MAGNETIC PROPERTIES OF TITANIUM CARBIDE (TIC) DIATOMIC MOLECULE UNDER THE INFLUENCE OF MAGNETIC AND AHARONOV–BOHM FLUX FIELDS AT FINITE TEMPERATURE

Authors

  • N. IBRAHIM Department of Physics, University of Maiduguri, Nigeria Author
  • U. S. OKORIE Department of Physics with Electronics, Al-Ansar University, Maiduguri, Nigeria. Author
  • A. ADAMU Department of Physics, University of Maiduguri, Nigeria Author
  • A. N. IKOT Theoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria Author

DOI:

https://doi.org/10.60787/jnamp.vol71no.606

Keywords:

Aharonov–Bohm (AB) flux field, Titanium Carbide (TiC), Generalized Cosine Yukawa Potential, Magnetic field, Magnetization, Magnetic Susceptibility, Persistent Current

Abstract

In this study, the influence of magnetic and Aharonov–Bohm (AB) flux fields on the magnetic properties of the Titanium Carbide (TiC) diatomic molecule at finite temperature is investigated. Using the generalized cosine Yukawa potential within the framework of the Nikiforov–Uvarov Functional Analysis (NUFA) method, the energy eigenvalue and the corresponding energy eigenfunction as well as the partition functions were obtained. Based on these, temperature-dependent magnetization, magnetic susceptibility, and persistent current were evaluated. The results show that magnetization increases with both magnetic field strength and AB flux, but decreases with temperature due to enhanced thermal agitation that disrupts magnetic dipole alignment. Similarly, magnetic susceptibility and persistent current diminish with temperature but exhibit higher magnitudes at stronger field intensities. These behaviors are consistent with Curie-like paramagnetism and agree with previous findings on related diatomic systems.

 

         Views | Downloads: 4 / 3

Downloads

Download data is not yet available.

References

Cari, C. A., Suparmi, A. and Azizah, H. (2018). The approximate solution of Schrödinger equation with minimal length presence for Yukawa potential. AIP Conference Proceedings, 020093. https://doi.org/10.1063/1.5054497

Parmar, R. H. (2019). Construction of solvable non-central potential using vector superpotential: A new approach. Indian Journal of Physics, 93(9), 1163–1170. https://doi.org/10.1007/s12648-019-01401-1

Parmar, R. H. (2019). Generalized improved non-central potential and solution of Schrödinger equation with extended ring-shaped potential via Nikiforov–Uvarov method. European Physical Journal Plus, 134(3), 86. https://doi.org/10.1140/epjp/i2019-12513-6

Falaye, B. J., Ikhdair, S. M. and Hamzavi, M. (2015). Formula method for bound state problems. Few-Body Systems, 56(1), 63–78. https://doi.org/10.1007/s00601-014-0937-9

Yin, C., Cao, Z. and Shen, Q. (2010). Why SWKB approximation is exact for all SIPs. Annals of Physics, 325(3), 528–534. https://doi.org/10.1016/j.aop.2009.11.004

Falaye, B. J., Oyewumi, K. J., Ikhdair, S. M. and Hamzavi, M. (2014). Eigensolution techniques, their applications and Fisher’s information entropy of the Tietz–Wei diatomic molecular model. Physica Scripta, 89, 115204. https://doi.org/10.1088/0031-8949/89/11/115204

Qiang, W. C. and Dong, S. H. (2010). Proper quantization rule. Europhysics Letters, 89(1), 10003. https://doi.org/10.1209/0295-5075/89/10003

Antia, A. D., Ituen, E. E., Obong, H. P. and Isonguyo, C. N. (2015). Analytical solution of the modified Coulomb potential using the factorisation method. International Journal of Recent Advances in Physics, 4(1), 55–65. https://doi.org/10.14810/ijrap.2015.4104

