SMS FIBER TEMPERATURE SENSORS USING OPTICAL TIME-DOMAIN REFLECTOMETRY

Authors

  • D. T. Osaisai Physics Department, Faculty of Science, Niger Delta University, Amassoma, Bayelsa State Author
  • O. Awodu Department of Physics, University of Benin, Benin City Author
  • A. S. Suleiman Department of Physics with Electronics, Auchi Polytechnic, Auchi Author
  • S. O Azi Department of Physics, University of Benin, Benin City Author

DOI:

https://doi.org/10.60787/jnamp.vol69no2.538

Keywords:

SMS fiber-optic temperature sensors, Ghost phenomena, Optical TimeDomain Reflectometry (OTDR)

Abstract

This paper presents a detailed analysis of ghost phenomena observed in Optical Time-Domain Reflectometry (OTDR) traces of Single-mode–Multimode–Single-mode (SMS) fiber temperature sensors. A theoretical model based on modal interference and temperature-dependent phase shifts is developed, and experimental studies are carried out using an Anritsu MT9083A2 OTDR system. The combined analysis links temperature changes with the dynamics of ghost peaks. The findings demonstrate how pulse width and temperature affect device performance, providing valuable insights for optimizing fiber-optic sensor applications.

         Views | Downloads: 39 / 24

Downloads

Download data is not yet available.

References

Wu, Q., Qu, Y., Liu, J., Yuan, J., Wan, S.-P., Wu, T., He, X.-D., Liu, B., Liu, D., Ma, Y., Semenova, Y., Wang, P., Xin, X., & Farrell, G. (2021). Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sensors Journal, 21(11), 12734–12751. https://doi.org/10.1109/jsen.2020.3039912A

Olivero M, Bellone A, Bano A, Vallan A and Perrone G (2022), Optical fiber flowmeter based on a single mode multimode-single mode structure. Front. Sens. 3:985963. doi: 10.3389/fsens.2022.985963

Morshed, A. H. E., and Shalaby, M. Y. (2014). Bending characteristics of single modeMultimode-Single mode optical fiber structures. 2014 31st National Radio Science Conference (NRSC), 303–310. https://doi.org/10.1109/nrsc.2014.6835090.

Chuprov, I., Efremenko, D., Gao, J., Anisimov, P., & Zemlyakov, V. (2022). Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2209.14641

Wong, N. H. L., Jung, Y., Alam, S., Petropoulos, P., & Richardson, D. J. (2017). Numerical analysis of mode propagation and coupling in multimode fibers. 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), 1–3. https://doi.org/10.1109/oecc.2017.8115029

Geok, T., Hossain, F., Kamaruddin, M., Abd Rahman, N., Thiagarajah, S., Tan Wee Chiat, A., Hossen, J., Liew, C., A Comprehensive Review of Efficient Ray-Tracing Techniques for Wireless Communication, (2018) International Journal on Communications Antenna and Propagation (IRECAP), 8 (2), pp. 123-136. doi:https://doi.org/10.15866/irecap.v8i2.13797

Wang, K., Xingchen Dong, X., Michael H. Kohler, M. H., Kienle, P., Bian, Q., Jakobi,M., and Alexander W. Koch ( 2020), IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX DOI 10.1109/JSEN.2020.3015086

Younus, S. I., Al-Dergazly, A. A., & Abass, A. K. (2021). Characterization of Multimode Interference Based Optical Fiber. IOP Conference Series: Materials Science and Engineering, 1076(1), 012060. https://doi.org/10.1088/1757-899x/1076/1/012060

Hu, S., Hu X., Li J., He Y., Qin H, Li S., Liu M., Liu C., Zhao C., and Chen W. (2024). "Enhancing Vibration Detection in ϕ-OTDR Through Image Coding and Deep LearningDriven Feature Recognition," IEEE Sensors Journal, vol. 24 (22) pp. 38344-38351, DOI: 10.1109/JSEN.2024.3469232

K. Yao, Q. Lin, Z. Jiang, N. Zhao, B. Tian and G. -D. Peng, "Design and Analysis of a Combined FBG Sensor for the Measurement of Three Parameters," in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-10,

Veettikazhy, M., Kragh Hansen, A., Marti, D., Mark Jensen, S., Lykke Borre, A., Ravn Andresen, E., Dholakia, K., & Eskil Andersen, P. (2021). BPM-Matlab: an open-source optical propagation simulation tool in MATLAB. Optics Express, 29(8), 11819. https://doi.org/10.1364/oe.420493

