SURFACE ENERGY CALCULATION FOR RHODIUM (RH) TREATED AS FCC METAL WITH BOTH POSITIVE AND NEGATIVE CAUCHY’S DISCREPANCY BY USING THE GEAM

Authors

  • A. A. Oni-Ojo Department of Physics, University of Benin, Benin City, Nigeria. Author
  • E. O. Aiyohuyin Department of Physics, University of Benin, Benin City, Nigeria. Author

DOI:

https://doi.org/10.60787/jnamp-v67i1-347

Keywords:

Geam, Embedding Fuction, Inter-Atomic

Abstract

The fcc metal Rhodium is treated as having both positive and negative Cauchy’s discrepancy and the three low-index surfaces of the metal calculated using the generalized embedded-atom method (GEAM), a model developed by [1]. The low-index surface energies investigated are {,  and }. The predicted values are in good agreement with the experimental values. The result shows having the lowest and having the highest energy value.

         Views | Downloads: 54 / 25

Downloads

Download data is not yet available.

References

Oni-Ojo A. A., Idiodi J. O. A. and Aiyohuyin E. O. Embedded atom method for materials with a negative Cauchy discrepancy, J. Nig. Math. Phys. Vol. 11, 509-514. (2007).

Daw M. S., Baskes M. I. Semi-empirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50, 1285-1287. (1983).

Daw M. S., Baskes M. I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29, 6443-6453. (1984).

Adams J.B. and Foiles S.M., Development of an embedded-atom potential for a bcc metal: Vanadium, Phys. Rev. B 41, 3316-3328. (1990).

Baskes M. I. Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727-2742. (1992)

Baskes M. I., Nelson J.S., and Wright A. F. Semi-empirical modified embedded atom potentials for Silicon and Germanium, Phys. Rev. B 40, 6085-6094. (1989).

Smith J. R. and Banerjea A., New Approach to Calculation of Total Energies of Solids with Defects: Surface-Energy Anisotropies Phys. Rev. Letters 59, 2451-2454, (1987).

Foiles S. M., Baskes M. I. and Daw M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983-7991, (1986).

Johnson R. A. Analytic nearest-neighbour model for fcc metals, Phys. Rev. B 37, 3924-3931. (1988).

Baskes M. I, Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon. Phys. Rev. Lett. 59, 2666-2669. (1987).

Johnson R. A and Oh D. J., Analytical Embedded Atom Method model for bcc metals. J. Mater. Res. 4, 1195-1201, (1989).

Oh D. J, Johnson R. A., Simple embedded atom method for fcc and hcp metals, J. Mater. Res. 3, 471-478, (1988).

Yan-Wi Wen, Jian-Min Zhang, Surface energy calculation of the fcc metals by using the MAEAM, Computational material science, 144, 163-167. (2007).

Yan-Wi Wen, Jian-Min Zhang, Surface energy calculation of the bcc metals by using the MAEAM, Computational material science, 42, 281-285. (2008).

Simons G. and Wang H, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press Cambridge, MA, 1977)

Yuan X., Takahashi K., Ouyang Y. and Onzawa T, Development of a modified embedded atom method for bcc transition metals: Lithium, Modelling Simul. Mater. Sci. Eng. Vol. 11, 447-456. (2003)

Idiodi J. O. A. and Aghemenloh E. On the problem of low surface energies within the embedded atom method, J. Nig. Math. Phys. Vol. 2, 285-296. (1998).

Idiodi J. O. A. and Aghemenloh E. Implementation of Equivalent Crystal theory within a generalized embedded-atom method, J. Nig. Math. Phys. Vol. 3, 167-178. (1999).

Oni-Ojo A. A, (2011), Surface energies of fcc metals within the embedded atom methods, M.Phil. Thesis, University of Benin, Edo state, Nigeria.

Aghemenloh E. and Idiodi J.O.A., Equivalent-crystal theory of fcc metal surfaces, J. Nig. Math. Phys., Vol. 2. 271-284. (1998)

Downloads

Published

2024-06-09

Issue

Section

Articles

How to Cite

SURFACE ENERGY CALCULATION FOR RHODIUM (RH) TREATED AS FCC METAL WITH BOTH POSITIVE AND NEGATIVE CAUCHY’S DISCREPANCY BY USING THE GEAM. (2024). The Journals of the Nigerian Association of Mathematical Physics, 67(1), 79-84. https://doi.org/10.60787/jnamp-v67i1-347

Share

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.