INFERRED TWO-DIMENSIONAL SPATIAL CURRENT DENSITY DISTRIBUTION FROM MAGNETIC SOURCES
Abstract
The use of imaging has usually be an essential aspect of scientific investigations and medical diagnoses. In the applications of imaging for the above stated investigations and diagnoses, achieving optimal resolution of the reconstructed images is of prime importance. In this study, the magnetic inverse problem was solved via Fourier transforms to reconstruct two-dimensional current mappings. The dimensions of the conducting sheet, upon which the current density is to be reconstructed, as well as the distance of the magnetic source to the conducting sheet were varied, and the corresponding images of the current density were reconstructed. The thickness of a conducting sheet determines the spatial current density distributions and image resolutions. The spatial resolutions of the reconstructed current density images were higher at nanometer and micrometer scale magnetic source distance to the conducting sheet, and blurred at a millimeter scale distance.
Downloads
References
Gans, R. R., R. M. Rose (1993), Crack detection in conducting materials using SQUID magnetometry, Journal of Nondestructive Evaluation, 12, 199–207, https://doi.org/10.1007/BF00568105
Baudenbacher, F., N. T. Peters, P. Baudenbacher, J. P. Wikswo (2002), High resolution imaging of biomagnetic fields generated by action currents in cardiac tissue using a LTS-SQUID microscope, Physica C, 368, 24–31
Xing, W., B. Heinrich, H. Zhou, A.A. Fife, A. R. Cragg (1994), Magnetic flux mapping, magnetization, and current distributions of YBa2Cu3O7 thin films by scanning Hall probe measurements Journal of Applied Physics, 76, 4244– 4255, DOI:10.1063/1.357308.
Johansen, T. H., M. Baziljevich, H. Bratsberg, Y. Galperin, P. E. Lindelof, Y. Shen, and P. Vase (1996), Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging, Phys. Rev. B, 54, 16264–16269
Schrag, B. D. and G. Xiao (2003), Submicron electrical current density imaging of embedded microstructures, Applied Physics Letters, 82(19), 3272–, doi.org/10.1063/1.1570499
Holzer, J. R., L. E. Fong, V. Y. Sidorov, J. P. Wikswo Jr., and F. Baudenbacher (2004), High Resolution Magnetic Images of Planar Wave Fronts Reveal Bidomain Properties of Cardiac Tissue, Biophysical Journal, 87, 4326–4332
Wang, Z., I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, A. F. Morpurgo (2018), Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nature Communication, 9, 2516, https://doi.org/10.1038/s41467-018-04953-8
Song T., X. Cai, M. W. Tu, X. Zhang, B. Huang, N. P. Wilson, K. L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, X. Xu (2018), Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science, 15; 360(6394):1214-1218, doi: 10.1126/science.aar4851
Steinert, S., F. Dolde, P. Neumann, A. Aird, B. Naydenov, G. Balasubramanian, F. Jelezko, and J. Wrachtrup (2010), High sensitivity magnetic imaging using an array of spins in diamond, Review of Scientific Instruments 81, 043705, https://doi.org/10.1063/1.3385689
Shibata, Y.; S. Nomura, H. Kashiwaya, S. Kashiwaya, R. Ishiguro, H. Takayanagi (2015), Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope. Scientific Report, 5, 15097; doi: 10.1038/srep15097.
Roth, B. J., N. G. Sepulveda, and J. P. Wikswo Jr. (1989), Using a magnetometer to image a two dimensional current distribution, Journal of Applied Physics, 65, 361-372, doi: 10.1063/1.342549
Jiang S., J. Shan, K. F. Mak (2018), Electric-field switching of two-dimensional van der Waals magnets. Nature Materials,17(5):406-410, doi: 10.1038/s41563-018-0040-6
Klein D. R., D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, P. Canfield, J. Fernández-Rossier, P. Jarillo-Herrero (2018), Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling, Science, 15;360(6394):1218-1222, doi: 10.1126/science.aar3617.
Thiel, L., Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, P. Maletinsky (2019), Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science, 364 (6444), 973-976, DOI: 10.1126/science.aav6926
Yuan, Z. (2009), Quantum Transport in Spatially Modulated Two-dimensional E ectron and Hole Systems, Ph.D. Thesis, Rice University, Huston, Texas, USA.
Pesikan, P., M. L. G. Joy, G. C. Scott, and R. M. Henkelman (1990), Two-Dimensional Current Density Imaging, IEEE Transactions on Instrumentation and Measurement, 39(6), 1048–1053
Chang, K, A. Eichler, J. Rhensius, L. Lorenzelli, and C. L. Degen (2017), Nanoscale Imaging of Current Density with a Single-Spin Magnetometer, Nano Letters, DOI: 10.1021/acs.nanolett.6b05304
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The Journals of the Nigerian Association of Mathematical Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.