywords:

Perovskite, Semiconductor, Mechanical Properties, Half-metallic, Spintronic

Abstract

The structural, mechanical, electronic, and vibrational properties of the NaCaO₃ perovskite compound were examined using density functional theory (DFT) within the Quantum ESPRESSO software package. The calculations employed the plane-wave pseudopotential method. Mechanical analysis shows that the bulk-to-shear modulus ratio (B/G = 7.03) suggests ductile behavior, whereas the elastic stability criterion is not satisfied due to a negative value of C₄₄ (–4.42 GPa), indicating that the structure is mechanically unstable. The electronic band structure further reveals that NaCaO₃ exhibits half-metallicity: the spin-up channel displays semiconducting features with a direct bandgap of 4.69 eV, while the spin-down channel demonstrates metallic behavior. The density of states (DOS) analysis indicates that the conduction band is primarily derived from Ca-4d orbitals, while the valence band is dominated by O-2p orbitals. These results provide important insights into the intrinsic properties of NaCaO₃, emphasizing its potential for spintronic and electronic applications. Nevertheless, additional investigations using alternative computational approaches are recommended to validate and complement these findings.

         Views | Downloads: 0 / 0

Downloads

Download data is not yet available.

References

Tayari, F., Teixeira, S. S., Graça, M. P. F., & Nassar, K. T. (2025). A Comprehensive Review of Recent Advances in Perovskite Materials: Electrical, Dielectric, and Magnetic Properties. Advanced Inorganic Semiconductor Materials, 13(3), 67–73.

Bibi, N., Usman, M., & Ruyhan, M. (2024). Exploration of Na-based NaXO₃ (X = Ge, Si) Oxide Perovskites: A DFT Study. Computational and Theoretical Chemistry, 1240, 114842. <https://doi.org/10.1016/j.comptc.2023.114842>

Frohna, K., & Stranks, S. D. (2019). Photophysics of Organic-Inorganic Hybrid Lead Halide Perovskites. University of Cambridge. Physics Review, 67(4), 334–378.

Atta, N. F., Galal, A., & El-Ads, E. H. (2016). Perovskite Nanomaterials – Synthesis, Characterization, and Applications. In L. M. Kustov (Ed.), Perovskite Materials – Synthesis, Characterisation, Properties, and Applications (Pp. 107–151). IntechOpen. <https://doi.org/10.5772/61900>

Asmontas, S., & Mujahid, M. (2023). Perovskite Tandem Solar Cells: A Comprehensive Review. Center for Physical Sciences and Technology, 45(3), 234–267.

Daun, T., Mora-Sero, I., & Zhou, Y. (2023). Halide Perovskite Semiconductors: Recent Advances and Future Perspectives. Advanced Materials Research, 89(12), 1456–1489.

Lufaso, M. W., & Woodward, P. M. (2001). Prediction of the Crystal Structures of Perovskites Using the Tilt System. Acta Crystallographica Section B: Structural Science, 57(6), 725–738

Chen, H., Xu, J., & Zhang, L. (2018). Structural Stability and Electronic Properties of A-Site Substituted Perovskites. Journal of Materials Chemistry A, 6(12), 5270–5278.

Ruyhan, M., Usman, M., Bibi, N., Noreen, S., Alqarni, A., Aziz, A., Rahman, S., Aziz, Z., & Abbasi, R. A. (2024). Evaluation of Structural, Electronic, Optical, and Mechanical Properties of Na-Based Oxide Perovskites NaXO₃ (X = Co, Be, Ba): A DFT Study. Materials Today Communications, 39, 108908. <https://doi.org/10.1016/j.mtcomm.2024.108908>

Urbano, L. C., Aguilar, C. J., Diosa, J. E., & Vargas, E. M. (2023). Nanoparticles of the Perovskite Structure CaTiO₃ System: The Synthesis, Characterization, and Evaluation of its Photocatalytic Capacity to degrade emerging Pollutants. Nanomaterials, 13(22), 2967.

Geleta, T. G., Behera, D., Bourri, N., Rivera, V. J. R., & Gonzalo, F. M. (2024). First-Principle Insight into the Study of the Structural, Stability, and Optoelectronic Properties of Alkali-Based Single Halide Perovskite ZSnCl₃ (Z = Na/K) Materials for Photovoltaic Applications. Journal of Computational Chemistry, 45(30), 2574–2586.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., ... Wentzcovitch, R. M. (2009). Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21(39), 395502. [*https://doi.org/10.1088/0953-8984/21/39/395502*](https://doi.org/10.1088/0953-8984/21/39/395502)

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136, B864.

Kohn, W., & Sham, L. J. (1965). Self-Consistent Correlation Effects. Physical Review, 140, A1133–A1138.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation made Simple. Physical Review Letters, 77(18), 3865–3868.

Wu, Z., Hao, X., Liu, X., & Meng, J. (2007). Crystal Structure and Elastic Properties of MgSiO₃ Perovskite under Pressure: A First-Principles Study. Physical Review B, 75(5), 054115. [*https://doi.org/10.1103/PhysRevB.75.054115*](https://doi.org/10.1103/PhysRevB.75.054115)

Iyorzor, B. E., Babalola, M. I., Adetuaji, B. T., & Bakare, O. (2018). Effect of Tellurium Concentration on the Structural, Electronic, and Mechanical Properties of Beryllium Sulphide: A DFT Approach. Materials Research Express, 5(5), 056517.

Bakare, F. O., Babalola, M. I., & Iyorzor, B. E. (2017). The Role of Alloying Elements on the Structural, Mechanical and Thermodynamic Properties of Al₃X Binary Alloy System (X = Mg, Sc and Zr): First Principles Calculations. Materials Research Express, 4(11), 116502.

Pugh, S. F. (1954). Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843.

Samara, G. A. (1966). Pressure and Temperature Dependences of the Dielectric Properties of the Perovskites BaTiO₃ and SrTiO₃. Physical Review, 151, 378–386.

Sin’ko, G. V., & Smirnov, N. A. (2002). Ab initio Calculations of Elastic Constants and Thermodynamic Properties of Bcc, Fcc, and Hcp Al Crystals Under Pressure. Journal of Physics: Condensed Matter, 14, 6989–7005.

Vanderbilt, D. (1990). Soft Self-Consistent Pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892–7895.

Fan, L., Chen, F., & Chen, Z. Q. (2019). Electronic Structure and Magnetic Properties of Double Perovskite La₂Femno₆ from First-Principles Calculations. Journal of Magnetism and Magnetic Materials, 478, 264–270. [*https://doi.org/10.1016/j.jmmm.2019.01.044*](https://doi.org/10.1016/j.jmmm.2019.01.044)

Du, J., Dong, S., Lu, Y. L., Zhao, H., Feng, L., & Wang, L. Y. (2017). Structural, Electronic and Magnetic Properties of Double Perovskite La₂MnNiO₆: A First-Principles Study. Journal of Magnetism and Magnetic Materials, 428, 250–256. [*https://doi.org/10.1016/j.jmmm.2016.12.033*](https://doi.org/10.1016/j.jmmm.2016.12.033)

Downloads

Published

2026-01-07

Issue

Section

Articles

How to Cite

THEORETICAL PREDICTION OF INSTABILITY AND HALF-METALLICITY IN THE NaCaO3 PEROVSKITE: A DFT APPROACH. (2026). The Transactions of the Nigerian Association of Mathematical Physics, 23, 69-76. https://doi.org/10.60787/tnamp.v23.626

Share

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.