MICROWAVE TOMOGRAPHY: EXPERIMENTAL SET-UP FOR 3D OBJECTS CHARACTERIZATION USING 10 GHZ MONOPOLE ANTENNAS

Authors

  • A. A. Bisu Electronics Unit, Department of Physics, Bayero University, Kano-Nigeria.. Author

DOI:

https://doi.org/10.60787/jnamp.vol69no2.535

Keywords:

Characterisation, Experiment, Frequency, imaging, Microwave, Network, Transmission, Tomography

Abstract

This paper explores the experimental setup for measurements and material characterisation of a 3-D objects using microwave tomography technique in a high frequency testing facility. Experiment was conducted using state- of-the art vector network analyser (VNA) with capability of operating up 1.1 THz. Monopole antennas operating at 10 GHz were used to investigate how 3-D printed objects scatter or guide the signals at high frequencies. VNA was calibrated using SOLT calibration standard before starting
measurements. Experiments using 3-D objects fabricated with wood, metal, glass, and aluminium were conducted and analysed based on the scattering parameters to identify the degree of signal reflection (S11/S33) and transmission (S13/S31) in the presence of the 3-D object within the imaging area. Results showed that 3-D object fabricated with the wooden material has the highest transmission coefficient of -32 dB compared with metallic material with -52- and -53-dB transmission coefficient.

         Views | Downloads: 48 / 34

Downloads

Download data is not yet available.

References

P.M. Meaney, D. Goodwin, A. H. Golnabi, T. Zhou, M. Pallone, S. D. Geimer, G. Burke, and K. D. Paulsen, “Clinical Microwave Tomographic Imaging of the Calcaneus: A First-in-Human Case Study of Two Subjects”, IEEE Trans. Biomed. Eng. 59 (12), 3304–3313, 2012. https://doi.org/10.1109/TBME.2012.2209202

T. Zhou, P.M. Meaney, M.J. Pallone, S. Geimer, K.D. Paulsen, “Microwave Tomographic Imaging for Osteoporosis Screening: A Pilot Clinical Study”, IEEE International Conference on Engineering in Medicine and Biology, pp. 1218–1221, 2010. DOI: 10.1109/IEMBS.2010.5626442

P.M. Meaney, D. Goodwin, A. Golnabi, M. Pallone, S. Geimer, K.D. Paulsen, “3D Microwave Bone Imaging”, 6th European Conference on Antennas and Propagation, pp. 1770–1771, 2012. https://doi.org/10.1109/EuCAP.2012.6206024

A.H. Golnabi, P.M. Meaney, S. Geimer, T. Zhou, K.D. Paulsen, “Microwave Tomography for Bone Imaging”, IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 956–959, 2011. https://doi.org/10.1109/ISBI.2011.5872561

P. Meaney, T. Zhou, D. Goodwin, A. Golnabi, E. Attardo, K. Paulsen, “Bone Dielectric Property Variation as a Function of Mineralization at Microwave Frequencies”, International Journal of Biomedical Imaging, pp. 1–9, 2012. https://doi.org/10.1155/2012/649612

Z. Wu and H. Wang, “Microwave Tomography for Industrial Process Imaging: Example Applications and Experimental Results”.,” IEEE Antennas and Propagation Magazine, Vol. 59, pp. 61–71, 2017.

Z. Wu “Developing a Microwave Tomographic System for Multiphase Flow Imaging: Advances and Challenges”, Transactions of the Institute of Measurement and Control, Vol. 37 (6) pp. 760–768, 2015.

C. Yu, M. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu “Active Microwave Imaging II: 3-D System Prototype and Image Reconstruction from Experimental Data”, IEEE Transactions on Microwave Theory and Techniques, Vol. 56 (4), pp.

-100, 2008.

K. Edwards, J. LoVetri, C. Gilmore, and I. Jeffrey “Machine-Learning-Enabled Recovery of Prior Information from Experimental Breast Microwave Imaging Data”, Progress in Electromagnetics Research, Vol. 175, pp. 1–11, 2022.

J. Hu, Z. Wu, H. McCann, L. E. Davis, and C. Xie “Quasi-Three-Dimensional Method of Moments for Analyzing Electromagnetic Wave Scattering in Microwave Tomography Systems”, IEEE Sensors Journal, Vol. 5 (2), pp. 216-223, 2005.

T. Lähivaara; R.Yadav; G. Link, and M. Vauhkonen “Estimation of Moisture Content Distribution in Porous Foam Using Microwave Tomography with Neural Networks”, IEEE Transactions on Computational Imaging, Vol. 6, pp. 1351-1361, 2020. DOI: 10.1109/TCI.2020.3022828.

I. Catapano, G. Gennarelli, G. Ludeno, C. Noviello, G. Esposito, and F. Soldovieri “Contactless Ground Penetrating Radar Imaging: State of the Art, Challenges, and Microwave Tomography-Based Data Processing”, IEEE Geoscience and Remote Sensing Magazine, 251-273, 2022. 10.1109/MGRS.2021.3082170.

S. Mukerjee, J. Doroshewitz, J. M. Merlo, C. Oakley, L. Udpa, D. Macfarlane, E. Huff, And J. A. Nanzer “A Microwave Tomography System Using Time-Reversal Imaging for Forestry Applications”, IEEE Journals of Microwaves Vol. 2 (4), 614-625, 2022. DOI: 10.1109/JMW.2022.3199194.

X. Li, E. J. Bond, B. D. Van Veen, and S. C. Hagness, “An Overview of Ultra-Wideband Microwave Imaging via Space–Time Beamforming for Early-stage Breast-Cancer Detection,” IEEE Antennas Propagation Magazine, Vol. 47 (1), pp. 19–34, 2005.

S. Y. Semenov, R. H. Svenson, A. E. Bulyshev, A. E. Souvorov, A. G. Nazarov, Y. E. Siziv, A. V. Pavlovsky, V. Y. Borisov, B. A. Voinov, G. I. Simonova, A. N. Starostin, V. G. Posukh, G. P. Tatsis, and V. Y. Baranov, “Three Dimensional Microwave Tomography: Experimental

Prototype of the System and Vector Born Reconstruction Method,” IEEE Transaction of Biomedical Engineering., Vol. 46 (8), pp. 937–946, 1999.

T. Reveyrand, S. Hernández, S. Mons, and E. Ngoya, “SOLT and SOLR Calibration Methods using a Single Multiport “Thru” Standard Connection”, 95th ARFTG Microwave Measurement Conference, pp. 1-4, IEEE, 2020. DOI: 10.1109/ARFTG47271.2020.9241365

W. Luoa, A. Hu, K. Liu and X. Chen, “Study on SLT Calibration Method of 2-port Waveguide DUT”, International Conference on Advanced Electronic Science and Technology, pp. 276-282, Atlantis Press, 2016.

Downloads

Published

2025-07-21

Issue

Section

Articles

How to Cite

MICROWAVE TOMOGRAPHY: EXPERIMENTAL SET-UP FOR 3D OBJECTS CHARACTERIZATION USING 10 GHZ MONOPOLE ANTENNAS. (2025). The Journals of the Nigerian Association of Mathematical Physics, 70, 9-20. https://doi.org/10.60787/jnamp.vol69no2.535

Share