GEAM INVESTIGATION OF THE INTER-ATOMIC POTENTIAL STRUCTURE OF RHODIUM (RH) AS FCC METAL HAVING ELASTIC CONSTANT WITH BOTH (C_12> C_44 ) AND (C_12> C_44 )

Authors

  • A. A. Oni-Ojo Department of Physics, University of Benin, Benin City, Nigeria. Author
  • E. O. Aiyohuyin Department of Physics, University of Benin, Benin City, Nigeria. Author

DOI:

https://doi.org/10.60787/jnamp-v67i1-348

Keywords:

GEAM, Embedding Function, Inter-Atomic

Abstract

The generalized embedding atom method GEAM, a model of the EAM designed by [1] was applied to study the surface energy status of Rh as fcc metal having both positive and negative Cauchy’s discrepancy in our preceding papers. To further test the effectiveness of the model’s parameters flexibility, this work has investigated the behaviour of the lattices of Rh by comparing the inter-atomic pair potential of both status Rh with that of [2] using the values predicted in our preceding work.

 

Downloads

Download data is not yet available.

References

Oni-Ojo A. A., Idiodi J. O. A. and Aiyohuyin E. O. (2007). Embedded atom method for materials with a negative Cauchy discrepancy, J. Nig. Math. Phys. Vol. 11, 509-514.

Rose J.H., Smith J. R., Guinea F., and Ferrante J. (1984). “Universal features of the equation of state of metals”, Phys. Rev. B 29, 2963-2969.

Daw M. S., Baskes M. I. (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50, 1285-1287.

Daw M. S., Baskes M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29, 6443-6453.

Adams J.B. and Foiles S.M. (1990). Development of an embedded-atom potential for a bcc metal: Vanadium, Phys. Rev. B 41, 3316-3328.

Baskes M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727-2742.

Baskes M. I., Nelson J.S., and Wright A. F. (1989). Semiempirical modified embedded atom potentials for Silicon and Germanium, Phys. Rev. B 40, 6085-6094.

Smith J. R. and Banerjea A., (1987). New Approach to Calculation of Total Energies of Solids with Defects: Surface-Energy Anisotropies Phys. Rev. Letters 59, 2451-2454,

Foiles S. M., Baskes M. I. and Daw M. S. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983-7991,

Johnson R. A. (1988).Analytic nearest-neighbour model for fcc metals, Phys. Rev. B 37, 3924-3931.

Baskes M. I, (1987). Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon. Phys. Rev. Lett. 59, 2666-2669.

Johnson R. A. and Oh D. J. (1989). Analytical Embedded Atom Method model for bcc metals. J. Mater. Res. 4, 1195-1201.

Oh D. J, Johnson R. A.(1988)., Simple embedded atom method for fcc and hcp metals, J. Mater. Res. 3, 471-478.

Yan-Wi Wen, Jian-Min Zhang, (2007).Surface energy calculation of the fcc metals by using the MAEAM, Computational material science, 144, 163-167. .

Yan-Wi Wen, Jian-Min Zhang, (2008).Surface energy calculation of the bcc metals by using the MAEAM, Computational material science, 42, 281-285..

Oni-Ojo A. A., Idiodi J. O. A. and Aiyohuyin E. O. (2007). Embedded atom method for materials with a negative Cauchy discrepancy, J. Nig. Math. Phys. Vol. 11, 509-514. .

Oni-Ojo A. A., Onwusinkwue S, Aiyohuyin E. O. and Idiodi J. O. A. (2015). Surface Energy Calculation for a fcc metal Gold (Au) Using the GEAM, J. Nig. Math. Phys. Vol. 29, 125-130.

Oni-Ojo, A.A. Oni-Ojo F.O. and Aiyohuyin, E.O. (2023). Surface Energy Calculation for some Transition Metals using the GEAM. Nig. Journal of Phys. Vol 32(4), 41-44.

Oni-Ojo, A.A. Oni-Ojo F.O. and Aiyohuyin, E.O. (2023). An Approach Towards a Self- Consistent EAM for bcc Metal Lithium and Vanadium. Nig. Journal of Phys. Vol 32(4), 169-173.

Oni-Ojo A. A, (2011), Surface energies of fcc metals within the embedded atom methods, M.Phil. Thesis, University of Benin, Edo state, Nigeria.

Downloads

Published

2024-06-09

Issue

Section

Articles

How to Cite

GEAM INVESTIGATION OF THE INTER-ATOMIC POTENTIAL STRUCTURE OF RHODIUM (RH) AS FCC METAL HAVING ELASTIC CONSTANT WITH BOTH (C_12> C_44 ) AND (C_12> C_44 ). (2024). The Journals of the Nigerian Association of Mathematical Physics, 67(1), 85-92. https://doi.org/10.60787/jnamp-v67i1-348

Share

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.