THE ELECTRONIC BAND STRUCTURE AND DIELECTRIC RESPONSE FUNCTION OF ZnGa2S4 and ZnGa2Se4
DOI:
https://doi.org/10.60787/jnamp-v67i1-344Keywords:
Optoelectronic, Electronic Properties, Dielectric Function of ZnGa2S4 and ZnGa2SeAbstract
ZnGa2S4 and ZnGa2Se4 have the vacancy defect stannite structure, belonging to the II-III2-VI4 family of compounds. These materials have been investigated via density functional theory (DFT). The electronic band structure, total and partial density and of states were computed using the LDA+U technique while the dielectric function calculations were performed using norm-conserving pseudopotentials. The band structure calculation showed the materials have indirect band gap of 2.65 eV and 1.82 eV for ZnGa2S4 and ZnGa2Se4 respectively. It was found that the top valence sub band for both compound have comparable energy width 0f 5.9 eV and 6.0 eV forZnGa2S4 and ZnGa2Se4 respectively. The partial density of states calculations showed the top valence band for ZnGa2Se4 to be predominantly of Se-4p states, while the bottom of the conduction band is dominated by Ga-4s state. For ZnGa2S4, the top of the valence sub band is made up of mostly S-3p states, and the conduction band minimum is mainly of Ga-3d and Ga-4s states. The calculated The calculated Ԑ1(0) for ZnGa2S4 and ZnGa2Se4 is 19 and 9 respectively.
Downloads
References
Asadullayeva S. G., Jahangirli Z. A, Naghiyev T. G, Mammador D. A. (2021), Optical and Dynamic Properties of ZnGa2S4, Physical Status solidi B, 258, issues 8, 2100101,https://doi/10.1002/pgsb.202100101.
Kaga H. and Kudo A. (2014), Cosubstituting effect of copper (I) and gallium (III) for ZnGa2S4 with defect chalcopyrite structure on photocatalytic activity for hydrogen evolution, Journal of Catalysis, Vol. 310, no 6, pp 31-36.
Peng D., Min Z., Zhonglei X; and Lihong C. (2015), Synthesis of the ZnGa2S4 nanocrystals and their visible –light photocatalytic degradation property, Journal of Nanomaterials, 2015, Doi:10.1155/2015/724942.
Turowski M., Kisiel A., Giriat W. (1984), Reflectivity spectra of CdIn2S4, ZnIn2S4, ZnGa2Se4 and CdGa2S4, Journal of Physics C: Solid State Physics, DOI:10.1088/0022-3719/17/25/003, Corpus ID:116893623.
Lowe- Ma C. K and Vanderah T. A . (1991), Structure of ZnGa2S4, a defect sphalerite derivative, Acta Cryst. C47, 919-924.
Tagiev B. G, Guseinov G.G., Dzhabbarov R. B, Tagiev O. B., Musaeva N. N. & Georgobiam A.N. (2000), Synthesis and luminescent properties of ZnGa2S4:Eu.F and ZnGa2O4:Eu,F, Inorganic Materials, Vol 36,pp 1189-1191.
Eifler A., Krauss G., Riede V., Kramer V., & Grill W. (2005), Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4, Journal of Physics and Chemistry of Solids, Vol.66,issue 11, pp 2052-2057.
Lowe-Ma C. K. (2013), Power diffraction data for ZnGa2S4, Cambridge Core, Vol.5,issue 4.
Kerimova T. G, Mamedova I. A., Nasibov I. G., Asadullaeva S. G., Kadiroglu Z. (2018), Temperature dependence of photoluminescence of ZnGa2S4,AJP Fizika, Vol. 25,issue 1.
Asadullayeva S. G., Ismayilova N. A., and Eyyubov Q.Y. (2022), Optical and electronic properties of defect chalcopyrite ZnGa2Se4: Experimental and theoretical investigations, Solid State Communications, Vol. 356, 114950, https://doi/10.1016/j.ssc.2022.114950.
Gomis O., Vilaplana R., Perez-Gonzailez, Ruiz-Fuertes J., Rodriguez P., Munoz A., Errandonea D., Segura A., Santamaria-Perez D., Alonso-Gutierrez P., Sanjunan M. L., Tiginganu I. M., Ursaki V. V., and Manjon F. J. (2023), Optical absorption of defect chalcopyrite and defect stannite ZnGa2Se4 under high pressure, Journal of Alloys and Compounds, 939 (2128): 168733,DOI:10.1016/jallcom.2023.168733.
Xiao-Shu J., Ying –Ce Y, Shi-Min Y., Shu M., Zhen-Guo N., and Liang J. (2010), Trends in the band –gap pressure coefficients and bulk moduli in different structures of ZnGa2S4, ZnGa2Se4 and ZnGa2Te4, Chinese Physics B, 19(10) 107104, Doi: 10.1088/1674-1056/19/10/10/107104.
Jiang X. and Lambrecht W.R.L (2004), Electronic band structure of ordered vacancy defect chalcopyrite compounds with formula II-III2-VI4, Phys Rev. B. 69, 035201.
Gaur A., khan K., son A. Dashora A., Sahariya J., and d Ahuja U. (2020), Optoelectronic analysis of silicon doped ZnGa2S4 A first principle study, Journal of Physics: Conferenceseries,1706, 012029, DOI:10.1088/1742-6596/1706/1/012029.
Madelung O., (2004), Semiconductors: Data hand book, springer, 3rd edition
Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., and Allan D.C., (2002) First-principles computation of material properties the Abinit software project, Computational Materials Science 25, 478-492.
Gonze X., Rignanese G.-M., Verstraete M., Beuken J.-M., Pouillon Y., Caracas R., Jollet F., Torrent M., Zerah G., Mikami M., Ghosez Ph., Veithen M., Raty J.-Y., Olevano V., Bruneval F., Reining L., Godby R., Onida G., Hamann D. R., and Allan D. C., (2005) A brief Introduction to the Abinit software package. Z. Kristallogr. 220, 558-562.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The Journals of the Nigerian Association of Mathematical Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.