Barrias A., Joan R. Casas J. R., and Villalba S. (2016 )A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sensors, 16, p748-; doi:10.3390/s16050748

Ma, C.; Peng, D.; Bai, X.; Liu, S.; Luo, L. A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity. Coatings 2023, 13, 1277. https://doi.org/10.3390/coatings13071277)

Yu Z F, Li Y F, Guo M L, Luo B., Luo X., and Geng D. (2025). A Brief Review of Optical Fiber Sensor based on Multimode Interference. J. Study on Optical Communications, 247, pp 1-8. DOI:10.13756/j.gtxyj.2025.230177

Waluyo T. B., and Bayuwati D. (2017) J. Phys.: Conf. Ser. 817 012035

Egorov, F. A., & Potapov, V. T. (2012). Optical fiber vibration measuring transducers based on irregular multimode fibers. Technical Physics Letters, 38(6), 527–530. https://doi.org/10.1134/s106378501206003x

Sun, Y., Liu, D., Lu, P., Sun, Q., Yang, W., Wang, S., Liu, L. and Ni, W. (2017). High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure. Optics Communications, 405, 416–420. https://doi.org/10.1016/j.optcom.2017.08.059

Lalam, N., Ng, W. P., Wu, Q., Dai, X., & Fu, Y. Q. (2016). Perfluorinated polymer optical fiber for precision strain sensing based on novel SMS fiber structure. 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 1–3. https://doi.org/10.1109/csndsp.2016.7573938

Biswas, R. (2020). Inexpensive Hetero-core Spliced Fiber Optic Setup for Assessing Strain. Sensing and Imaging, 21(38). https://doi.org/10.1007/s11220-020-00298-z

Sakata, H., Okada, K., & Mochizuki, J. (2021). Highly sensitive temperature sensor based on multimode‐interference fiber structure with gel cladding. Microwave and Optical Technology Letters, 63(6), 1647–1651. https://doi.org/10.1002/mop.32823

Olivero, M., Vallan, A., Orta, R., and Perrone, G. (2018). Singlemode multimode-single mode optical fiber sensing structure with quasi-two-mode fibers. IEEE Trans. Instrum. Meas. 67 (5), 1223–1229. doi:10.1109/tim.2017. 2771998

Zhang, W., Lu, Y., & He, C. (2024). High-accuracy high temperature measurement based on forward Brillouin scattering of polyimide-coated optical fiber. Optical Fiber Technology, 83, 103653. https://doi.org/10.1016/j.yofte.2023.103653

Liu, Z., Yu, M., Huang, S., Liu, X., Wang, Y., Liu, M., Pan, P. and Liu, G. (2015) Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers, J. Mater. Chem. C. Vol. 3, 17, pp4222-4226

Liu, J.-D., Kari, N., Liu, H.-S., Wang, W.-S., Xia, Z.-M., & Wang, Q. (2024). Highly Sensitive Multimode-Single-Mode-Multimode Optical Fiber SPR Refractive Index Sensor with GaSe Nanosheets. Plasmonics, 20(1), 167–178. https://doi.org/10.1007/s11468-024-02252-1

Chen, Y., Han, Q., Liu, T., Lan, X., & Xiao, H. (2013). Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid. Optics Letters, 38(20), 3999. https://doi.org/10.1364/ol.38.003999

Ascorbe, J., Corres, J. M., Arregui, F. J., & Matias, I. R. (2015). Magnetic field sensor based on a single mode-multimode-single mode optical fiber structure. 2015 IEEE SENSORS, 1–4. https://doi.org/10.1109/icsens.2015.7370226

Li, A., Dai, L., Li, S., Zhang, Y., Lewis, E., Wang, S., Wang, P., & Yin, Y. (2024). Simultaneous salinity and temperature measurement using multimode interference effect. Optical Fiber Technology, 84, 103691. https://doi.org/10.1016/j.yofte.2024.103691

Liu, Y., and Cai, L. (2019). An optical fiber weight sensor based on SMS fiber structure. In Z. Li (Ed.), 17th International Conference on Optical Communications and Networks (ICOCN2018) (p. 11). SPIE. https://doi.org/10.1117/12.2518290