Hamzavi, M., Hassanabadi, H. and Rajabi, A. A. (2010). Exact solution of Dirac equation for Mie-type potential by using the Nikiforov–Uvarov method under the pseudospin and spin symmetry limit. Modern Physics Letters A, 25, 2447. https://doi.org/10.1142/S0217732310033402

Hassanabadi, H., Maghsoodi, E. and Zarrinkamar, S. (2012). Spin and pseudospin symmetries of Dirac equation and the Yukawa potential as the tensor interaction. Communications in Theoretical Physics, 58, 807. https://doi.org/10.1088/0253-6102/58/6/04

Hassanabadi, H., Zarrinkamar, S. and Rajabi, A. A. (2011). Exact solutions of D-dimensional Schrödinger equation for an energy-dependent potential by NU method. Communications in Theoretical Physics, 55, 541. https://doi.org/10.1088/0253-6102/55/4/01

Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S. and Rahimov, H. (2012). Approximate any l-state solutions of the Dirac equation for modified deformed Hylleraas potential by using the Nikiforov–Uvarov method. Chinese Physics B, 21, 120302. https://doi.org/10.1088/1674-1056/21/12/120302

Hassanabadi, H., Zarrinkamar, S. and Maghsoodi, E. (2012). Scattering states of Woods–Saxon interaction in minimal length quantum mechanics. Physics Letters B, 718, 678. https://doi.org/10.1016/j.physletb.2012.11.005

Hassanabadi, H., Zarrinkamar, S. and Maghsoodi, E. (2013). Scattering states of Hulthén interaction in minimal length quantum mechanics. International Journal of Modern Physics A, 28, 1350041. https://doi.org/10.1142/S0217751X13500413

Maghsoodi, E., Hassanabadi, H., Rahimov, H. and Zarrinkamar, S. (2013). Arbitrary-state solutions of the Dirac equation for a Möbius square potential using the Nikiforov–Uvarov method. Chinese Physics C, 37, 043105. https://doi.org/10.1088/1674-1137/37/4/043105

Louis, H., Ita, B. I., Magu, T. O., Akakuru, O. U., Nzeata-Ibe, N. A., Ikeuba, A. I., Pigweh, A. I. and Edet, C. O. (2018). Solutions to the Dirac equation for Manning–Rosen plus shifted Deng–Fan potential and Coulomb-like tensor interaction using Nikiforov–Uvarov method. International Journal of Chemistry, 10, 99. https://doi.org/10.5539/ijc.v10n3p99

Ita, B. I., Louis, H., Akakuru, O. U., Nzeata-Ibe, N. A., Ikeuba, A. I., Magu, T. O., Amos, P. I. and Edet, C. O. (2018). Approximate solution to the Schrödinger equation with Manning–Rosen plus a class of Yukawa potential via WKBJ approximation method. Bulgarian Journal of Physics, 45, 323.

Rahimov, H., Nikoofard, H., Zarrinkamar, S. and Hassanabadi, H. (2013). Any l-state solutions of the Schrödinger equation for the modified Woods–Saxon potential in arbitrary dimensions. Applied Mathematics and Computation, 219, 4710. https://doi.org/10.1016/j.amc.2012.10.087

Hassanabadi, H., Maghsoodi, E. and Zarrinkamar, S. A. (2012). Quasi-analytical study of the nonrelativistic two-center Coulomb problem. Few-Body Systems, 53, 271–281. https://doi.org/10.1007/s00601-012-0459-2

Louis, H., Ita, B. I., Akakuru, O. U., Nzeata-Ibe, N. A., Ikeuba, A. I., Magu, T. O., Amos, P. I. and Edet, C. O. (2018). l-state solutions of the relativistic and non-relativistic wave equations for modified Hylleraas–Hulthen potential using the Nikiforov–Uvarov quantum formalism. Oriental Journal of Physical Sciences, 3(3). http://dx.doi.org/10.13005/OJPS03.01.02

Eshshi, M., Mehraban, H. and Ikhdair, S. M. (2016). Relativistic Killingbeck energy states under external magnetic fields. European Physical Journal A, 52, 201. https://doi.org/10.1140/epja/i2016-16201-4

Ikhdair, S. M. and Hamzavi, M. (2012). A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov–Bohm fields. Physica B: Condensed Matter, 407(21), 4198–4207.

