FLOOD FREQUENCY ANALYSIS OF OSSE RIVER WITH A THRESHOLD VALUE USING EXTREME VALUE TYPE 1 DISTRIBUTION

Authors

  • I. U. Akata Department of Statistics, University of Benin, Benin City, Nigeria. Author
  • A. Iduseri Department of Statistics, University of Benin, Benin City, Nigeria. Author
  • J.E. Osemwenkhae Department of Statistics, University of Benin, Benin City, Nigeria. Author

Keywords:

Probability, Flood Frequency Analysis, Recurrent Interval, Method of Moment, Extreme Value Type1

Abstract

This paper analyzes flood frequency using discharge data from Osse River with flow measurements carried out at-site station Iguoriakhi for 20 years’ period (1994-2013). Some basic statistics and goodness of fit test of the datasets were examined. The
recurrent interval T  and the probabilities for different years return period were shown. Using the method of moment for parameters estimates and with a threshold value, the extreme value type1 distribution was used to predict the future maximum
flood peak starting from 1.2years up to 50years. 

         Views | Downloads: 64 / 12

Downloads

Download data is not yet available.

References

Dubreuil, P. (1974). Initiation à L’analyse Hydrologique; ORSTOM (Office de la Recherche Scientifique et Technique Outre-Mer): Paris, France, ISBN 2-225-40140-3.

Bravard, J. P., and Petit, F. (2000). Les Cours d’eau—Dynamique du Système Fluvial; Armand Colin, Collection U: Paris, France, ISBN 9782200251772.

Assani, A.A., Petit, F., Mabille, G. (1999) Analyse des débits de la Warche aux barrages de Bütgenbach et de Robertville (Ardenne belge). Bull. Soc. Géogr. Vol. 36, pp 17–30.

Kidson, R., Richards, K.S. (2005). Flood frequency analysis: Assumptions and alternatives. Prog. Phys. Geogr. Vol. 29, pp 392–410.

Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, J.R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions express able in inverse form. Water Resour. Res. Vol. 15, pp 1049–1054.

Ward, A., Moran, M. (2016). A novel approach for estimating the recurrence intervals of channel-forming discharges. Water, Vol 8, pp 269.

Madamombe, R.K. (2005), Flood management practices, selected flood prone areas of Zambezi basin, Zimbabwe National Water Authority”, Harare, Zimbabwe.

Osagie, E., Joshua, I.I, and Odaro, S.O. (2015). Assessment of water quality index (WQI) for Osse River in Edo state, Southern Nigeria. Nigeria Annals of Natural Science, Vol. 15(1), pp 031-041.

Akata, Iduseri and Osemwenkhae Trans. Of NAMP Uwaifo, O.P., Omogbeme, M.I., Olomukoro, J.O. (2018). Water quality assessment of Osse River, Gele-gele: ATributary of Benin River, Southern Nigeria. Journal of Appl. Sci. Environ. Manage. Vol. 22 (8), pp 1349 –135.

Haan, C.T. (1977). Statistical methods in Hydrology”, Iowa State University Press, Iowa. Shaw, E.M. (1983), “Hydrology in Practice”. Van Nostrand Reinhold, UK.

Alexander, L and Verena, W. (2016). Generalized method of moment for estimating parameter of stochastic reaction network. BMC Systems Biology. Vol. 10(1):98 DOI:10.1186/s12918-016-0342-8

Adebisi, A.A (1981). The physicochemical hydrology of a tropical seasonal River- Upper Ogun River. Hydrobiologia. Vol. 79, pp157-165. DOI:10.1007/BF00006123.

BORDA (2014). “Benin Owena River Basin Development Athourity Hydrological year Book”. 1994 to 2013.

Downloads

Published

2022-12-01

How to Cite

FLOOD FREQUENCY ANALYSIS OF OSSE RIVER WITH A THRESHOLD VALUE USING EXTREME VALUE TYPE 1 DISTRIBUTION. (2022). The Transactions of the Nigerian Association of Mathematical Physics, 18, 69 –76. https://nampjournals.org.ng/index.php/tnamp/article/view/161

Share