Sun, A., Semenova, Y., & Farrell, G. (2010). A novel highly sensitive optical fiber microphone based on single mode–multimode–single mode structure. Microwave and Optical Technology Letters, 53(2), 442–445. https://doi.org/10.1002/mop.25688

Gupta, V. K., Choudhary, K., and Kumar, S. (2024). Ascorbic Acid Detection Using Gold Nanoparticles and Graphene Oxide–Coated SMS Optical Fiber–Based Sensor. Plasmonics. https://doi.org/10.1007/s11468-024-02577-x

Agrawal, G. P. (2019). Nonlinear Fiber Optics, Academic Press https://doi.org/10.1016/C2011-0-00045-5

Aydin D., Barnes J. A., and Loock H. (2023). Appl. Phys. Rev. 10 (1), 011307 https://doi.org/10.1063/5.0105147

Lee, T., Kim, E. and Park, J. (2007). Implementation methods of repetitive sampling on an OTDR for alignment of ghost reflection in short-period measurement with a short-length fiber, Optical Fiber Technology, Vol. 13 (3). 246-253, ttps://doi.org/10.1016/j.yofte.2007.03.002.

K. Tian, X. Wang, G. Farrell, and P. Wang, "Single-Mode-Multimode-Single-Mode Fibre Structure for Sensing Applications: A Review," in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optica Publishing Group, 2018), paper SeM4E.1.

Cai L, Liu Y, Hu S, Liu Q. Optical fiber temperature sensor based on modal interference in multimode fiber lengthened by a short segment of polydimethylsiloxane. Microw Opt Technol Lett. 2019; 61: 1656–1660. https://doi.org/10.1002/mop.31843

Yu, Z., Yong-xing, J., and Shang-zhong, J. (2011). Numerical simulation of spectral transmission characteristics of single-mode-multimode-single-mode fiber structure. In Journal of China University of Metrology

Wang, Q., Farrell, G. and Yan W, (2008). Investigation on Single-Mode–Multimode–SingleMode Fiber Structure. Journal of Lightwave Technology, Vol. 26, no. 5, pp. 512-519

Bhatia N.and John, J. (2014). Multimode interference devices with single-mode–multimode–multimode fiber structure. Appl. Opt. vol. 53, pp 5179-5186. https://opg.optica.org/ao/abstract.cfm?URI=ao-53-23-5179

Sirin, S., Aldogan, K. Y. and Wuilpart, M. (2022). “Current sensing using a Phase-Sensitive Optical Time Domain Reflectometer: Feasibility study,” Optical Fiber Technology, vol. 76, p. 102663. https://doi.org/10.1016/j.yofte.2022.103084.

Adilkhanova, A., Nurlankyzy, M., Kazhiyev, S., Blanc, W., Bekmurzayeva, A. and Daniele Tosi, D. (2024). “Fiber optic refractive index sensing using an inline dual semi-distributed interferometer,” Optik, vol. 306, p. 167865, https://doi.org/10.1016/j.ijleo.2024.171713.

Markvart A. A., Liokumovich L. B., & Ushakov N. A. (2022). Fiber Optic SMS Sensor for Simultaneous Measurement of Strain and Curvature. Technical Physics Letters, 48(15), 30. https://doi.org/10.21883/tpl.2022.15.53817.18969

Hayes J. (2019). Ghosts and Goblins: How OTDRs Work, Part 4. https://www.ecmag.com/magazine/articles/article-detail/integrated-systems-Ghosts and Goblins: How OTDRs Work, Part 4

Thereza M. M. Giraldi R. Cindy S. Fernandes, C. S., Ferreira, M. S., Marco J. de Sousa, M. J., Pedro Jorge, P., Costa, J. C. W. A., Jose L. Santos, J. L., and Frazao O. (2015). Fiber Optic Displacement Sensor based on a Double-Reflecting OTDR Technique. Microwave and Optical Technology Letters. Vol. 57 (6). Pp 1312-1315.

Downloads

Published

2025-07-21

Issue

Section

Articles

How to Cite

SMS FIBER TEMPERATURE SENSORS USING OPTICAL TIME-DOMAIN REFLECTOMETRY. (2025). The Journals of the Nigerian Association of Mathematical Physics, 70, 143-154. https://doi.org/10.60787/jnamp.vol69no2.538

Share

Similar Articles

11-20 of 53

You may also start an advanced similarity search for this article.