Hamzavi, M., Ikhdair, S. M. and Thylwe, K. E. (2012). Pseudospin symmetry in the relativistic Killingbeck potential: Quasi-exact solution. Zeitschrift für Naturforschung A, 67, 567–571. https://doi.org/10.5560/zna.2012-0046

Kumar, R. and Chand, F. (2012). Reply to comment on “Series solutions to the N-dimensional radial Schrödinger equation for the quark–antiquark interaction potential”. Physica Scripta, 86(2), 027001. https://doi.org/10.1088/0031-8949/86/02/027002

Eshghi, M. and Mehraban, H. (2017). Study of a 2D charged particle confined by magnetic and AB flux fields under the radial scalar power potential. European Physical Journal Plus, 132(3), 121. https://doi.org/10.1140/epjp/i2017-11379-x

Ikhdair, S. M., Falaye, B. J. and Hamzavi, M. (2015). Nonrelativistic molecular models under external magnetic and AB flux fields. Annals of Physics, 353, 282–298. https://doi.org/10.1016/j.aop.2014.11.017

Purohit, K. R., Parmar, R. H. and Rai, A. K. (2020). Eigensolution and various properties of the screened cosine Kratzer potential in D dimensions via relativistic and non-relativistic treatment. European Physical Journal Plus, 135(3). https://doi.org/10.1140/epjp/s13360-020-00299-7

Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J. and Sever, R. (2021). The Nikiforov–Uvarov functional analysis method: A new approach for solving exponential-type potential. Few-Body Systems, 62(9), 1–16. https://doi.org/10.1007/s00601-021-01593-5

Purohit, K. R., Parmar, R. H. and Rai, A. K. (2020). Bound state solution and thermodynamical properties of the screened cosine Kratzer potential under influence of the magnetic field and Aharonov–Bohm flux field. Annals of Physics. https://doi.org/10.1016/j.aop.2020.168335

Ibrahim, N., Izam, M. M. and Jabil, Y. Y. (2023). Energy spectra of shifted screened Kratzer potential for some diatomic molecules in the presence of magnetic and Aharonov–Bohm flux fields using extended Nikiforov–Uvarov method. Nigerian Journal of Physics, 32(1).

Greene, R. L. and Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential. Physical Review A, 14, 2363–2366. https://doi.org/10.1103/PhysRevA.14.2363

Edet, C. O., Khordad, R., Ettah, E. B., Aljunid, S. A., Endut, R., Ali, N., Asjad, M., Ushie, P. O. and Ikot, A. N. (2022). Magneto-transport and thermal properties of TiH diatomic molecule under the influence of magnetic and Aharonov–Bohm (AB) fields. Scientific Reports, 12, 15430. https://doi.org/10.1038/s41598-022-19396-x

Nwabuzor, P., Edet, C., Ikot, A. N., Okorie, U., Ramantswana, M., Horchani, R., Abdel-Aty, A. H. and Rampho, G. (2021). Analyzing the effects of topological defect on the energy spectra and thermal properties of LiH, TiC, and I₂ diatomic molecules. Entropy, 23, 1060. https://doi.org/10.3390/e23081060

Downloads

Published

2026-01-07

Issue

Section

Articles

How to Cite

MAGNETIC PROPERTIES OF TITANIUM CARBIDE (TIC) DIATOMIC MOLECULE UNDER THE INFLUENCE OF MAGNETIC AND AHARONOV–BOHM FLUX FIELDS AT FINITE TEMPERATURE. (2026). The Journals of the Nigerian Association of Mathematical Physics, 71, 139-150. https://doi.org/10.60787/jnamp.vol71no.606

Share

Similar Articles

1-10 of 106

You may also start an advanced similarity search for this article.